
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Rule-based Runtime Verification Revisited

Klaus Havelund

Jet Propulsion Laboratory
California Institute of Technology
California, USA

Received: date / Revised version: date

Abstract. Runtime verification (RV) consists in part
of checking execution traces against user-provided for-
malized specifications. Throughout the last decade many
new systems have emerged, most of which support spec-
ification notations based on state machines, regular ex-
pressions, temporal logic, or grammars. The field of Ar-
tificial Intelligence (AI) has for an even longer period of
time studied rule-based production systems, which at
a closer look appear to be relevant for RV, although
seemingly focused on slightly different application do-
mains, such as for example business processes and expert
systems. The core algorithm in many of these systems
is the Rete algorithm. We have implemented a rule-
based system, named LogFire, for runtime verification,
founded on the Rete algorithm, as an internal DSL in
the Scala programming language (in essence a library).
Using Scala’s support for defining DSLs allows to write
rules elegantly as part of Scala programs. This combi-
nation appears attractive from a practical point of view.
Our contribution is part conceptual in arguing that such
rule-based frameworks originating from AI are suited for
RV. Our contribution is technical by implementing an in-
ternal rule DSL in Scala; by illustrating how specifica-
tion patterns can easily be encoded that generate rules,
and by adapting and optimizing the Rete algorithm for
RV purposes. An experimental evaluation is performed
comparing to six other trace analysis systems. LogFire
is currently being used to process telemetry from the
Mars Curiosity rover at NASA’s Jet Propulsion Labora-
tory.

1 Introduction

Runtime Verification (RV) consists of monitoring the be-
havior of a system, either on-the-fly as it executes, or

post-mortem after its execution, for example by analyz-
ing log files. Although this task sounds much easier than
full-fledged formal verification of all possible executions
of a program, this task is challenging. From an efficiency
(algorithmic) point of view the challenge consists of fast
processing of events that carry data. For example, if a
lock is released, the data are the particular lock object;
if a task is being terminated, the data are the particu-
lar task id. When a monitor receives an event, it has to
efficiently locate what part of the monitor is relevant to
activate, as a function of the data carried by the event.
The monitor has to match the right sub-monitor. This
is called the matching problem. From an expressiveness
point of view, a logic should be as expressive as possible.
From a elegance point of view a logic should be easy to
use and succinct for simple properties.

The problem has been addressed in several monitor-
ing systems within the last years. These systems usually
implement specification languages which are based on
formalisms such as state machines, regular expressions,
temporal logic, or grammars. The most efficient of these,
however, tend to have limited expressiveness as discussed
in [15]. Our own work has focused on expressiveness. It
can be observed that rule-based programming seems like
an attractive approach to monitoring, as exemplified by
the Ruler system [23,10]. In its simplest form, a rule-
based specification consists of a set of rules of the form:

condition1, . . . , conditionn ⇒ action

The state of a rule system can abstractly be considered
as consisting of a set of facts, referred to as the fact mem-
ory, where a fact is a data record, a mapping from field
names to values. A fact represents a piece of observed in-
formation about the monitored system. A condition in a
rule’s left-hand side can check for the presence or absence
of a particular fact, and the action on the right-hand side
of the rule can add or delete facts, produce error mes-
sages, or cause other side effects. Left-hand side match-

2 Havelund: ISoLA’12 track: runtime verification, the application perspective

ing against the fact memory usually requires unification
of variables occurring in conditions. In case all condi-
tions on a rule’s left-hand side match (become true), the
right-hand side action is executed. This model is very
well suited for processing data rich events, and is simple
to understand by nature of its very operational seman-
tics. It is interesting to note that finite-state machines
can be mapped into rule systems.

Within the field of Artificial Intelligence (AI) rule-
based production systems have been well studied, for
example in the context of expert systems and business
rule systems. In such systems a specification1 is likewise
a set of rules, although with a different interpretation
that in Ruler. The Rete algorithm [37] is the base of
many AI rule systems. This algorithm has acquired “a
reputation for extreme difficulty” [59], making up close
to 1000 lines of pseudo-code (described in [30]), which
is considerable for a theoretic algorithm. The core idea
is, however, simple. The algorithm maintains a network
of facts, avoiding to re-evaluate all conditions in each
rule’s left-hand side each time the fact memory changes.
Our primary goal with this work has been to understand
how well this algorithm serves to solve the runtime ver-
ification task, how it relates to the Ruler algorithm,
and hence attempt to bridge the two communities, one
anchored in artificial intelligence and one anchored in
formal methods. A discussion of this work in its initial
phase was first presented in [46] and later in [47], both
short papers.

A secondary goal has been to study integration of an
RV formalism into a high-level programming language,
in this case Scala, which is well suited for defining so-
called internal DSLs. A notation for writing monitors
can be conceived as a DSL (Domain Specific Language)
[38]. Most frameworks developed for runtime verification
are external DSLs: separate, standalone, languages, with
their own parsers. In contrast, an internal DSL extends
an existing programming language. A typical way of
achieving this is to define the DSL as an API in the host
programming language. Generally, the arguments for an
internal DSL are: limited implementation effort due to
direct executability of DSL constructs, feature richness
through inheriting the host language’s constructs, and
tool inheritance, i.e. it becomes possible to directly use
all the tool support available for the host language, such
as IDEs, editors, debuggers, static analyzers, and testing
tools. Often one wants to write advanced properties for
which a simple logic does not suffice, including counting
and collecting statistics. In a programming language this
all becomes straightforward.

Our contributions are as follows. First of all, we have
implemented a rule-based system based on the Rete
algorithm in the Scala programming language as an
internal DSL, essentially extending Scala with rule-

1 The term program is normally used within the AI community
to refer to such a set of rules. We shall use the term specification
in this paper to be consistent across the systems discussed.

based programming. Second, we show how it is rela-
tively straight-forward to define specification patterns,
such as fragments of temporal logic and time lines, in-
stances of which are translated to rules. An interesting
nuance is that these templates allow data parameterized
events. Third, we have made some modifications to the
Rete algorithm to make it suitable for the RV prob-
lem, including fitting it for event processing (as opposed
to fact processing) and optimizing it with fast index-
ing to handle commonly occurring RV scenarios. Finally,
we have performed experiments comparing the resulting
implementation with six other runtime verification and
rule-based systems. Among the test data are log data
from the Mars rover Curiosity, developed as part of the
MSL (Mars Science Laboratory) mission at NASA’s Jet
Propulsion Laboratory (JPL) [8]. Our conclusion is, that
with such modifications the Rete algorithm is suited for
RV, although some of its advantages might not be of crit-
ical importance for the RV problem. The implemented
algorithm appears competitive relative to the state-of-
the-art rule-based system Drools [5], but is not as fast
as the, to our knowledge, fastest existing state-of-the-art
runtime verification system Mop [58].

The paper is organized as follows. Section 2 outlines
related work. Section 3 illustrates the LogFire DSL
through the specification of a monitor for a set of re-
quirements concerning a simple planetary rover resource
management system. Section 4 shows how specification
patterns conveniently can be programmed and used. Sec-
tion 5 describes the Rete algorithm, based on the pre-
sentation in [30]. Section 6 discusses the suitability of the
Rete algorithm for the RV problem, and then describes
the modifications and optimizations we have made to the
algorithm to suit the RV problem. Section 7 explains
how the internal Scala DSL has been implemented.
Section 8 presents experiments made, comparing per-
formance with other systems. Section 9 concludes the
paper. The paper contains Scala program text, but al-
though knowledge of Scala is an advantage, it is not a
prerequisite for reading the paper.

2 Related Work

2.1 Related Work on Monitoring

Runtime verification [48,56] as a field has delivered sev-
eral systems over the last decade. Initial systems could
only handle propositional events (such as GateOpen and
GateClose), not carrying data: Temporal Rover [31], Mac
[55], and Java PathExplorer [50,49]. Later work has
studied such propositional monitoring logics from a more
theoretic point of view, including notions such as 4 val-
ued logics [26] and monitorabillity [35]. More recently
there has been a growing interest in so-called paramet-
ric properties where events carry data values. The chal-
lenges here are expressiveness of logics and efficiency of

Havelund: ISoLA’12 track: runtime verification, the application perspective 3

monitoring algorithms. The first systems to handle pa-
rameterized events appeared around 2004, and include
such systems as Eagle [17], Hawk [29], Jlo [62], Trace-
Matches [14], and Mop [28,58]. Several systems have
appeared since then. RV systems usually implement spec-
ification languages which are based on formalisms such
as state machines [32,42,45,28,34,19], regular expres-
sions [14,28], temporal logic [55,31,50,17,63,29,62,61,
28,19,24,44,25], or grammars [28]. Some systems based
on Linear Temporal Logic (LTL) [60] apply rewriting of
LTL formulas, inspired by [41]. These include for exam-
ple [31,50,17,63,62,19,44]. An example of a rewrite rule
is p U q = q ∨ (p∧©(p U q)), meaning: p U q (p until q)
is true if q is true now, or: p is true now, and in the next
step, p U q holds. Each new event causes the current LTL
term to be rewritten into a new term representing the
formula that must hold in the next step. This form of
rewriting is different from the form of rewriting taking
place in rule-based systems. Other LTL-based systems
translate temporal logic formulas to state machines be-
fore monitoring starts [28].

The TraceMatches (regular expressions) and Mop
(logic independent) systems stand out as being amongst
the most efficient of these systems, with Mop claimed
to be the fastest [58]. In Mop an approach is applied re-
ferred to as parametric trace slicing. As described in [28,
58], and also further discussed in [15], here a trace of data
carrying events is, from a semantic point of view, sliced
to a set of propositional traces containing propositional
events not carrying data (one trace for each binding of
data parameters), which are then fed to propositional
monitors. In practice, however, the state of a monitor
contains, simplified viewed, a mapping from bindings of
parameter values to propositional monitor states. Con-
sider as an example a specification stating that locks
should be acquired and released in alternating order.
Specifically, we are interested in monitoring events of
the form: acquire(L) and release(L), for some univer-
sally quantified parameter L, against the regular expres-
sion: (acquire(L) release(L))∗. Consider now a trace of
the form (events are separated by dots ‘.’):

acquire(l42).release(l42).release(l68)

Simplified viewed, Mop works as follows. After the first
event is processed, the binding [L 7→ l42] is mapped to a
state where a release is expected next. Upon processing
the next event release(l42), the binding [L 7→ l42] can
be immediately constructed just from (i) this event and
(ii) the quantified parameter L of the event, and then
be used directly to look up the monitoring state of the
corresponding propositional property, that in this case
luckily expects a propositional release event. As we shall
see in Section 8, this indexing approach results in an
impressive performance.

From an expressiveness point of view, however, as
pointed out in [15], parametric trace slicing suffers from
two limitations. First of all, it is not possible to write

a property where an event refers to two or more differ-
ent variables. There has to be a unique such, like L in
this case. This is because the indexing approach relies
on being able to create the binding [L 7→ l42] just from
the observed event release(l42). It is for example there-
fore not possible to express the property that at most one
lock should be acquired at any one time, since this would
require to formulate a property over events acquire(L1)
and acquire(L2) (also referred to as the “Talking Philoso-
phers” problem in [15]). Second, the approach relies on
the fact that arguments to an event do not change in a
property, preventing for example counting (also referred
to as the “Auction Bidding” problem in [15]).

A separate line of work has focused on more expres-
sive logics, able to handle such properties mentioned
above. This work has taken two forms: external DSLs
(with focus on the logic) and internals DSLs (with focus
also on the integration of the logic into a programming
language). Eagle [17] is an external DSL, a linear time
mu-calculus for monitoring, with past time as well as
future time operators. Although attractive, the imple-
mentation appears complex. This observation lead to the
design of the Ruler system [22,23,10], which supports
a rule-based specification language. Ruler, however, is
inspired by MetateM [16] and not by Rete implemen-
tations. Ruler has subsequently lead us to study the
Rete algorithm as described in this paper, in order to
determine the relevance of Rete for runtime verification.
LogScope [21,43,18] is a data parameterized state ma-
chine oriented derivative of Ruler, implemented for an-
alyzing log files at JPL, for testing of the Mars Curiosity
rover.

Our first internal DSL was TraceContract [19,
20], an embedding in the object-oriented and functional
programming language Scala, supporting data param-
eterized state machines, temporal logic, and a simple
form of rule-based programming. State machines are in
TraceContract defined as a so-called shallow inter-
nal DSL, where as many of the host language’s language
constructs as possible are made part of the DSL. For ex-
ample, Scala’s pattern matching and notion of partial
functions are used to define the notion of state transi-
tions. Temporal logic, on the other hand, is represented
in TraceContract as a deep embedding. In a deep em-
bedding, data structures in the host language are used
to represent DSL constructs in an explicit manner (Ab-
stract Syntax), such that they can be processed. In [40]
it is argued that the advantage of a deep embedding is
that “We ‘know’ the code of the term, for instance we
can print it, compute its length, etc”, whereas the ad-
vantage of a shallow embedding is that “we do not know
the code, but we can run it”. The advantage of a shallow
internal DSL of course is the re-use of programming lan-
guage constructs. LogFire, described in this paper, is a
mixed deep and shallow internal DSL, deep in the sense
that some core syntactic features (specifically left-hand
sides of rules) are defined as data structures. This allows

4 Havelund: ISoLA’12 track: runtime verification, the application perspective

us to more easily analyze and optimize such specifica-
tions, although forcing us to re-invent the notion of for
example pattern matching.

A deep embedding of LTL in Haskell is described
in [63]. In contrast to TraceContract, it handles data
parameterization by a concept called formula templates
instantiated for all possible permutations of propositions.
MopBox [27] is a Java library for monitoring, hence a
shallow embedding, offering a re-implementation of effi-
cient indexing algorithms contained in Mop [28,58], but
defining the interface as an API, as in TraceContract
and LogFire. The user can for example define a state
machine as a sequence of Java statements updating a
state machine data structure. The tool is modular, al-
lowing to experiment with different monitoring/indexing
algorithms.

Quantified Event Automata [15] is an automaton con-
cept for monitoring parameterized events, which extends
the parametric trace slicing approach taken by Mop by
allowing event names to be associated with multiple dif-
ferent variable lists (not allowed in Mop), by allowing
non-quantified variables to vary during monitoring, and
by allowing existential quantification in addition to uni-
versal quantification. This results in a strictly more ex-
pressive logic. This work arose from an attempt to un-
derstand, reformulate and generalize parametric trace
slicing, and more generally from an attempt to explore
the spectrum between Mop and more expressive systems
such as Eagle and Ruler.

Orchids [42] is a comprehensive state machine based
monitoring framework created for intrusion detection. It
dynamically spawns state machine monitors as events
are processed. Abstract interpretation is used to safely
kill useless monitors, including monitors which will not
detect anything, as well as monitors that are subsumed
by others that will report shorter runs.

An extension of future time Linear Temporal Logic
(LTL) with a binding operator (pattern → ϕ, for some
LTL formula ϕ) is presented in [61]. This work was pre-
ceded and inspired by [62]. The binding operator has
similarities with a rule, with a binding left-hand side,
that has to match an incoming event before the right-
hand side formula becomes active. This form of binding
operator is also found in systems such as LogScope
[21,43,18] and TraceContract [19,20]. The logic of-
fers universal and existential quantification of variables
bound. During monitoring an alternating automaton is
constructed on-the-fly. A state is a control state and a
binding, as is also the case in LogFire. Note that Log-
Fire can refer to such states in conditions, and hence
express past time properties.

A first-order future time linear temporal logic, LTL-
FO+, for paramererized monitoring of web-services is
presented in [44]. The logic permits universal and exis-
tential quantification over data occurring in Xml mes-
sages, which are being transmitted between a server and
clients. The logic is particular in allowing path expres-

sions over the Xml structures. An LTL-FO+ formula is
interpreted as a so-called watcher automaton, which is
built on-the-fly by rewriting formulas, inspired by [41],
and adapted to first-order quantification; similar to the
other rewriting-based systems mentioned earlier. The
quantification in these logics is over the data occurring
in the trace, as is the case in LogFire.

A metric first-order temporal logic, MFOTL, for mon-
itoring, with time constraints as well as universal and
existential quantification over data, is presented in [24].
The logic includes past time operators in addition to fu-
ture time operators, and is described as an expressive
fragment of a temporal logic, which can be effectively
monitored. A formula is rewritten to a formula in a
monitorable fragment, permitting matching against data
parameterized events. This logic, as well as the other
first-order logics mentioned, has limitations in not being
able to express aggregation of data, such as for example
counting. In general the logic operates only with events,
in contrast to LogFire, which can also operate with
parameterized facts, and hence aggregations.

Another first-order linear temporal logic, LTLFO, for
parameterized monitoring is presented in [25]. The tem-
poral logic, offering first-order quantification, is converted
to what is referred to as spawning automata. A spawning
automaton is in principle an automaton associated with
a set of constraints representing the binding of quantified
variables. This is very similar to the concept of automata
in LogScope and TraceContract, where, however,
the binding of variables is represented by concrete map-
pings from names to values, similar also to how bind-
ings are represented in LogFire and Ruler. Several
complexity results are presented in [25]. The automaton
solution does not seem to be optimized.

2.2 Related Work on Rule Processing

There are several state-of-the-art implementations of the
Rete algorithm, including Drools [5], Jess [7] and
Clips [2]. These systems offer external DSLs for writ-
ing rules. In this work we have focused on Drools for
comparison, since it is implemented in Java and since it
is freely available from the web. Drools is interesting
since it can perform backward chaining (from conclu-
sions, as Prolog) as well as forward chaining (from as-
sumptions, as Rete, and as implemented in LogFire).
Drools also performs indexing as we do, although de-
tails on this have to our knowledge not been published
in a detailed form. For a discussion of Drools optimiza-
tions the reader is referred to [3]. The Drools project
has an effort ongoing, defining functional programming
extensions to Drools [4]. In contrast, by embedding
a rule system in an object-oriented and functional lan-
guage, as done in LogFire, we can leverage the already
existing host language features.

Drools supports a notion of events, which are facts
with a limited life time. These events, however, are not as

Havelund: ISoLA’12 track: runtime verification, the application perspective 5

short-lived as possibly desirable in runtime verification.
This leads to problems in defining certain properties.
Consider for example the following two rules, where e is
an event, and F is a fact:

r1 : e, F ⇒ remove(F)
r2 : e,¬F ⇒ error

Assume that event e occurs, and that fact F is present
in the fact memory. The first rule handles the case where
fact F is present - in which case the action is to delete it.
The second rule handles the case where F is not present,
and will immediately get triggered as a result of the
fact F being deleted by the first rule firing (within the
same event cycle). As a result an error will be reported
although intuitively this should not be the case. The
problem here is that the event e “stays around” for too
long, thereby causing damage. In Drools the specifica-
tion will consequently have to be formulated differently
(which is possible to do). We have modified Rete to pro-
cess events with immediate removal (before right-hand
side are evaluated essentially), such that such proper-
ties can be stated in their natural form. The event con-
cept in Drools is inspired by the concept of Complex
Event Processing (CEP), described by David Luckham
in 2002 [57]. This concept in many ways is very much re-
lated to RV. CEP is concerned with processing streams
of events in (near) real time, where the main focus is on
the correlation and composition of atomic events into
complex (compound) events. Note that a rule-based sys-
tem in general, including LogFire and Drools, allows
for such abstraction, as discussed elsewhere in this pa-
per.

Two rule-based internal DSLs for Scala exist: Ham-
murabi [39] and Rooscaloo [9]. Hammurabi, which
is not Rete-based, achieves efficient evaluation of rules
by evaluating these in parallel, assigning each rule to a
different Scala actor. Rooscaloo [9] is Rete based,
but is not documented in any form other than experi-
mental code. Our implementation is not based on any of
these systems. A Rete-based system for aspect-oriented
programming with history pointcuts is described in [51].
The system offers a small past time logic, which is imple-
mented as a modification of the Rete algorithm. This
is in contrast to our approach, where we maintain the
Rete algorithm, and instead write rules that represent
the desired properties.

3 The LogFire DSL

In this section we shall illustrate LogFire by stating a
collection of requirements for the resource management
system for a planetary rover, and then formalizing them
as a LogFire monitor. The requirements as well as for-
malizations are inspired by real systems as well as other
literature, such as [52] and [36]. However, parts of the

examples are artificially made up in order to not reveal
protected information.

3.1 Requirements for a Resource Management System

A planetary rover runs a collection of tasks in parallel.
Each task handles a specific application, such as imaging,
controlling the robot arm, communication with earth,
and driving. Tasks use resources, for example motors. A
resource arbiter manages resource allocation, ensuring
for example that a resource is only used by one task at
a time, and that resource deadlocks do not occur.

A task requests a resource, upon which it is either
granted or denied by the arbiter, and if granted, the
task eventually is expected to release the resource at a
later point in time. In order to avoid deadlocks, a partial
order on resources is imposed, which has to respected: if
a resource r1 is ordered before a resource r2, then a task
should not be granted r1 after having been granted r2,
until r2 is released again.

We first settle on the events we expect to monitor.
Events are short-lived instantaneous observations, which
will trigger the evaluation of rules. The event types are as
follows (all occurrences of parameter s is a time stamp):

before(r1, r2) : resource r1 is ordered before r2
request(s, t, r) : task t requests resource r
deny(s, t, r) : task t is denied resource r
grant(s, t, r) : task t is granted resource r
release(s, t, r) : task t releases resource r
end() : the end of the log is reached

Consider next the following four informal requirements
that logs containing instances of these event types have
to satisfy:

– Release: A resource granted to a task should even-
tually be released by that task.

– NoRelease: A resource can only be released by a
task, if it has been granted to that task, and not yet
released.

– NoGrant: As long as a resource is granted to a task,
it cannot be granted again, neither to that task nor to
any other task. Also, a resource cannot be granted to
a task if it is ordered before another resource already
granted to that task.

– Deny: A task requesting a resource that is already
granted, or which is ordered before a resource already
granted to that task, should be denied the resource
within 10 seconds. There should be no more than
three denials in a log.

3.2 Formalizing Requirements as Rules

We shall now formalize these four requirements. The
main component of LogFire is the trait2 Monitor, which

2 A trait in Scala is a module concept closely related to the
notion of an abstract class, as for example found in Java. Traits,

6 Havelund: ISoLA’12 track: runtime verification, the application perspective

any user-defined monitor must extend to get access to
the constants and methods provided by the rule DSL.

3.2.1 Declaration of Events and Facts

As already mentioned, events are short-lived instanta-
neous observations about the system being monitored. In
contrast, facts are long-lived pieces of information stored
in the fact memory of the rule system. They are added
and removed explicitly by rule right-hand sides. As it
turns out, we shall use the same representation of events
and facts, only their life-span distinguishes them. Events
can be considered short-lived facts. The first task is to
declare event and fact names. These are in LogFire
represented as values of the Scala type Symbol, which
contains quoted identifiers, such as ′a, ′f42, ′request, etc.
In order to avoid writing quotes we allow to declare un-
quoted event and fact names. The following trait declares
all events and facts that we will need:

trait ResourceMonitor extends Monitor {
val before, request, deny,

grant, release , end = event
val Before, Granted, Denied = fact
}

This allows us to for example write request instead of
′request in our monitors3.

3.2.2 General Form of Rules

All subsequent monitors will extend ResourceMonitor,
and will contain rules of the form:

name -- condition1 & . . .& conditionn |-> action

A rule is defined by a name, a left-hand side consisting of
a conjunction of conditions, and a right-hand side con-
sisting of an action to be executed if all the conditions
match the fact memory. A condition is a pattern match-
ing facts or events in the fact memory, or, as we shall
later see, the negation of a pattern, being true if such
a fact does not exist in the fact memory. Arguments to
conditions are variables (quoted identifiers of the type
Symbol) or constants. The first occurrence of a variable
in a left-hand side condition is binding, and subsequent
occurrences in that rule must match this binding. An
action can be adding facts, deleting facts, or generally
be any Scala code to be executed when a match for
the left-hand side is found. Rules for the requirements
will be formulated as traits extending ResourceMonitor.
These traits will later conveniently be combined into one
monitor.

however, differ by allowing a more flexible way of composition
called mixin composition, an alternative to multiple inheritance.
A trait can be thought of as “just” a collection of definitions.

3 This procedure is a consequence of the fact that in Scala, like
in most programming languages with an exception in Lisp, names
are not first-class citizens.

3.2.3 Resource Ordering

Our first set of rules4 specify how before(r1, r2) events are
captured and turned into facts of the form Before(r1, r2):

trait Ordering extends ResourceMonitor {
”r1” −−
before (’ r1 ,’ r2) |−> Before(’r1,’r2)

”r2” −−
Before(’r1 ,’ r2) & Before(’r2 ,’ r3) |−>

Before(’r1 ,’ r3)
}

Rule r1 states that a before(r1, r2) event causes a fact
Before(r1, r2) to be generated. Note that events only ex-
ist briefly while facts exist until explicitly deleted. Rule
r2 creates facts expressing the transitive nature of the
ordering relation. For example, consider the trace:

before(a, b).before(b, c)

The first event will create the fact Before(a, b) via rule r1.
Likewise, the second event will create the fact Before(b, c),
also via rule r1. Rule r2 will as a consequence immedi-
ately fire and create the fact Before(a, c), building the
transitive closure of the ordering relation. We shall refer
to the continued execution of rules until none can fire
as inference. This building of facts from other facts can
be a very powerful tool for writing monitors, as will be
discussed later.

3.2.4 RequirementRelease

The next set of rules formalize the Release requirement:

trait Release extends ResourceMonitor {
”r3” −−
grant(’ ,’ t ,’ r) & not(Granted(’t,’r)) |−>

Granted(’t,’ r)

”r4” −−
Granted(’t,’ r) & release (’ ,’ t ,’ r) |−>

remove(Granted)

”r5” −−
end() & Granted(’t,’r) |−>

fail (”missing release”)
}

Rule r3 formalizes that if a grant(′ ,′ t,′ r) is observed,
and no Granted(′t,′ r) fact exists in the fact memory
(with same task ′t and resource ′r), then a Granted(′t,′ r)
fact is inserted in the fact memory to record that the
grant event occurred. The ′ symbol represents a “don’t
care” pattern, matching, in this case, any time stamp,
without binding it to an identifier.

4 Due to the two-column format each rule is typically defined
on several lines, with the rule name on the first line.

Havelund: ISoLA’12 track: runtime verification, the application perspective 7

Rule r4 expresses that if a Granted(′t,′ r) fact ex-
ists in the fact memory, and a release event occurs with
matching arguments, then the Granted fact is removed.
The function remove takes as argument a symbol, in this
case the symbol ’Granted (which the identifier Granted
stands for - introduced in a val-declaration in the trait
ResourceMonitor). This symbol represents a reference to
the exact fact that matches the condition and makes the
rule trigger. This approach works if there is only, as in
this case, one Granted fact mentioned on the left-hand
side. In the more general case, it is possible to label facts
and use these labels to remove facts, as in the following
rule where the Granted(′t,′ r) fact is labelled ′l:

”r4” −−
Granted(’t,’ r) == ’l & release(’ ,’ t ,’ r) |−>

remove(’l)

Finally, rule r5 expresses that when an end() event is ob-
served at the end of the log, and a resource still remains
granted (that is: not yet released), it is a failure.

3.2.5 Requirements NoRelease and NoGrant

The next two traits represent the requirements NoRe-
lease and NoGrant, and should be self-explanatory af-
ter the above explanations.

trait NoRelease extends ResourceMonitor {
”r6” −−
release (’ ,’ t ,’ r) & not(Granted(’t,’r)) |−>

fail (”bad release”)
}

trait NoGrant extends ResourceMonitor {
”r7” −−
Granted(’ ,’ r) & grant(’ ,’ ,’ r) |−>

fail (”bad double grant”)

”r8” −−
Before(’r1 ,’ r2) &
Granted(’t,’r2) & grant(’ ,’ t ,’ r1) |−>

fail (”bad grant order”)
}

3.2.6 Requirement Deny

The Deny property is defined by the following trait:

trait Deny extends ResourceMonitor {
val Counter = fact

”r9” −−
Granted(’ ,’ r) & request(’s ,’ t ,’ r) |−>

Deny(’s,’ t ,’ r)

”r10” −−

Before(’r1 ,’ r2) &
Granted(’t,’r2) & request(’s ,’ t ,’ r1) |−>

Deny(’s,’ t ,’ r1)

”r11” −−
Deny(’s1,’t ,’ r) & Counter(’n) &
deny(’s2 ,’ t ,’ r) |−> {

if ((’ s2 − ’s1) > 10000 || ’n >= 3) fail()
remove(Deny)
remove(Counter)
insert (Counter(’n + 1))

}

”r12” −−
end() & Deny(’s,’t ,’ r) |−> fail(”missing deny”)

addFact(Counter)(0)
}

The rules r9 and r10 generate a Deny fact upon a re-
quest if the requested resource is already granted, or is
ordered before a resource that is already granted. The
time stamp ′s indicates the time the resource was re-
quested. The Deny fact represents the obligation that
the resource arbiter eventually must inform the request-
ing task, that it has been denied the resource. Rule r12
expresses that the Deny fact represents such an obliga-
tion, that has to be fulfilled (by the triggering of rule
r11) before the end of the log is detected.

Rule r11 describes what happens when a deny event
occurs at time ′t2. We assume a Counter fact in the fact
memory, which carries an integer, counting the number
of deny events occurring so far. The fact memory is ini-
tialized to contain Counter(0). The right-hand side of
rule r11 is a code block, a Scala statement. First a fail-
ure is reported in case the denial comes too late, or if
there are more than 3 denials observed in total. Note
that symbols standing for bound variables can in limited
contexts be referred to as variables, in this case integers.
This is achieved by defining implicit functions, that by
the Scala compiler gets applied to lift values from one
type to another. The concept of implicit functions will
be explored in later sections to explain other DSL con-
structs. Alternatively, a variable ′x assumed to be bound
to a value of type T can be accessed as get[T](’x). Ab-
breviated dot-notation forms furthermore exist for se-
lected primitive types, such as for example’x. i, which is
equivalent to get[Int] (’x). Next, the Deny and Counter
facts are removed, and a new updated Counter(′n + 1)
fact is inserted5.

LogFire offers functions (ensure and update) to make
specification writing slightly more convenient. For exam-
ple rule r11 can instead be written as:

”r11” −−

5 A right-hand side of the form ... |−>insert(f) can be

written as ... |−>f, as we have seen for example in rule r1.

8 Havelund: ISoLA’12 track: runtime verification, the application perspective

Deny(’s1,’t ,’ r) & Counter(’n) &
deny(’s2 ,’ t ,’ r) |−> {

ensure((’s2 − ’s1) <= 10000 & ’n < 3)
remove(Deny)
update(Counter(’n + 1))
}

The call update(Counter(’n +1)) is equivalent to the
remove-insert statement pair in the first version of the
rule. The use of a fact to count is shown to illustrate
how facts can be instantiated with arbitrary expressions
as arguments. In this case, however, it may be easier to
introduce a trait-local counter variable as shown in the
following version (rules r9, r10 and r12 stay unchanged):

trait Deny extends ResourceMonitor {
var counter: Int = 0
...

”r11” −−
Deny(’s1, ’ t , ’ r) & deny(’s2, ’ t , ’ r) |−> {

ensure((’s2 − ’s1) <= 10000 & counter < 3)
remove(Deny)
counter += 1
}

...
}

This example illustrates how DSL and regular Scala
code can be elegantly merged.

3.3 Finalization and Application of Monitor

3.3.1 Composing Rules into a Monitor

The traits above can now be combined using what is
referred to as Scala’s mixin-class composition, which
is a syntactic approach to multiple inheritance, where
in this case the class ResourceManagement is defined to
combine (inherit from) all the rules from the individual
rule traits shown above:

class ResourceManagement
extends Ordering
with Release
with NoRelease
with NoGrant
with Deny

3.3.2 Applying the Monitor

We can now finally create an instance of this monitor
and apply it to a sequence of events. In the following
object the events are fed explicitly. In general one would
likely read the events from a log file; or generate events
from a running program, using some form of program
instrumentation, such as aspect-oriented programming.

object ApplyResourceManagement {
def main(args: Array[String]) {

val m = new ResourceManagement

m.addEvent(’before)(’wheel1,’wheel2) // 1
m.addEvent(’before)(’wheel2,’wheel3) // 2
m.addEvent(’request)(1012,”drive”,’wheel3) // 3
m.addEvent(’grant)(1402,”drive”,’wheel3) // 4
m.addEvent(’request)(3451,”drive”,’wheel1) // 5
m.addEvent(’grant)(4435,”drive”,’wheel1) // 6
m.addEvent(’release)(9002,”drive”,’wheel3) // 7
m.addEvent(’release)(9409,”drive”,’wheel1) // 8
m.addEvent(’end)() // 9
}
}

The events are numbered for reference. The trace above
violates the property NoGrant by granting wheel 1 to
the drive task (event 6), although wheel 1 is ordered be-
fore the already granted wheel 3. This resource request
should instead have been denied, which results in the
Deny property to be violated (detected at the end of
the log). Error reports are stored internally in the moni-
tor in an instance of a class MontiorResult, which can be
obtained by a call of m.getMonitorResult in case moni-
tor results need to processed automatically, for example
as part of a testing framework. Error messages are also
printed on standard out. An error message consists of
an error trace reporting what events caused rules to fire
that were relevant for the violation of the property. For
example, the error trace generated due to the above men-
tioned grant event number 6 has the following format:

∗∗∗ ERROR bad grant order

[1] ’before (’wheel1,’wheel2) −−>
’Before(’wheel1,’wheel2)

rule : ”r1” −−
’before (’ r1 ,’ r2) |−> ’Before(’r1,’r2)

[2] ’before (’wheel2,’wheel3) −−>
’Before(’wheel2,’wheel3)

rule : ”r1” −−
’before (’ r1 ,’ r2) |−> ’Before(’r1,’r2)

[2] ’before (’wheel2,’wheel3) −−>
’Before(’wheel1,’wheel3)

rule : ”r2” −−
’Before(’r1 ,’ r2) & ’Before(’r2 ,’ r3) |−>

’Before(’r1 ,’ r3)

[4] ’grant(2000,”drive” ,’ wheel3) −−>
’Granted(”drive”,’wheel3)

rule : ”r3” −−
’grant(’ ,’ t ,’ r) & not(’Granted(’t,’r)) |−>

’Granted(’t ,’ r)

Havelund: ISoLA’12 track: runtime verification, the application perspective 9

[6] ’grant(4000,”drive” ,’ wheel1) −−>
’ Fail (”ERROR bad grant order”)

rule : ”r8” −− ’Before(’r1,’r2) &
’Granted(’t ,’r2) & ’grant(’ ,’ t ,’ r1) |−> {

...
}

The trace shows that events 1, 2, 4 and 6 contributed to
the error. The first line in the error trace:

[1] ’before (’wheel1,’wheel2) −−>
’Before(’wheel1,’wheel2)

rule : ”r1” −−
’before (’ r1 ,’ r2) |−> ’Before(’r1,’r2)

states that event number 1, ’before(′wheel1,′ wheel2),
caused the fact ’Before(′wheel1,′ wheel2) to be gener-
ated, by executing rule r1. The error trace outlines the
scenario where (events 1 and 2): wheel1 is ordered be-
fore wheel3 via wheel2 due to transitive closure of the
Before relation, and where wheel3 is first granted to the
drive task (event 4), and then wheel1 is granted (event
6), which violates the resource ordering.

3.4 Additional Features

3.4.1 Events and Facts as Maps

In the rules above events and facts have been referred
to in what is called positional format, where the argu-
ment patterns to event and fact conditions are provided
in a manner similar to the way arguments are provided
in traditional function calls. For example, the Release
property rule r3 refers to event grant(′ ,′ t,′ r), represent-
ing a condition which when matching a grant fact in fact
memory, will cause the second argument to be bound to
’ t and the third argument to be bound to ’r.

In general, however, the argument to an event or fact
is a map from keys to values. The above condition is in
principle short for grant(′ 2 → ′t, ′ 3 → ′r), meaning
that this condition will match a grant event carrying a
map, that maps the symbol ′ 2 to a value, which is then
bound to ’t, and that maps the symbol ′ 3 to a value,
which is bound to ’r. This map-oriented style can be
used directly in rules and traces. As an example, the
following is an alternative formulation of the Release
property using map style for events and positional style
for generated facts:

trait Release extends ResourceMonitor {
”r3” −−
grant(’task −> ’t,’resource −> ’r) &

not(Granted(’t,’ r)) |−> Granted(’t,’r)

”r4” −−
Granted(’t,’ r) &
release (’ task −> ’t, ’resource −> ’r) |−>

remove(Granted)

”r5” −−
end() & Granted(’t,’r) |−> fail(”missing release”)
}

Here grant and release events are assumed to carry maps
with at least two fields: ’task and ’resource. The posi-
tional style is convenient if events carry few arguments.
In practice, however, it turns out to be common to en-
counter events with many arguments, in which case the
map-based notation is convenient: conditions can just
refer to the fields of relevance to the particular rule, in-
stead of mentioning all the arguments. Assume that all
rules have been modified to process map-based events
with these fields. The following object illustrates how
such events can be submitted to the monitor in map-
format. In this case a grant event carries a map defining
three fields (’time, ’task, and ’resource):

object ApplyResourceManagement {
def main(args: Array[String]) {

val m = new ResourceManagement
...
m.addMapEvent(’grant)(

’time −> 2000,
’task −> ”drive”,
’resource −> ’wheel3)

...
}
}

3.4.2 Submitting Facts to a Monitor

We have above seen how events are submitted to a mon-
itor. It is also possible to submit (position-based as well
as map-based) facts to a monitor, which will remain
in fact memory until removed again explicitly on the
right-hand side of a rule. For example, in the monitor
above we submitted the events ’before(′wheel1,′ wheel2)
and then ’before(′wheel2,′ wheel3), which caused rule r1
to generate the two facts ’Before(′wheel1,′ wheel2) and
’Before(′wheel2,′ wheel3), whereafter rule r2 would gen-
erate fact ’Before(′wheel1,′ wheel3). We could instead
avoid the need for rule r1 and submit the two facts
’Before(′wheel1,′ wheel2) and ’Before(′wheel2,′ wheel3)
directly. In this case the submission of events 1 and 2 in
the ApplyResourceManagement monitor above (page 8)
would instead become submission of facts:

m.addFact(’Before)(’wheel1, ’wheel2) // 1
m.addFact(’Before)(’wheel2, ’wheel3) // 2

3.4.3 Considering the Fact Memory as a Database

LogFire offers a method for writing the fact memory
to persistent store and a method for retrieving it at a

10 Havelund: ISoLA’12 track: runtime verification, the application perspective

later point in time. Both methods take a file name and
a predicate on facts as arguments, and writes to, respec-
tively reads from, this file those facts that satisfy the
predicate. Writing facts to persistent store can be use-
ful when LogFire is used in sessions distributed over
time, either due to log sizes, log availability, or time con-
straints on the user of LogFire. In addition there are
methods for deleting all facts satisfying a predicate, and
for extracting all facts satisfying a predicate into a set.

4 Defining and Using Specification Patterns

Rule-based programming, as we have seen demonstrated
above, is an expressive and moderately convenient nota-
tion for writing monitoring properties. Although specifi-
cations are longer than traditional temporal logic specifi-
cations, they are simple to construct due to their straight
forward and intuitive semantics. However, ideally the
more succinct a specification is, the better. In this sec-
tion we shall illustrate how to define and apply specifi-
cation patterns, using Scala’s general purpose function
definitions and support for defining DSLs.

An often cited resource on specification patterns is
[33], which illustrates how various typically occurring
temporal specification patterns over propositional names
can be translated into various forms of temporal logic.
In contrast, the patterns presented in this section are
over parameterized events and are translated into rules.
The fact that the patterns are formed over parameterized
events makes our approach strictly more expressive. We
shall first illustrate the definition of two temporal pat-
terns from [33], and then a pattern inspired by regular
expressions as used in TraceMatches [14] and Mop
[28].

4.1 Temporal Logic

Two patterns mentioned in [33] are the global response
pattern: ‘always P implies eventually Q’; and the global
precedence pattern: ‘no P before Q’, which can also be
read as: ‘always P implies Q in the past’. In Ltl these
patterns can be written as respectively �(P → �Q) and
!P W Q (not P weak-until Q). The following monitor ex-
tends a class TemporalLogic, where we have defined these
patterns. The monitor expresses the properties Release
and NoRelease.

class ReleaseProperties extends TemporalLogic {
val grant, release = event

”Release” −−− grant(’ ,’t,’r) −−> release(’ ,’t ,’ r)
”NoRelease” −−− release(’ ,’t,’r) ==> grant(’ ,’t,’r)
}

The first property states that when a grant(′ ,′ t,′ r))
event is observed then eventually (-->) a release(′ ,′ t,′ r)

event must occur, with the same task ’ t and resource
’ r as parameters (ignoring the first time stamp param-
eter). Similarly for the second property stating that a
release(′ ,′ t,′ r) event must be preceded (==>) by an ear-
lier grant(′ ,′ t,′ r) event. The TemporalLogic trait is de-
fined as follows.

trait TemporalLogic extends LogicUtil {
private def response(name: String)

(pc1: PC, pc2: PC) {
val unsafe = newSymbol(’unsafe)
val args = pc1.getVariables.reverse
newRuleId() −− pc1 |−> unsafe(args: ∗)
newRuleId() −− unsafe(args: ∗) & pc2 |−>

remove(unsafe)
newRuleId() −− unsafe(args: ∗) & ’end() |−>

fail (name + ” failed”)
}

private def precedence(name: String)
(pc1: PC, pc2: PC) {

val safe = newSymbol(’safe)
val args = pc2.getVariables.reverse
newRuleId() −− pc2 |−> safe(args: ∗)
newRuleId() −− pc1 & not(safe(args: ∗)) |−>

fail (name + ” failed”)
}

implicit def R(name: String) = new {
def −−−(pc1: PC) = new {

def −−>(pc2: PC) =
response(name)(pc1, pc2)

def ==>(pc2: PC) =
precedence(name)(pc1, pc2)

}
}
}

The functions response and precedence define the seman-
tics of respectively the response and the precedence pat-
tern. Each takes as arguments the name of the prop-
erty, and two so-called Positive Conditions (PC) repre-
senting the two events that should be related, and from
these three arguments generate the rules modeling the
respective patterns, using the rule syntax we have al-
ready seen before. For example, the response function
first generates a unique new fact name, named unsafe
(with the function newSymbol), extracts the arguments
of the first event pc1, and then generates three rules.
The first rule generates an unsafe(args) fact upon ob-
servation of pc1. The second rule removes this fact upon
observation of pc2, and the third rule reports a failure
upon detection of this fact at the end of the log. Like-
wise, the precedence function generates two rules, one
generating a fact safe(args) upon observation of a pc2
event, and one rule checking for the presence of this fact
upon observation of a pc1 event.

Havelund: ISoLA’12 track: runtime verification, the application perspective 11

The functions response and precedence can be applied
directly to define properties. However, we shall illustrate
how Scala’s implicit functions can be used to define the
notation used in the trait ReleaseProperties above. An
implicit function (defined with the keyword implicit)
f : A⇒ B will be automatically applied by the compiler
on any value a : A occurring in a context where a value
of type B is expected. Specifically in this case, the func-
tion named R (standing for Rule) is defined as implicit,
meaning that whenever a string name occurs followed by
---, this function will be applied to the string, return-
ing an un-named object defining the --- method, which
itself returns a new object defining the two methods -->
and ==>. The definition of the R function corresponds to
the following BNF grammar:

〈formula〉 ::= 〈String〉 --- 〈PC〉 (--> 〈PC〉 | ==> 〈PC〉)

Scala allows methods to be called without dot notation
and argument parentheses. The following Scala code
from the ReleaseProperties monitor above:

”Release” −−− grant(’ ,’t,’r) −−> release(’ ,’t ,’ r)

has the same meaning as:

”Release”.−−−(grant(’ ,’t,’r)).−−>(release(’ ,’ t ,’ r))

which by the compiler then gets corrected by the in-
sertion of a call of the implicit R function on the rule
name, and similarly an implicit function C (standing for
Condition) to lift event names:

R(”Release”).−−−(C(grant)(’ ,’t,’r)).−−>(
C(release)(’ ,’ t ,’ r)

)

This statement in turn results in the following rules to
be generated with a semantics that at this point should
be self-explanatory:

”tl1” −−
’grant(’ ,’ t ,’ r) |−> ’unsafe 1(’t,’r)

”tl2” −−
’unsafe 1(’ t ,’ r) & ’release (’ ,’ t ,’ r) |−>

remove(’unsafe 1)

”tl3” −−
’unsafe 1(’ t ,’ r) & ’end() |−> fail(”Release”)

Similarly, the formula:

”NoRelease” −−− release(’ , ’t, ’ r) ==>
grant(’ , ’ t , ’ r)

generates the two rules:

”tl4” −−
’grant(’ ,’ t ,’ r) |−> ’safe 2(’t ,’ r)

”tl5” −−
’ release (’ ,’ t ,’ r) & not(’safe 2 (’ t ,’ r)) |−>

fail (”NoRelease”)

4.2 Path Expressions

Systems such as TraceMatches [14] and Mop [28]
support specifications in the form of regular expressions.
We have implemented a limited but still useful subset of
regular expressions, not including disjunction and rep-
etition, as a pattern in 50 lines of Scala code in the
class PatternExpressions (not shown here). We have cho-
sen this simple format since it is easy to implement,
but also since it is deemed practically sufficient6. In a
pattern expression one can provide a sequence of events
and/or negation of events. A match on such a sequence
anywhere in the trace will trigger a user-provided code
segment to get executed. As an example, consider the
following formulation of the NoGrant requirement (a
resource should not be granted to a task if it is already
granted):

class NoGrant extends PathExpressions {
val grant, release = event

when(”double grant”)(
grant(’ , ’t1, ’ r),
no(release (’ , ’t1, ’ r)),
grant(’ , ’t2, ’ r)

) {
fail (”resource acquired twice”)

}
}

The property states that when a grant(′ ,′ t1,′ r) is ob-
served, and then subsequently another grant(′ ,′ t2,′ r)
of the same resource, without a release(′ ,′ t1,′ r) in be-
tween, then the code provided as the last argument is
executed, in this case just the reporting of a failure. The
above call of the function when will generate the follow-
ing rules, assuming that Initial is the initial state (the
names of generated facts are renamed to ease reading):

”pe1” −−
’grant(’ ,’ t1 ,’ r) & ’ Initial () |−> ’Granted(’t1,’r)

”pe2” −−
’ release (’ ,’ t1 ,’ r) & ’Granted(’t1,’r) |−>

’Released(’t1 ,’ r)

6 Disjunction and repetition are often used in Mop only because
of the special semantics of Mop regular expressions, where left out
events in the regular expression mean that such events are not
allowed to occur in the trace at those points. Hence, if they can
occur in the trace, they have to be mentioned in the regular ex-
pression at the appropriate positions. In contrast, our patterns are
relaxed in the sense that left out events can occur in the trace but
are ignored during the conformance check, and therefore in many
situations we can avoid the need for disjunction and repetition.

12 Havelund: ISoLA’12 track: runtime verification, the application perspective

”pe3” −−
’grant(’ ,’ t2, ’ r) & ’Granted(’t1,’r) &
not(’Released(’t1 ,’ r)) |−> {

remove(’Granted)
insert (’Matched(’t1,’r ,’ t2))

}

”pe4” −−
’grant(’ 3 ,’ t2 ,’ r) & ’Granted(’t1,’r) &
’Released(’t1 ,’ r) |−> {

remove(’Granted)
remove(’Released)
}

”pe5” −−
’Matched(’t1,’r ,’ t2) |−> {

fail (”resource acquired twice”)
}

The translation may seem somewhat surprising and can
in this case be optimized. For example, in rule pe2 we
could abort the tracking immediately when a release
event is observed, instead of creating a ’Released(′t1,′ r)
fact in addition to the ’Granted(′t1,′ r) fact already present.
However, the translation above is generalized to handle
past time properties.

5 The Rete Algorithm

This section contains a very condensed presentation of
the Rete algorithm that was developed by Charles L.
Forgy [37] in the 1970ties. For a full account of the algo-
rithm, which space does not permit here, the reader is re-
ferred to [30]. The algorithm has acquired “a reputation
for extreme difficulty” [59]. As part of his Ph.D. thesis
[30], Robert B. Doorenbos outlines in the mid 1990ties
the algorithm in a very thorough and precise manner on
52 pages; and furthermore augments the algorithm with
two optimizations, explained on an additional 45 pages.
The core of the algorithm is, however, rather simple. Our
work is based on Doorenbos’s presentation, including his
optimizations (referred to as left- and right-unlinking in
[30]).

5.1 The Rete Algorithm

From an abstract point of view, the Rete algorithm
works on a program state, which is a set of facts, or
working memory elements (wme’s), as they are called
in Doorenbos’s thesis [30]. A fact in Doorenbos’s thesis
is a triple: (id, attr, value) reflecting the intuition that
an object id has an attribute attr which has the value
value. Doorenbos writes such triples as (id ^attr value).
For example, the fact that a task ‘t’ has been granted
a resource ‘r’ is modeled as: (t ^Granted r). We shall

in this paper write this as Granted(t, r). We shall gen-
eralize this to allow any number of arguments, and also
allow general maps as facts, as will be illustrated. A rule
program consists of a set of rules of the form: lhs⇒ rhs,
where a left-hand side is a sequence of conditions com-
posed by conjunction, and the right-hand side is an ac-
tion (or a composition of such). Conditions can be tests
of the presence or absence of facts satisfying certain con-
straints on the parameters, and actions can be addition
or removal of facts to or from the fact memory. As an
example, consider the earlier presented rules r8 (Section
3.2.5) and r10 (Section 3.2.6), repeated here for ease of
readability:

”r8” −−
Before(’r1 ,’ r2) &
Granted(’t,’r2) & grant(’ ,’ t ,’ r1) |−>

fail (”bad grant order”)

”r10” −−
Before(’r1 ,’ r2) &
Granted(’t,’r2) & request(’s ,’ t ,’ r1) |−>

Deny(’s,’ t ,’ r1)

Recall that events are written with small initial letters,
while facts are written with capital initial letters. How-
ever, the original Rete algorithm only operates with
facts. Consider for now that events are just facts. Their
special treatment will be discussed in Section 6. A naive
inefficient implementation, given a change in the fact
memory, might check each rule in the rule program, and
re-evaluate the entire left-hand side, marking the ac-
tion for execution if the left-hand side evaluates to true.
Whether to execute all such marked actions or only se-
lected ones is referred to as conflict resolution. Note that
looping is possible in case deleted or added facts trigger
new rules.

The Rete algorithm optimizes this problem by avoid-
ing this repeated re-evaluation of left-hand sides. The
rules r8 and r10 above are modeled as the network shown
in Figure 1. The name Rete means network and reflects
the way a set of rules is stored by the algorithm: as a
network. This network consists of 4 kinds of nodes:

– alpha memories: the white rectangular nodes. Each
of these nodes represents a condition (assume for now
that conditions are positive, no negations). A condi-
tion is the assertion that a certain fact is present in
the fact memory. When a fact is added to the fact
memory, it is effectively added to the alpha memory
corresponding to that condition.

– beta memories: the grey rectangular nodes. Each of
these represents a prefix of the conditions in a rule.
For example in the figure, beta3 will contain a so-
called token when condition Before(r1, r2) and con-
dition Granted(t, r2) have become true for some re-
sources R1 and R2, and task T . A token is simply the

Havelund: ISoLA’12 track: runtime verification, the application perspective 13

beta1

join1

beta2

join2

beta3

join3 join4

Before(r1,r2)

Granted(t,r2)

grant(_,t,r1) request(s,t,r1)

fail Deny(s,t,r1)

Fig. 1. Simple network for the rules r8 and r10.

list of facts that matched the previous conditions, for
example in this case the list:

〈Before(R1, R2),Granted(T,R2)〉

Note that a beta memory can contain multiple such
if there have been several matches.

– join nodes: the round nodes. Each such is connected
to an alpha memory and a beta memory, and corre-
spondingly gets activated in two cases:

1. when the connected alpha memory receives a new
fact. A common terminology is to say that the
join node is right-activated, since alpha memories
usually are drawn to the right of a join node (this
is just a layout issue, and Figure 1 in fact violates
this rule, in order to obtain a better layout). In
this case the connected beta memory is searched
for all its tokens, and for each is it tested if the
bindings of that token match that of the fact. If
so, a new extended token is created from the old
token and the fact, and sent to the child beta
memory.

2. when the connected beta memory receives a new
token. A common terminology is to say that the
join node is left-activated. In this case the con-
nected alpha memory is searched for all its facts,
and for each is it tested if the bindings of that fact
match that of the token. If so, a new extended to-

ken is created from the old token and the fact, and
sent to the child beta memory.

– action nodes: the downwards arrow shaped nodes.
Such a node represents an action to get executed if
a token arrives.

When a new fact is added, it is put in the matching al-
pha memory (or rather alpha memories), using a sim-
ple indexing approach. This indexing is based purely
on the constants occurring in the conditions of rules.
For example, assume that a rule contains the condition
request(s, t, “motor2”), where the resource argument is a
string literal, namely the name of a particular resource.
A fact will only be inserted in the alpha memory rep-
resented by this node, and hence possibly causing rule
evaluation, if its attribute is request and if the third
argument is exactly “motor2”.

5.2 Rete’s Five Optimizations

The Rete algorithm specifically optimizes five situa-
tions. These are described in the following, illustrated
with references to Figure 1.

5.2.1 Rule Relevance

The Rete network is organized such that when a fact
is added, it is placed in the relevant alpha memory. The
alpha memory is only linked to those join nodes, and
hence rules, for which it is relevant. For example, when
a grant fact is added, only join node join3 is evaluated
in Figure 1. That is, only rule r8 is evaluated, and not
rule r10 (amongst those two).

5.2.2 Minimal Condition Evaluation

The Rete algorithm attempts to (re)evaluate a condi-
tion “as little as possible”. Consider rules r8 and r10,
and suppose that the fact Before(“antenna”, “wheels”)
is added to the alpha memory. In the network this means
that the join node join1 executes and puts the token
〈Before(“antenna”, “wheels”)〉 in beta2. The network will
in this case in subsequent steps not keep re-evaluating
the condition Before(r1, r2) in rules r8 and r10, unless the
Before(“antenna”, “wheels”) fact is removed or other
Before facts are added.

5.2.3 Prefix Sharing

The Rete algorithm optimizes situations where two or
more rules have a common condition prefix. Consider
again the rules r8 and r10 above. These two rules share
the prefix:

Before(r1, r2), Granted(t, r2)

The Rete network is in this case laid out to ensure that
this prefix is shared between the two rules for evaluation

14 Havelund: ISoLA’12 track: runtime verification, the application perspective

purposes, they share the same sub-graph, and hence is
only evaluated once whenever a relevant change occurs.

5.2.4 Prefix Readiness

This is the optimization technique referred to as right-
unlinking in [30] - an addition to the original Rete al-
gorithm described in [37]. Consider join node join2. In
the original algorithm, when a Granted fact arrives, a
test will be performed on whether beta2 is empty (and
if it is, no further work is done). Suppose now that
beta2 is empty and contains no tokens. That is, there
are no Before facts. In this case Doorenbos’s optimiza-
tion avoids the emptyness test by right-unlinked join2,
meaning that the pointer from the Granted(t, r2) alpha
memory to join2 is removed. This has as consequence
that when a Granted fact arrives, the algorithm will not
even reach and execute join2.

This may not seem like a big gain, but the situation
can provide an optimization in case an alpha memory is
connected to many join nodes, and many of these have
empty beta memories. This occurs in the situation where
a condition K occurs in many rules with different pre-
fixes as follows:

r1 : c11, . . . , c
1
n1
, K ⇒ a1

r2 : c21, . . . , c
2
n2
, K ⇒ a2

. . .
rm : cm1 , . . . , cmnm

, K ⇒ am

Assume that only in some of these rules are the con-
ditions before K, the prefix, true; then only for these
will the corresponding join nodes be executed (right-
activated) after this optimization.

5.2.5 Suffix Readiness

This is the second optimization technique contributed in
[30], also referred to as left-unlinking, and the symmetric
case of right-unlinking described above. Consider again
join node join2, and suppose that there are no facts
in the Granted(t1, r1) alpha memory. In this case join2

is left-unlinked, meaning that the pointer from beta2 to
join2 is removed. It optimizes the situation where a cer-
tain condition prefix is repeated in many rules, but in
each rule followed by different conditions Ki:

r1 : c1, . . . , cn, K1 ⇒ a1
r2 : c1, . . . , cn, K2 ⇒ a2
. . .
rm : c1, . . . , cn, Km ⇒ am

6 Evaluation and Modification of Rete for RV

This section contains a brief discussion of the applicabil-
ity of the Rete algorithm for runtime verification, and

then outlines a number of modifications and optimiza-
tions we have made to the algorithm to make it more
suitable.

6.1 Evaluation

6.1.1 Events versus Facts

The first observation is that the original Rete algorithm
does not distinguish between events and facts. There are
only facts. A fact remains in the fact memory until ex-
plicitly removed by an action on the right-hand side of a
rule. Second, Rete is designed for logical inference. That
is, when adding (or removing) a fact, the rule engine ex-
ecutes until a fixpoint is reached, and no more inferences
can be made7. Consider for example the previously in-
troduced rules r3 (Section 3.2.4) and r7 (Section 3.2.5):

”r3” −−
grant(’ ,’ t ,’ r) & not(Granted(’t,’r)) |−>

Granted(’t,’ r)

”r7” −−
Granted(’ ,’ r) & grant(’ ,’ ,’ r) |−>

fail (”bad double grant”)

Consider an initially empty fact memory, and suppose
that we add the fact (event) grant(344, 42, “antenna”).
This will cause rule r3 to fire, which will add the fact
Granted(42, “antenna”) to the fact memory. This in turn
will trigger rule r7 since now the fact memory contains
grant(344, 42, “antenna”) and Granted(42, “antenna”).
As a result, an error is issued although this cannot be the
intention. Rather, the desired behavior should preferably
be that after submitting the grant(344, 42, “antenna”)
event, rule r3 would fire, and then no more rules would
fire until the next event is submitted.

This form of propagation until a fixpoint is reached
can be useful for analyzing logs, as suggested in [53].
For example we can imagine that some higher order ab-
straction facts can be generated if a number of other
sub-facts are generated. This idea is being explored in
an application of LogFire to the analysis of telemetry
from the Curiosity Mars rover, and will be reported else-
where. However, an event such as grant(. . .) is considered
as a short-lived event. It indeed turns out that for RV
purposes we do not want such inference for events.

6.1.2 Rete’s Optimizations

Rete’s optimizations listed in Section 5.2 include rule
relevance, minimal condition evaluation, prefix sharing,

7 Note that in the original Rete algorithm, when a left-hand
side becomes false, previously added facts on the right-hand side
do not get retracted, as they would in pure logic inference. Drools,
however, offers this pure logic interpretation of rules in addition
to the standard Rete interpretation.

Havelund: ISoLA’12 track: runtime verification, the application perspective 15

prefix readiness, and suffix readiness. Of these the first
two: rule relevance (only evaluate rules concerned with
an incoming fact) and minimal condition evaluation (only
evaluate a condition when a fact concerning that condi-
tion is added or removed), appear relevant for runtime
verification, whereas the last three might seem less so,
as will be discussed in the following.

Prefix Sharing (rules sharing a prefix of conditions
share evaluation of these in the network), seems an es-
sential part of the Rete algorithm, and yields the most
benefit if there are many rules that share conditions.
The question is, however, whether rules are strongly con-
nected like this in RV contexts. This would require that
facts generated by rules modeling one property would
be relevant for rules for other properties. The properties
would have to concern the same artifacts for this to be
the case. Indeed, we have seen sharing between rules in
the previous specifications. The question is whether this
will occur in a larger scale for RV properties. It is possi-
ble that the RV community has focused on small isolated
properties, since this is how traditional temporal prop-
erties look like, and that further case studies will reveal
need for larger scale sharing.

Concerning prefix readiness, it is not clear to what ex-
tent this is an important optimization in practice. Con-
sider for example rule r7 above. Suppose a grant event
arrives. Then for this optimization to be useful there
should be no resources granted at all to any tasks. In
addition grant should occur in many other rules, where
no tokens satisfy the prefix. The question is how likely
this is to occur in RV practice. On the other hand, suffix
readiness seems to be a more important optimization,
since it covers the notion of state machines with states,
and from each state many transitions K1 −Km leading
out of the state.

6.1.3 Missing Indexing

Consider rule r8 from Section 5.1, and its representation
in Figure 1; specifically consider join node join3 in that
network. Consider the scenario where many resources
have been granted that are ordered after other resources,
that is, many tokens of the form:

〈Before(r1, r2), Granted(t, r2)〉

in the beta memory beta3. Assume now that an event
grant(344, 42, “antenna”) arrives in the alpha memory
for condition grant(, t, r1), and join node join3 is ac-
tivated, meaning that we search for a token in beta3
where r1 has the value “antenna”. This is an instance of
the matching problem. In the Rete algorithm, as pre-
sented in [30], this search is performed linearly: all to-
kens are scanned from left to right searching for matches.
Since several tokens could match, all tokens have to be
searched. This is a considerable inefficiency in the case
where there are numerous tokens. The same symmetri-
cal argument can be made in the other direction: when a

token arrives in a beta memory and the join node has to
search all facts in the corresponding alpha memory. An
indexing mechanism is needed in each direction. In fact,
this is closely related to the form of indexing performed
in efficient frameworks such as Mop [58].

6.2 Modifications

The considerations above has lead us to implement specif-
ically two modifications required to make the Rete algo-
rithm appropriate for RV: event processing and indexing.
These modifications are described in the following.

6.2.1 Event Processing

As discussed in Section 6.1, events (in this paper referred
to with names in all small letters) should be treated dif-
ferently than “long lasting” facts (in this paper referred
to with names with an initial capital letter). Events are
short lived. The question is: how short lived? As the
grant/Granted scenario (Subsection 6.1.1) illustrates, it
is not enough to delete the event after a fixpoint is
reached, and before the next event is received. It has
to be deleted even earlier. The algorithm for submitting
an event consequently is modified to be as follows. As-
sume a set of actions to be executed next: the next action
frontier, initially empty.

Definition 1 (Event cycle resulting from submit-
ting an event e).

1. add event e to the fact memory.
2. apply Rete where only left-hand sides are evaluated.

Right-hand sides that are reached are only stored for
later execution in the next action frontier.

3. remove e from fact memory (eager event removal).
4. make next action frontier current, and create a new

empty next action frontier.
5. exit if current action frontier is empty.
6. while there are still stored right-hand sides waiting

for execution in the current action frontier, execute
stored right-hand sides, and store new right-hand
sides reached in the next action frontier.

7. goto step 4.

This algorithm is also illustrated by the following pseudo
code:

var frontier : List [Action] = Nil

def addFact(fact: Fact) {
// After fact is added: only left−hand sides are
// evaluated. Reached right−hand sides are stored
// in ‘ frontier ’.
...

}

def removeFact(fact: Fact) {

16 Havelund: ISoLA’12 track: runtime verification, the application perspective

// After fact is removed: same procedure as for
// addFact.
...

}

def submit(event: Event) {
addFact(event)
removeFact(event)
while (frontier != Nil) {

val current = frontier ; frontier = Nil
for (action <− current) {

action match {
case ADD(fact: Fact) =>

addFact(fact)
case REM(fact: Fact) =>

removeFact(fact)
}
}
}
}

Note that in each step an event is added and then re-
moved. This removal is most efficient if the event is the
last condition on the left-hand side, as in rule r7 (page
14), corresponding to be at the bottom of the Rete net-
work. This is because then the least amount of informa-
tion should be retracted in the network. However, when
writing rules of the form where an event carry data that
are referred to in a negative condition, as in rule r3 (page
14), the event has to occur before the negated condition.
This leads to a less optimal solution; we do not currently
have a better solution.

6.2.2 Indexing

Matching in Original Algorithm

To motivate our optimized indexing solution, we shall
first briefly outline part of the matching process carried
out by the original algorithm. However, in contrast to the
original algorithm where a fact is a triple, we shall gen-
eralize this to let a fact be a mapping from field identi-
fiers (represented by Scala’s type Symbol that contains
quoted identifiers, such as ′x, ′ 1, etc) to values (repre-
sented by Scala’s type Any that corresponds to Java’s
type Object):

type Field = Symbol
type Value = Any
type Fact = Map[Field,Value]

In the real implementation a token (the elements of beta
memories) is built by augmenting a previous token with
a new fact. This is done by representing a token as a pair
consisting of a pointer to the previous token as the first
argument, and then the fact as the second argument.
However, for presentation purposes we here represent a
token as a list facts:

type Token = List[Fact]

Each alpha and beta memory contains a collection of
respectively facts and tokens:

class AlphaMemory {
var items : Set[Fact]
...

}

class BetaMemory {
var items : List [Token]
...

}

When a data element arrives in one of the memories, the
connected join node searches the other memory sequen-
tially in order to find matches. For example, consider
now the rule r8 (page 12), and its representation in Fig-
ure 1. Consider specifically join node join3, which cor-
responds to the grant(, t, r1) condition. Consider that
beta3.items contains three tokens: 〈T1, T2, T3〉, where:

T1 = 〈Before(a1, a2), Granted(A, a2)〉
T2 = 〈Before(b1, b2), Granted(B, b2)〉
T3 = 〈Before(c1, c2), Granted(C, c2)〉

That is, for example token T2 represents the fact that re-
source b1 must be granted before resource b2 plus the fact
that b2 has already been granted to task B. According to
rule r8 it is therefore illegal to grant resource b1 to task
B in this situation. Consider now that task B, however,
is granted resource b1 at time 1206, causing the following
fact to be added to the alpha memory: grant(1206, B, b1).
We now need to try to determine whether beta3 contains
a matching token, and if it does, it indicates an error sit-
uation. Indeed token T2 is a match since:

– the 2nd field of grant(1206, B, b1), namely B, is equal
to the 1st field of the 1st fact Granted(B, b2) from
the right (corresponding to searching from bottom
up in the network) in the T2 token.

– the 3rd field of grant(1206, B, b1), namely b1, is equal
to the 1’st field of the 2nd fact Before(b1, b2) from
the right in the T2 token.

To perform this test, the original algorithm stores in each
join node, in addition to a pointer to the beta memory
and the alpha memory, a list of tests to perform when
either a token arrives in the beta memory, or a fact ar-
rives in the alpha memory. A test is represented by the
positions to be compared:

class JoinNode {
val alphaMemory: AlphaMemory
val betaMemory: BetaMemory

val tests : List [(Field, (Int ,Field)]

Havelund: ISoLA’12 track: runtime verification, the application perspective 17

def matches(token: Token, fact: Fact): Boolean = {
tests forall {

case (field1 ,(number,field2)) =>
fact(field1) = token.ithFact(number)(field2)

}
}

def leftActivation (token: Token) {
val facts =

alphaMemory.items filter matches(token,)
// for each such fact :
// form new token from old token
...

}

def rightActivation(fact : Fact) {
val tokens =

betaMemory.items filter matches(,fact)
// for each such token:
// form new token from fact
...

}
}

Each test (field1, (number, field2) in this list (the value
tests) specifies a field1 in the alpha memory fact to
match against a field2 in the beta memory token, iden-
tified by relative condition number, counted from the
right and starting from 0. For example, for join node
join3 this variable will contain the list:

tests = 〈(′ 2, (0,′ 1)), (′ 3, (1,′ 1))〉

Testing the grant(1206, B, b1) event against each of the
tokens T1, T2 and T3, we end up with one match: T2. The
join node produces a new token which is T2 extended
with grant(1206, B, b1):

〈Before(b1, b2), Granted(B, b2), grant(1206, B, b1)〉

which represents an error situation, and which is trans-
mitted to the fail node.

The matches function determines whether a token
and a fact match with respect to the tests. The function
leftActivation selects all facts from the alpha memory
matching a token that has arrived in the beta memory.
Likewise, the function rightActivation selects all tokens
from the beta memory matching a fact that has arrived
in the alpha memory.

Introducing Indexing

Our alternative approach consists of using an index in
beta and alpha nodes to speed up the search for matches.
Let us first define the concept of an indexable fact or to-
ken. An indexable object offers a function for looking up
a vector of fields (those we need to match on), return-
ing a list of values for those fields (the result is optional

representing that the object may not be defined for one
or more fields):

trait Indexable[I] {
def lookup(indexVector: List[I]): Option[List[Value]]
...

}

Facts and tokens must implement this interface:

class Fact extends Indexable[Field]
class Token extends Indexable[(Int, Field)]

Note that to look up a value in a token we need to know
what fact identified with its position (from the right),
and the field in that fact. We now define what a d-index
(double-index) is. A d-index is essentially a mapping,
that maps a sequence of indexes to another mapping,
which maps a sequence of values to a set of indexable
elements.

class DoubleIndex[I, E <: Indexable[I]] {
var index: Map[List[I], Map[List[Value], Set[E]]]

def lookup(indexVector: List[I] ,
valueVector: List [Value]): Set[E]

...
}

Both an alpha memory and a beta memory contains a
d-index, which is updated each time a new indexable
element is added:

class AlphaMemory {
val items : DoubleIndex[Field, Fact]()
...

}

class BetaMemory {
val items : DoubleIndex[(Int, Field), Token]
...

}

For our example, the beta memory for join3 looks as
follows:

index =
[
〈(0,′ 1), (1,′ 1))〉− >

[
〈A, a1〉 → {〈Before(a1, a2), Granted(A, a2)〉}
〈B, b1〉 → {〈Before(b1, b2), Granted(B, b2)〉}
〈C, c1〉 → {〈Before(c1, c2), Granted(C, c2)〉}

]
]

The join node contains two variables stating respectively
what the index vector is for its associated alpha and beta
memories:

18 Havelund: ISoLA’12 track: runtime verification, the application perspective

class JoinNode {
var alphaVector: List[Field]
var betaVector: List[(Int ,Field)]
...
def leftActivation (token: Token) {

val values = token.lookup(betaVector)
val facts =

alphaMemory.index.lookup(alphaVector,values)
// for each such fact :
// form new token from old token
...

}

def rightActivation(fact : Fact) {
val values = fact.lookup(alphaVector)
val tokens =

betaMemory.index.lookup(betaVector,values)
// for each such token:
// form new token from fact
...

}
}

The method leftActivation is called when a token arrives
in the connected beta memory. It uses the betaVector
to look up the values of interest in that token, those
that have to match fields in facts in the alpha memory.
Those matching alpha memory facts are then looked up
using the alphaVector and the values extracted from the
token. Similarly for the method rightActivation. As an
example, when the grant(1206, B, b1) event arrives in the
alpha memory, alphaV ector = 〈′ 2,′ 3〉 is used to extract
the relevant values = 〈B, b1〉, which are then together
with betaV ector = 〈(0,′ 1), (1,′ 1)〉 used to look up the
(in this case singular element) set of matching tokens:
{〈Before(b1, b2), Granted(B, b2)〉}.

7 Implementation of DSL

Sections 5 and 6 outlined the essential algorithmic prop-
erties of the standard Rete algorithm and the modifi-
cations and optimizations performed in this work. Con-
cerning the core algorithm, it suffices to add that the
implementation in Scala is object-oriented, in contrast
to the pseudo code provided in [30]. This section focuses
on the implementation of DSL for writing rules, using
Scala’s convenient features for defining DSLs. The pre-
sentation is simplified compared to the actual implemen-
tation, but illustrates the main principles. Let us recall
what a rule may look like, by considering rule r4 from
Subsection 3.4.1, but using map notation for the fact as
well as for the event (to simplify the explanation):

trait Release extends Monitor {
val release = event
val Granted = fact

”r4” −−
Granted(’task −> ’t, ’resource −> ’r) &
release (’ task −> ’t, ’resource −> ’r) |−>

remove(Granted)
}

7.1 Names as First-Class Citizens

Class Monitor defines the functions event, fact, ‘−−’,
‘&’, and ‘|−>’, and some additional implicit functions
that make this work. When called as above these func-
tions will produce the above rule in an internal for-
mat, as an object of a class Rule, to be explained be-
low, which is then passed as argument to a method
addRule(rule: Rule) in the Rete module. This method
then creates a Rete network as described in sections 5
and 6.

The methods event and fact use Java’s reflection8 to
bind the symbols (quoted names) ’ release and ’Granted
to the unquoted value names. The first two lines of class
Release are equivalent to:

val release = ’release
val Granted = ’Granted

A problem illustrated here is, that in designing a DSL in
Scala, and in most programming languages with an ex-
ception in Lisp, names are not first-class citizens. In sup-
porting a DSL one will have to introduce a way of writing
user defined names (if not using Scala’s already exist-
ing features for introducing such, such as class, function,
variable and constant definitions). LogFire uses sym-
bols, single quoted names, for this purpose, which are
easier to type than strings requiring two double quotes.
However, even single quoted names are undesirable in
a DSL, and therefore some approach to define names is
useful, as attempted above.

7.2 Abstract Syntax for Rules

As mentioned, a rule is internally represented by an ob-
ject of the class Rule, defined as follows, here simplified
slightly for presentation purposes by eliminating some
levels and by not presenting methods defined in these
classes.

case class Rule(
name: String,
conditions : List [Condition],
action: Action

)

trait Condition
case class PC(constraints: Map[Symbol, Pattern])

8 We plan to use Scala’s recently introduced macro features
instead, and augment with parameter constraints.

Havelund: ISoLA’12 track: runtime verification, the application perspective 19

extends Condition
case class NC(constraints: Map[Symbol, Pattern])

extends Condition

trait Pattern
case class Variable(s : Symbol) extends Pattern
case class Constant(s: Any) extends Pattern

case class Action(code: Unit => Unit)

These classes define the abstract syntax of rules: a rule
consists of a name; a left-hand side, which is a list of
conditions; and then a right-hand side, which is an ac-
tion. A condition can either be a Positive Condition (PC)
or a negated condition, here called a Negative Condition
(NC)9. A condition is defined by a map from field names
to field constraints: patterns. A pattern is either a vari-
able (to be bound on first occurrence in a rule, and to be
matched if not the first occurrence), or a constant that
has to be matched. An action is a block of Scala code,
here represented as a function from type Unit to Unit,
Scala’s void-type. The above rule is for example rep-
resented as the following Rule object (Abstract Syntax
Tree):

Rule(
”r4”,
List(

PC(
Map(

’kind −> Constant(’Granted),
’task −> Variable(’t),
’resource −> Variable(’r)

)
),
PC(

Map(
’kind −> Constant(’release),
’task −> Variable(’t),
’resource −> Variable(’r)

)
)

),
Action((x: Unit) => remove(’Granted))

)

7.3 From Concrete to Abstract Syntax

It remains to be explained how this internal represen-
tation is generated from the rule r4 shown above. The
approach is based on the same techniques used in Sec-
tion 4 for defining specification patterns, namely implicit
functions lifting values of one type to values of another

9 LogFire also supports negation of a conjunction of conditions,
as described in [30], although at this point we are unsure about
the correctness of the algorithm for handling such provided in [30].

type, and the option of omitting dot-notation and paren-
theses around arguments when calling a method on an
object. That is, for example a call such as obj.meth(42)
can be written as: obj meth 42. Furthermore, method
names can be sequences of symbols.

The following definitions define an implicit function
R, lifting a string (a rule name) to an anonymous object,
which defines the ‘−−’ operator, which when applied to
a condition returns an object of the class RuleDef. This
class in turn defines the condition conjunction operator
‘&’ and the action operator ‘|−>’ defining the transition
from left-hand side to right-hand side of the rule. This
operator calls addRule, which adds the rule to the Rete
network.

implicit def R(name: String) = new {
def −−(c: Condition) =

new RuleDef(name, List(c))
}

class RuleDef(name: String,
conditions : List [Condition]) {

def &(c: Condition) =
new RuleDef(name, c :: conditions)

def |−>(stmt: => Unit) {
addRule(

Rule(
name,
conditions . reverse ,
Action((x: Unit) => stmt)

)
)
}
}

The implicit function R gets invoked by the compiler
automatically when a string is followed by the symbol
‘−−’, in order to resolve the type error (since there is no
‘−−’ operator directly defined on strings). The individ-
ual conditions in a rule are similarly constructed with
the help of the following implicit function, which lifts a
symbol (the name of an event or fact) to a Cond object,
which defines an apply function:

implicit def C(kind: Symbol) = new Cond(kind)

class Cond(kind: Symbol) {
def apply(args: (Symbol, Any)∗): PC = {

val constraints =
for ((field , value) <− args.toMap) yield {

val pattern = value match {
case symbol: Symbol => Variable(symbol)
case => Constant(value)
}
(field −> pattern)
}

PC(constraints + (’kind −> Constant(kind)))

20 Havelund: ISoLA’12 track: runtime verification, the application perspective

}
}

The apply method in Scala has special interpretation:
if an object O defines a such, the object can be ap-
plied to a list of arguments using function application
syntax: O(. . .), equivalent to calling the apply method:
O.apply(. . .). The apply method in this case takes a se-
quence of (Symbol,Any) pairs as argument, where a pair
(s ,a) in Scala can be written as s −>a. This makes it
possible to write conditions such as:

release (’ task −> ’t, ’resource −> ’r)

which by the compiler is translated into:

C(’release).apply((’task ,’ t),(’ resource ,’ r))

The apply method returns a Positive Condition (PC)
with the constraints formed by mapping values to pat-
terns (symbols are mapped to Variables and other val-
ues are mapped to Constants). Negation of conditions is
made possible with the following function:

def not(pc: PC): Condition = NC(pc.constraints)

The complete interpretation by the Scala compiler of
the rule definition:

”r4” −−
Granted(’task −> ’t, ’resource −> ’r) &
release (’ task −> ’t, ’resource −> ’r) |−>

remove(Granted)

finally becomes:

R(”r4”).−−(
C(’Granted).apply((’task,’ t), (’ resource ,’ r))

).&(
C(’release).apply((’task ,’ t), (’ resource ,’ r))

). |−> (
remove(’Granted)

)

7.4 Program Understanding with Data Visualization

The Rete algorithm has a reputation of being compli-
cated. Comprehending the structure of the network gen-
erated from a set of rules, and how it evolves as events
are processed, can be non-trivial. To ensure that the im-
plementation works as desired is therefore a challenge.
For the purpose of program understanding, we have de-
veloped a data structure visualization package in Scala,
based on GraphViz [6]. This package is used to visual-
ize the Rete network in a manner similar to Figure 1,
although with more details.

The GraphViz layout program takes as input a rep-
resentation of a graph in a simple text language, and gen-
erates a two-dimensional graph in a desired format. We

implemented a Scala class Graph, an object of which
represents the internal structure of a GraphViz graph,
supporting all of the GraphViz notation. Given such a
graph object, one can call methods such as for example
addNode, addEdge (from one node to another), addFields
(a data record: field-name/value pairs, associated with a
node), shapeNode, and colorNode, with appropriate ar-
guments, which have as side effect to build up this data
structure. The data structure can finally be printed as a
.dot file and visualized with GraphViz.

Each class, objects of which should be visualized,
must extend the trait Visual, which provides two meth-
ods. The first method, draw(file: String), produces a graph
visualizing the object and writes it in GraphViz’s text
format to the file indicated as parameter. The second
method, toGraph(graph: Graph), is called from draw, and
must be defined in each class extending trait Visual. It
will update the argument graph with nodes and edges
stemming from that object10:

trait Visual {
def draw(file : String)
def toGraph(graph: Graph)
}

As an example, below is shown a fragment of the code
for the class AlphaMemory:

class AlphaMemory extends Visual {
val items = new DoubleIndex[Field, Fact]()
var successors : List [Joiner] = List()
var referenceCount: Int = 0
...
def toGraph(config: Config) {

config .colorNode(this, ”blue”)
config .addEdge(this, ’items, items)
config .addEdges(this, ’successors, successors)
}
...

}

As an example, the graph for the rule r4 on page 18
is shown in Figure 2. The figure contains two join nodes
(with rounded corners; purple in color print) correspond-
ing to the two left-hand side conditions. The top right
join node executes when a Granted fact is matched in
the fact memory, while the second bottom left join node
executes when in addition a release event is matched,
where the TestAtJoinNode indicates the test to be per-
formed on the attributes. With a complete match of the
left-hand side the PNode executes the right-hand side.

10 Note that this is similar to Java’s and Scala’s toString
method, although different by updating an argument rather than
returning a result (toString returns a string).

Havelund: ISoLA’12 track: runtime verification, the application perspective 21

--- BetaMemory ---

children

items

--- DoubleIndex ---

elementSetCounter 1

indexKeySet [List()]

--- JoinNode ---

children

tokenFieldsToTest []

wmeFieldsToTest []

nearestAncestorWithSameAmem

--- Token ---

wme

[]

--- Release2 ---

alpha

beta

--- AlphaNetwork ---

bindingDomains Set(Set('kind))

table

--- DoubleIndex ---

elementSetCounter 0

indexKeySet [List('task, 'resource)]

--- AlphaMemory ---

successors

items

--- JoinNode ---

children

tokenFieldsToTest [(0,'task),(0,'resource)]

wmeFieldsToTest ['task,'resource]

nearestAncestorWithSameAmem

tests

['kind -> 'release]

--- AlphaMemory ---

items

successors

['kind -> 'Granted]

--- BetaMemory ---

children

items

--- DoubleIndex ---

elementSetCounter 0

indexKeySet [List((0,'task), (0,'resource))]

--- TestAtJoinNode ---

fieldOfWme 'resource

relCondNoInToken 0

fieldOfTokenWme 'resource

--- TestAtJoinNode ---

fieldOfWme 'task

relCondNoInToken 0

fieldOfTokenWme 'task

--- PNode ---

items

rule r4

--- DoubleIndex ---

elementSetCounter 0

indexKeySet []

--- DoubleIndex ---

elementSetCounter 0

indexKeySet [List()]

Fig. 2. Graph for the rule r4 on page 18.

7.5 Testing

Performing automated testing of a language processing
system like LogFire is difficult for two reasons: (i) in-
puts include specifications, which are rather complex ob-
jects to generate automatically; and (ii) one would need
an oracle, which for every specification/trace pair tells
us whether the trace satisfies the specification, and if not
yielding an explanation of why not. The latter would es-
sentially require implementing a second, preferably sim-
pler, system with similar functionality, a reference imple-
mentation. It is perhaps here worth noting, that Log-
Fire does not seem suitable for testing itself.

Instead, we have developed support for writing test
cases (using ScalaTest [12]), where a test case consists
of a specification, a trace, and an oracle for that specifi-
cation/trace pair. The following test case illustrates this.
A monitor is created and in this case fed two events. Af-
ter each event it is asserted what facts should be in the
fact memory. Finally it is asserted which errors the trace
results in, in this case one violation and its error trace.

class TestResourceManagement extends Test {
val m = new ResourceManagement
setMonitor(m, false)

add(’grant(1, ”A”, ’motor3))
assertFacts (’Granted(”A”, ’motor3))

add(’grant(2, ”B”, ’motor3))
assertFacts(

’Granted(”A”,’motor3),
’Granted(”B”,’motor3)

)

assertResult(
Report(

”ERROR bad double grant”,
(1, ”r3”, ’Granted(”A”, ’motor3)),
(2, ”r7”, ’ Fail (”ERROR bad double grant”)))

)
}

If the test case fails to satisfy the oracle when executed,
for example the first time it is executed with an empty
oracle, the correct oracle is printed (if the second argu-
ment to setMonitor is true), and can be applied in future
tests, assuming that its correctness is first manually con-
firmed. Any later modifications of the implementation
will now be checked against each such test case.

7.6 Documentation

LogFire has been documented as an API using Scal-
aDoc [11]. Figure 3 shows a page of the documenta-
tion. Clicking on an element (class, function, etc.) opens
an explanation of that element. It should be noted that
when documenting an internal Scala DSL as an API,
one has in some cases to explain a grammar as a set of
functions, classes and methods. This can in some cases
seem somewhat inconvenient from a documentation point
of view, as perhaps best illustrated by the definitions in
Subsection 7.3, defining the “syntax” of rule definitions
as a collection of implicit functions, objects and methods
to be called in a chained manner.

8 Experiments

This section describes the benchmarking performed to
evaluate LogFire and various other rule-based and/or
runtime verification systems. The experiments have fo-
cused on analysis of logs (offline analysis), since this has
been the focus of our application of RV, and since this
must be considered an important practical RV applica-
tion domain. The focus on logs does, however, not sug-
gest that these techniques only can be used for log anal-
ysis. In fact, all the systems discussed and analyzed can
be run in online mode, monitoring a system as it exe-
cutes.

Offline and online analysis may require different tech-
niques, including for example how garbage collection is
handled. In a system such as Mop [58] handling of garbage
collection is an important algorithmic problem. For ex-
ample, if an object is monitored, and this object at some
point is no longer used by the monitored application,
then the monitor will allow the object to be garbage

22 Havelund: ISoLA’12 track: runtime verification, the application perspective

Fig. 3. LogFire API documentation with ScalaDoc.

collected, usually using what is referred to as weak ref-
erences. Future studies will reveal the need for this form
of technique for log analysis. None of the systems com-
pared, except Mop, handles this problem.

The evaluation was carried out on an Apple Mac
Pro, 2 × 2.93 GHz 6-Core Intel Xeon, 32GB of mem-
ory, running Mac OS X Lion 10.7.5. Applications were
run in Eclipse JUNO 4.2.2, running Scala IDE version
3.0.0/2.10 and Java 1.6.0.

8.1 The Systems Compared

The systems compared are the following (previously in-
troduced in the related work Section 2):

– LogFire: the rule-based system presented in this pa-
per, which is a augmentation of the Rete algorithm
with event processing and an indexing scheme.

– Rete/UL: our Scala implementation of the Rete
algorithm directly from [30], with the addition of
event processing. LogFire is an optimization of this
implementation with indexing. Comparing LogFire
with Rete/UL offers perhaps the best insight into
the benefits of the indexing.

– Drools [5]: one of the main state-of-the-art rule-
based systems tailored for the Java language, and
freely available from the JBoss community, where it
is also referred to as their Business Rules Manage-
ment System (BRMS) solution. Drools is based on
an enhanced implementation of the Rete algorithm,
for example with indexing (similar to our indexing

optimization, although details are not available), and
is therefore an interesting data point for comparison.

– Ruler [22,23,10]: is a runtime verification system
implemented in Java, and created as a rule-based
system, although with a quite different implementa-
tion than the Rete algorithm. Ruler removes a fact
in the next step unless explicitly commanded to keep
it by a rule. In contrast, Rete removes a fact only
when explicitly commanded to do so by a rule.

– LogScope [43,18]: is a down-scaled and slightly mod-
ified version of Ruler, emphasizing data parame-
terized state machines, and implemented in Scala.
LogScope, in contrast to Ruler, considers a fact to
survive unless explicitly removed by a rule. LogScope
was developed to explore language features and is not
optimized.

– TraceContract [19]: an internal Scala DSL for
state machines (shallow DSL) and LTL (deep), as
well as a simple rule-based notation (shallow). It ap-
plies re-writing and normalization of formulas. Trace-
Contract was developed to explore language fea-
tures and is not optimized.

– Mop [58]: is amongst the most efficient state-of-the-
art runtime verifications system in existence to our
knowledge. Mop supports many different logics, pro-
vided as plugins, all using the same indexing algo-
rithm to access monitors fast based on arguments to
parameterized events. Normally Mop is designed to
monitor programs as they execute (online monitor-
ing). For example, JavaMop verifies events gener-
ated by a running Java program, instrumented with
AspectJ [54,1]. Log analysis is in this evaluation
performed by inserting a log reader program, which
for each event read from the log, calls a method de-
fined for the particular kind of event, and which has
an empty method body (it does nothing). The calls
of these empty-body methods are then instrumented
with AspectJ to drive the monitors.

Of these systems, the author has contributed to/devel-
oped the following: Ruler (contributed to its design),
LogScope, TraceContract, and LogFire, see [13].

8.2 Specification of Requirements

The systems are compared by specifying the same small
set of requirements in each system’s specification lan-
guage, and subsequently analyze a collection of log files
with each system against this specification. The require-
ments are closely related to the resource grant-and-release
example presented in Subsections 3.2.4 and 3.2.5. We as-
sume logs, which contain events such as: grant(t, r) (task
t is granted resource r) and release(t, r) (task t releases
resource r). Over such logs we formulate the following
requirements:

– Release: A resource granted to a task should even-
tually be released by that task.

Havelund: ISoLA’12 track: runtime verification, the application perspective 23

– NoRelease: A resource can only be released by a
task, if it has been granted to that task, and not yet
released.

– NoGrant: As long as a resource is granted to a task,
it cannot be granted again, neither to that task nor
to any other task.

These requirements are formulated as follows in Log-
Fire (and should be self-explanatory based on the de-
scriptions provided in Subsections 3.2.4 and 3.2.5):

class ResourceRequirements extends Monitor {
val grant, release , end = event
val Granted = fact

”r1” −−
grant(’task −> ’t, ’resource −> ’r) &
not(Granted(’t, ’ r)) |−> Granted(’t, ’r)

”r2” −−
Granted(’t, ’ r) &
release (’ task −> ’t, ’resource −> ’r) |−>

remove(Granted)

”r3” −−
Granted(’t, ’ r) &
grant(’task −> ’ , ’resource −> ’r) |−>

fail (”double grant”)

”r4” −−
Granted(’t, ’ r) & end() |−> fail(”missing release”)

”r5” −−
release (’ task −> ’t, ’resource −> ’r) &
not(Granted(’t, ’ r)) |−> fail(”bad release”)
}

We shall not in this paper show the specifications for-
mulated in the other systems.

8.3 The Logs

As will be illustrated in a moment, logs are for this exper-
iment concretely represented as CSV files, the dominant
representation form of MSL logs. The logs can, however,
abstractly be seen as sequences of events grant(t, r) and
release(t, r), where t and r are integer values. As an ex-
ample, the following can be seen as an abstract log of 4
events:

grant(1,1)

grant(2,1)

release(1,1)

release(1,2)

This log by the way violates all three requirements (the
interested reader may investigate why). Concretely, the
logs are represented as CSV files, and parsed with a

grant(1,1) |

grant(2,2) | G=3 grants

grant(3,3) |

release(1,1) | R=1 releases |

grant(1,1) | R=1 grants | L=2

--- | release-grant

release(1,1) | R=1 releases | blocks

grant(1,1) | R=1 grants |

release(1,1) |

release(2,2) | G=3 releases

release(3,3) |

Fig. 4. Example log with shape S = (G = 3, L = 2, R = 1)

CSV-parsing script (a modified version of a script de-
veloped by MSL personal [53]) based on Scala’s parser
combinator library. Hence the above log is concretely
represented as:

kind, task, resource

grant, 1, 1

grant, 2, 1

release, 1, 1

release, 1, 2

The experiment consists of analyzing 7 different logs:
one log, numbered 1, generated from the Mars Curiosity
rover during 99 (Mars) days of operation on Mars, to-
gether with 6 artificially generated logs, numbered 2-7,
that are supposed to stress test the algorithms for their
ability to handle particular situations requiring fast in-
dexing. The MSL log contains a little over 2.4 million
events, of which 30.933 are relevant grant and release
events, which are extracted before analysis. The shape of
this log is a sequence of paired grant and release events,
where a resource is released in the step immediately fol-
lowing the grant event (after all other events have been
filtered out). The log has the form (task ids are not rel-
evant):

grant(1,1)

release(1,1)

grant(1,2)

release(1,2)

grant(1,3)

release(1,3)

...

In this case we say that the required memory is 1: only
one (task, resource) association needs to be remembered
at any point in time. In this sense there is no need for
indexing since only one resource is held at any time. This
might be a very realistic scenario in many cases. The
artificially generated logs experiment with various levels
of memory amongst the values: {1, 5, 30, 100, 500, 5000}.
More specifically, each artificial log is characterized by a
shape S:

24 Havelund: ISoLA’12 track: runtime verification, the application perspective

1 2 3 4

0

50

100

150

test number

ev
en

ts
/
m

s

LogFire

Rete/UL

Drools

Ruler

LogScope

TraceContract

Fig. 5. Results of first 4 tests requiring light indexing.

S = (G,L,R)

consisting of 3 parameters:

– G: the number of distinct grants at the beginning of
the log. This defines the memory of the log. The log
is ended with releases of all these granted resources.
What is in between is referred to as the mid section.

– L: the mid section consists of L release-grant blocks.
– R: a release-grant block in the mid section is charac-

terized R releases of different resources followed by
R grants of the same resources.

As an example, a log with shape S = (G = 3, L = 2, R =
1), with comments inserted, is shown in Figure 4.

8.4 Results

The results of running all 7 systems on the 7 logs are
shown in Table 1. The tools are grouped into three sec-
tions - truly rule-based systems: LogFire, Rete/UL,
Drools, and Ruler; experimental un-optimized sys-
tems: LogScope and TraceContract, and the highly
optimized system Mop. For each log is indicated: log
number, shape S = (G,L,R), length in terms of number
events, and the time it takes on average across systems to
parse the log and generate events for the systems to pro-
cess (those times are approximately the same across sys-
tems for one particular log). For each system the parsing
time is subtracted from the total time to process the log,
yielding two numbers for each system: number of events
processed per millisecond (above line), and time con-
sumed monitoring (below line) measured in min:sec:ms,
with minutes and seconds left out if 0.

The table shows that Mop outperforms all other
systems by orders of magnitude. The difference is ma-
jor. This fundamentally illustrates that the indexing ap-
proach used in a state-of-the-art system such as Mop

5 6 7

0

5

10

15

20

25

test number

ev
en

ts
/
m

s

LogFire

Rete/UL

Drools

Ruler

LogScope

TraceContract

Fig. 6. Results of last 3 tests requiring heavy indexing.

is much faster than a standard algorithm from AI such
as Rete for runtime verification purposes. This is an
important observation in itself.

In order to better understand the differences between
the remaining systems (excluding Mop for which the re-
sult is clear), the events per millisecond numbers per
tool/log combination are also shown graphically in Fig-
ures 5 and 6. Figure 5 shows the results for logs 1-4,
for relatively low values of G (memory), whereas Figure
6 shows the results for logs 5-7, for relatively high val-
ues of G. Two figures are shown in order to make the
presentation clearer.

From Figure 5 (low values of G) it becomes clear that
systems not implementing any form of advanced index-
ing (such as Ruler, Rete/UL, and even TraceCon-
tract) perform relatively well. LogFire only performs
average on such logs. However, it performs better than
the state-of-art rule system Drools. We do not know
the reason for this. Drools performs approximately as
well as the completely unoptimized LogScope.

From Figure 6 (high values of G) we see that Log-
Fire performs better than the other systems, including
Drools, except for the extreme value G = 5000 where
Drools suddenly performs better. Again, we are uncer-
tain about the reason for this behavior. LogFire per-
forms better than Rete/UL, which would be expected.
Ruler, LogScope, and TraceContract all under-
perform for large values of G. For G = 5000 (test number
7), Ruler and TraceContract did not finish within
72 hours, and had to be forcefully terminated.

In summary, Mop’s indexing solution outperforms
the rule-based algorithms for this set of typical runtime
verification properties. LogFire generally performs bet-
ter than the state-of-art rule-based system Drools, but
does only average for low values of G. A main lesson to
be learned is that the indexing approach used in a sys-

Havelund: ISoLA’12 track: runtime verification, the application perspective 25

Table 1. Results of tests 1-7. For each test is shown shape of the test (m stands for million and k stands for thousand), length of the
trace, and time taken to parse the log. For each tool two numbers are provided - above line: number of events processed by the monitor
per millisecond, and below line: time consumed monitoring (minutes:seconds:milliseconds, with minutes and seconds left out if 0). DNF
stands for ‘Did Not Finish’.

trace nr. 1 2 3 4 5 6 7

S=(G,L,R) msl log (1,1m,1) (5,350k,3) (30,100k,10) (100,100k,10) (500,10k,100) (5000,5k,100)
length 30,933 2,000,002 2,100,010 2,000,060 2,000,200 2,001,000 1,010,000
parsing 3 sec 45 sec 47 sec 46 sec 46 sec 46 sec 24 sec

LogFire
26

1:190
42

47:900
41

50:996
34

58:391
23

1:27:488
8

3:55:696
1

15:54:769

Rete/UL
38
816

109
18:428

75
28:141

41
48:524

14
2:26:983

4
8:25:867

0.4
43:33:366

Drools
10
3:97

8
4:1:758

9
3:47:535

9
3:34:648

8
4:14:497

7
4:36:608

3
5:4:505

Ruler
95
326

138
14:441

78
27:77

8
4:5:593

0.8
41:39:750

0.034
977:20:636 DNF

LogScope
17

1:842
15

2:11:908
7

4:54:605
2

21:42:389
0.4

76:17:341
0.09

369:25:312
0.01

2074:43:470

TraceContract
48
645

69
28:851

37
57:428

6
5:58:497

0.9
36:29:594

0.036
919:5:134 DNF

Mop
595
52

1381
1:448

1559
347

1341
1:491

7143
280

7096
282

847
1:193

tem such as Mop may be a useful technique to apply to
rule-based systems.

9 Conclusion and Future Work

Rule-based systems seem natural for runtime verifica-
tion/program monitoring. From a specification notation
point of view rule-based systems appear quite suitable
for expressing the kind of properties the runtime verifica-
tion community normally writes. Specifications written
in a rule system have an operational flavor, which can
be seen as a disadvantage or an advantage, depending
on the view point. The operational flavor makes spec-
ifications longer than in declarative temporal logic or
regular expressions. However, they are natural to write.
Once the core idea is mastered, writing rules is straight
forward, like programming. More declarative specifica-
tions can be more tricky to get right. This observation is
similar to the observation, that it may be easier to for-
mulate a non-trivial property as a state machine than as
a temporal logic formula or a regular expression. As we
have seen, one can in addition define specification tem-
plates allowing for more succinct specifications. Rule-
based systems are fully expressive, in fact Turing com-
plete, making them for example strictly more expressive
than several declarative notations.

From a performance point of view, however, a sys-
tem like Mop clearly is superior. The difference is sub-
stantial, suggesting a future study of the relationship
between the indexing approaches used in runtime verifi-
cation (in Mop in particular) and the algorithms behind
the more expressive rule-based systems, such as Rete.
For low memory (small values of G), Ruler interest-
ingly performs better than Rete/UL, which performs
better than LogFire. For high memory (large values of

G) the results are turned around, and here LogFire per-
forms better than the other rule-based systems, except
for G = 5000 where Drools outperforms LogFire.

LogFire is developed as an internal DSL in Scala.
We believe that an internal DSL has advantages over
an external (stand-alone) DSL for log processing. Under
practical circumstances log processing usually requires
complex operations to be performed in addition to the
pure detection of event patterns. Having access to a gen-
eral purpose high-level programming language offering
object-oriented as well as functional programming fea-
tures seems very attractive for test engineers for exam-
ple. LogFire is a mixture of a deep and a shallow inter-
nal DSL. Right-hand sides of rules are formed in a shal-
low DSL: directly from Scala code (any Scala state-
ment with return type Unit). Left-hand sides of rules are
formulated as a deep internal DSL, meaning: all con-
structs are elements of explicitly defined Scala data
types. This makes it possible to process left-hand sides
in order to generate the Rete network.

Concerning current and future work, we are currently
evaluating LogFire on a more comprehensive set of
logs. This work will include log abstraction ([53], see
discussion below) and visualization. We are also consid-
ering various extensions and modifications to the frame-
work. One of the issues encountered is the need for using
quoted names for events and facts. These may be bet-
ter handled with Scala’s new macro concept. The ideal
would be to have events and facts be Scala objects, as
is the case in Drools and TraceContract. However,
this is made complicated by the need for pattern match-
ing over such objects, which is difficult when defining a
deep internal DSL, as LogFire in part is (what concerns
left-hand sides). TraceContract is a shallow internal
DSL in contrast, making it possible to re-use Scala’s
pattern matching over objects. We plan to explore the

26 Havelund: ISoLA’12 track: runtime verification, the application perspective

boundary between shallow and deep internal DSLs, as
represented by these two languages. More broadly we
intend to explore some of the state machine notations
existing in TraceContract, Ruler, and LogScope,
for example state machines with anonymous (un-named)
states.

None of the evaluated tools take explicit advantage
of multi-threading. Additional efficiency can be obtained
by exploring multi-threading solutions to the monitoring
problem, as for example performed in Hammurabi [39].

A topic only briefly mentioned so-far in Section 2 is
the ability of using a rule-based system to specify event
abstraction. The idea is to infer facts from events, while
having additional rules which from facts infer other facts.
This idea was in part illustrated with the Before fact in
Subsection 3.2.3. Here events such as before(r1, r2) and
before(r2, r3) would generate facts such as Before(r1, r2)
and Before(r2, r3), from which a rule of the form:

”r2” −− Before(’r1, ’r2) & Before(’r2, ’r3) |−>
Before(’r1, ’r3)

generates a new fact Before(r1, r3). This is an exam-
ple of event abstraction: from single events are derived
facts, from which other facts are derived. This form of
specification allows to build abstractions over the log,
as suggested in [53], which can be useful for processing
complex information. In current work this idea is being
applied to logs from the MSL Mars mission.

Acknowledgements

We thank Howard Barringer (University of Manchester,
UK) for numerous fruitful discussions. Also thanks to
Giles Reger (University of Manchester, UK) and Patrick
Meredith (Mop project, University of Illinois at Urbana-
Champaign, IL, USA) for their input on how to write
specifications optimally in Mop, and to Patrick Mered-
ith for his general support in using the Mop system.
Thanks to Mark Proctor, Davide Sottara, and Edson
Tirelli (the Drools project) for their support in us-
ing Drools. Thanks to Rajeev Joshi (Jet Propulsion
Laboratory, California, USA) for his help in parsing and
analyzing MSL logs, including helping formulating prop-
erties over these logs. Rajeev Joshi also came up with the
suggestion that abstraction over logs could be useful. As
it turns out, LogFire (more generally: any Rete-based
system) offers this functionality. The work was carried
out at Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aero-
nautics and Space Administration. The work was fur-
thermore supported by NSF Grant CCF-0926190.

References

1. AspectJ website. http://www.eclipse.org/aspectj.
2. Clips website. http://clipsrules.sourceforge.net.

3. Drools blog.
http://blog.athico.com/2013/01/life-beyond-rete-rip-
rete-2013.html.

4. Drools functional programming extensions website.
https://community.jboss.org/wiki/
FunctionalProgrammingInDrools.

5. Drools website. http://www.jboss.org/drools.

6. Graphviz website. http://www.graphviz.org.

7. Jess website. http://www.jessrules.com/jess.

8. Mars Science Laboratory (MSL) mission website.
http://mars.jpl.nasa.gov/msl.

9. Rooscaloo website. http://code.google.com/p/rooscaloo.

10. RuleR website.
http://www.cs.man.ac.uk/∼howard/LPA.html.

11. Scaladoc website.
https://wiki.scala-lang.org/display/SW/Scaladoc.

12. Scalatest website. http://www.scalatest.org.

13. Website for various runtime verification tools, including:
Eagle, RuleR, LogScope, TraceContract, and LogFire.
http://www.havelund.com/tools.

14. C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren,
S. Kuzins, O. Lhoták, O. de Moor, D. Sereni, G. Sittam-
plan, and J. Tibble. Adding trace matching with free
variables to AspectJ. In OOPSLA’05. ACM Press, 2005.

15. H. Barringer, Y. Falcone, K. Havelund, G. Reger, and
D. Rydeheard. Quantified Event Automata - towards
expressive and efficient runtime monitors. In 18th Inter-
national Symposium on Formal Methods (FM’12), Paris,
France, August 27-31, 2012. Proceedings, volume 7436 of
LNCS. Springer, 2012.

16. H. Barringer, M. Fisher, D. M. Gabbay, G. Gough, and
R. Owens. Metatem: An introduction. Formal Asp. Com-
put., 7(5):533–549, 1995.

17. H. Barringer, A. Goldberg, K. Havelund, and K. Sen.
Rule-based runtime verification. In VMCAI, volume 2937
of LNCS, pages 44–57. Springer, 2004.

18. H. Barringer, A. Groce, K. Havelund, and M. Smith. For-
mal analysis of log files. Journal of Aerospace Computing,
Information, and Communication, 7(11):365–390, 2010.

19. H. Barringer and K. Havelund. TraceContract: A Scala
DSL for trace analysis. In 17th International Sympo-
sium on Formal Methods (FM’11), Limerick, Ireland,
June 20-24, 2011. Proceedings, volume 6664 of LNCS,
pages 57–72. Springer, 2011.

20. H. Barringer, K. Havelund, E. Kurklu, and R. Morris.
Checking flight rules with TraceContract: Application of
a Scala DSL for trace analysis. In Scala Days 2011, Stan-
ford University, California, 2011.

21. H. Barringer, K. Havelund, D. Rydeheard, and A. Groce.
Rule systems for runtime verification: A short tutorial. In
Proc. of the 9th Int. Workshop on Runtime Verification
(RV’09), volume 5779 of LNCS, pages 1–24. Springer,
2009.

22. H. Barringer, D. Rydeheard, and K. Havelund. Rule sys-
tems for run-time monitoring: from Eagle to RuleR. In
Proc. of the 7th Int. Workshop on Runtime Verification
(RV’07), volume 4839 of LNCS, pages 111–125, Vancou-
ver, Canada, 2007. Springer.

23. H. Barringer, D. E. Rydeheard, and K. Havelund. Rule
systems for run-time monitoring: from Eagle to RuleR.
J. Log. Comput., 20(3):675–706, 2010.

Havelund: ISoLA’12 track: runtime verification, the application perspective 27

24. D. A. Basin, F. Klaedtke, and S. Müller. Policy monitor-
ing in first-order temporal logic. In T. Touili, B. Cook,
and P. Jackson, editors, Computer Aided Verification,
22nd International Conference, CAV 2010, Edinburgh,
UK, July 15-19, Proceedings, volume 6174 of Lecture
Notes in Computer Science, pages 1–18. Springer, 2010.

25. A. Bauer, J.-C. Küster, and G. Vegliach. From proposi-
tional to first-order monitoring. In Runtime Verification
- 4th Int. Conference, RV’13, Rennes, France, September
24-27, 2013. Proceedings, volume 8174 of LNCS, pages
59–75. Springer, 2013.

26. A. Bauer, M. Leucker, and C. Schallhart. The good, the
bad, and the ugly, but how ugly is ugly? In Proc. of the
7th Int. Workshop on Runtime Verification (RV’07), vol-
ume 4839 of LNCS, pages 126–138, Vancouver, Canada,
2007. Springer.

27. E. Bodden. MOPBox: A library approach to runtime
verification. In Runtime Verification - 2nd Int. Con-
ference, RV’11, San Francisco, USA, September 27-30,
2011. Proceedings, volume 7186 of LNCS, pages 365–369.
Springer, 2011.

28. F. Chen and G. Roşu. Parametric trace slicing and mon-
itoring. In Proceedings of the 15th International Confer-
ence on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’09), volume 5505 of LNCS,
pages 246–261, 2009.

29. M. D’Amorim and K. Havelund. Event-based runtime
verification of Java programs. In Workshop on Dynamic
Program Analysis (WODA’05), volume 30(4) of ACM
Sigsoft Software Engineering Notes, pages 1–7, 2005.

30. R. B. Doorenbos. Production Matching for Large Learn-
ing Systems. PhD thesis, Carnegie Mellon University,
Pittsburgh, PA, 1995.

31. D. Drusinsky. The temporal rover and the ATG rover. In
SPIN Model Checking and Software Verification, volume
1885 of LNCS, pages 323–330. Springer, 2000.

32. D. Drusinsky. Modeling and Verification using UML
Statecharts. Elsevier, 2006. ISBN-13: 978-0-7506-7949-7,
400 pages.

33. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Pat-
terns in property specifications for finite-state verifica-
tion. In B. W. Boehm, D. Garlan, and J. Kramer, ed-
itors, Proceedings of the 1999 International Conference
on Software Engineering, ICSE’ 99, Los Angeles, CA,
USA, May 16-22, 1999, pages 411–420. ACM, 1999.

34. Y. Falcone, J.-C. Fernandez, and L. Mounier. Runtime
verification of safety-progress properties. In Proc. of the
9th Int. Workshop on Runtime Verification (RV’09), vol-
ume 5779 of LNCS, pages 40–59. Springer, 2009.

35. Y. Falcone, J.-C. Fernandez, and L. Mounier. What can
you verify and enforce at runtime? J Software Tools for
Technology Transfer, 14(3):349–382, 2012.

36. Y. Falcone, K. Havelund, and G. Reger. A tutorial on
runtime verification. In M. Broy, D. Peled, and G. Kalus,
editors, Engineering Dependable Software Systems, vol-
ume 34 of NATO Science for Peace and Security Series -
D:Information and Communication Security, pages 141–
175. IOS Press, 2013.

37. C. Forgy. Rete: A fast algorithm for the many pattern/-
many object pattern match problem. Artificial Intelli-
gence, 19:17–37, 1982.

38. M. Fowler and R. Parsons, editors. Domain-Specific Lan-
guages. Addison-Wesley, 2010.

39. M. Fusco. Hammurabi - a Scala rule engine. In Scala
Days 2011, Stanford University, California, 2011.

40. F. Garillot and B. Werner. Simple types in type the-
ory: Deep and shallow encodings. In 20th International
Conference on Theorem Proving in Higher Order Log-
ics (TPHOLs’07), Kaiserslautern, Germany. Proceed-
ings, volume 4732 of LNCS, pages 368–382. Springer,
2007.

41. R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Sim-
ple on-the-fly automatic verification of linear temporal
logic. In P. Dembinski and M. Sredniawa, editors, In
Protocol Specification Testing and Verification (PSTV),
volume 38, pages 3–18. Chapman & Hall, 1995.

42. J. Goubault-Larrecq and J. Olivain. A smell of OR-
CHIDS. In Proc. of the 8th Int. Workshop on Runtime
Verification (RV’08), volume 5289 of LNCS, pages 1–20,
Budapest, Hungary, 2008. Springer.

43. A. Groce, K. Havelund, and M. H. Smith. From scripts
to specifications: the evolution of a flight software testing
effort. In 32nd Int. Conference on Software Engineering
(ICSE’10), Cape Town, South Africa, ACM SIG, pages
129–138, 2010.

44. S. Hallé and R. Villemaire. Runtime enforcement of web
service message contracts with data. IEEE Transactions
on Services Computing, 5(2):192–206, 2012.

45. K. Havelund. Runtime verification of C programs. In
Proc. of the 1st TestCom/FATES conference, volume
5047 of LNCS, Tokyo, Japan, 2008. Springer.

46. K. Havelund. What does AI have to do with RV? (ex-
tended abstract). In T. Margaria and B. Steffen, edi-
tors, 5th International Symposium On Leveraging Appli-
cations of Formal Methods, Verification and Validation.
Track: Runtime Verification - the Application Perspec-
tive (organized by Ylies Falcone and Lenore Zuck), Her-
aclion, Greece, October 15-18. Proceedings, volume 7610
of LNCS. Springer, 2012.

47. K. Havelund. A Scala DSL for Rete-based runtime ver-
ification. In Runtime Verification - 4th Int. Conference,
RV’13, Rennes, France, September 24-27, 2013. Proceed-
ings, volume 8174 of LNCS, pages 322–327. Springer,
2013.

48. K. Havelund and A. Goldberg. Verify your runs. In
Verified Software: Theories, Tools, Experiments, VSTTE
2005, pages 374–383, 2008.

49. K. Havelund and G. Roşu. Efficient monitoring of
safety properties. Software Tools for Technology Trans-
fer, 6(2):158–173, 2004.

50. K. Havelund and G. Rosu. Monitoring programs using
rewriting. In 16th ASE conference, San Diego, CA, USA,
pages 135–143, 2001.

51. C. Herzeel, K. Gybels, and P. Costanza. Escaping with
future variables in HALO. In Proc. of the 7th Int. Work-
shop on Runtime Verification (RV’07), volume 4839 of
LNCS, pages 51–62. Springer, 2007.

52. G. J. Holzmann and R. Joshi. Model-driven software
verification. In Model Checking Software - the 11th In-
ternational SPIN Workshop, Barcelona, Spain, volume
2989 of LNCS, pages 76–91. Springer, 2004.

53. R. Joshi. Resources for analyzing MSL logs, personal
communication. 2013.

54. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of AspectJ. In

28 Havelund: ISoLA’12 track: runtime verification, the application perspective

J. L. Knudsen, editor, Proc. of the 15th European Con-
ference on Object-Oriented Programming, volume 2072
of LNCS, pages 327–353. Springer, 2001.

55. I. Lee, S. Kannan, M. Kim, O. Sokolsky, and
M. Viswanathan. Runtime assurance based on formal
specifications. In PDPTA, pages 279–287. CSREA Press,
1999.

56. M. Leucker and C. Schallhart. A brief account of run-
time verification. Journal of Logic and Algebraic Pro-
gramming, 78(5):293–303, may/june 2008.

57. D. Luckham, editor. The Power of Events: An Introduc-
tion to Complex Event Processing in Distributed Enter-
prise Systems. Addison-Wesley, 2002.

58. P. Meredith, D. Jin, D. Griffith, F. Chen, and G. Roşu.
An overview of the MOP runtime verification frame-
work. Software Tools for Technology Transfer (STTT),
14(3):249–289, 2012.

59. M. Perlin. Topologically traversing the Rete network.
Applied Artificial Intelligence, 4(3):155–177, 1990.

60. A. Pnueli. The temporal logic of programs. In 18th An-
nual Symposium on Foundations of Computer Science,
pages 46–57. IEEE Computer Society, 1977.

61. V. Stolz. Temporal assertions with parameterized propo-
sitions. In Proc. of the 7th Int. Workshop on Runtime
Verification (RV’07), volume 4839 of LNCS, pages 176–
187, Vancouver, Canada, 2007. Springer.

62. V. Stolz and E. Bodden. Temporal assertions using As-
pectJ. In Proc. of the 5th Int. Workshop on Runtime
Verification (RV’05), volume 144(4) of ENTCS, pages
109–124. Elsevier, 2006.

63. V. Stolz and F. Huch. Runtime verification of concurrent
Haskell programs. In Proc. of the 4th Int. Workshop on
Runtime Verification (RV’04), volume 113 of ENTCS,
pages 201–216. Elsevier, 2005.

