
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Verification & Validation Meets Planning & Scheduling

Saddek Bensalem1, Klaus Havelund2?, Andrea Orlandini3??

1 Verimag Laboratory, Grenoble, France
2 Jet Propulsion Laboratory, California Inst. of Technology, USA
3 ISTC-CNR, National Research Council, Italy

Received: date / Revised version: date

Abstract. A Planning and Scheduling (P&S) system
takes as input a domain model and a goal, and produces
a plan of actions to be executed, which will achieve the
goal. A P&S system typically also offers plan execution
and monitoring engines. Due to the non-deterministic
nature of planning problems, it is a challenge to con-
struct correct and reliable P&S systems, including for
example declarative domain models. Verification and Val-
idation (V&V) techniques have been applied to address
these issues. Furthermore, V&V systems have been ap-
plied to actually perform planning, and conversely, P&S
systems have been applied to perform V&V of more
traditional software. This article overviews some of the
literature on the fruitful interaction between V&V and
P&S.

1 Introduction

This article introduces a special volume of the Interna-
tional Journal on Software Tools for Technology Trans-
fer, containing extended versions of selected papers pre-
sented at the 3rd ICAPS workshop on Verification &
Validation (V&V) of Planning & Scheduling (P&S) Sys-
tems, abbreviated VVPS, held in Freiburg, Germany,
2011. The article provides an overview of literature on
V&V of P&S systems, and more broadly on the inter-
section of V&V and P&S.

P&S systems are finding increased application in
mission-critical systems that operate under high levels

? The work by this author was carried out at Jet Propulsion Lab-
oratory, California Institute of Technology, under a contract with
the National Aeronautics and Space Administration. The work was
furthermore partially funded by NSF Grant CCF-0926190.
?? The work by this author was partially funded by the Italian
Research Ministry (MIUR) within the ”Factory of the Future”
Flagship Project Framework (GECKO project).

of unpredictability. Given a description of a desired goal,
and a model of possible actions and their causal/temporal
constraints, the planning problem consists of finding a
plan, which is a sequence of actions, the execution of
which is calculated to lead to the goal state under “nor-
mal” circumstances. Such technology can be used to gen-
erate plans to control a plant (for example a spacecraft,
or a rover), driven by goals often issued by humans. Such
technology is occasionally referred to as model-based au-
tonomy.

One of the first applied approaches to model-based
autonomy in a real-world context was the Deep-Space
1 (DS-1) experiment (1998-2001) by the NASA agency
[48]. DS-1 was equipped with a “Remote Agent” (RA)
software module capable of model-based goal-driven plan-
ning and scheduling, plan execution, monitoring and di-
agnosis, and recovery. The model-based diagnosis sys-
tem of the RA was the Livingstone model [88]. This
diagnosis system performed estimation of the mode of
the spacecraft by updating a diagnosis model, taking
into account the commands issued, and the observations
perceived from the spacecraft. The RA monitoring and
diagnosis system was an interesting and effective form
of V&V technology, running in parallel with the exe-
cuting system, and was in itself a contribution to the
V&V research field.

However, broader scoped tools and methodologies
for V&V [72] of P&S systems have until recently re-
ceived relatively little attention, although this is chang-
ing, as documented in this article. In this regard, it is
worth reminding that verification is the act of deter-
mining whether an artifact is correct with respect to
a formalized specification, and validation is the act of
determining whether an artifact is correct with respect
to informal intentions. Another popular definition is,
that verification is concerned with ensuring, that you
are building the thing right, whereas validation is con-
cerned with ensuring, that you are building the right



2 Bensalem, Havelund, Orlandini: Verification & Validation Meets Planning & Scheduling

domain	
  model	
  

planner	
   plan	
  

execu/on	
  trace	
  monitor	
  

exec	
  

plant 

problem	
  model	
  

Fig. 1. Generic planning architecture

thing. The literature surveyed in this article does not in
all cases conform with these definitions, and we there-
fore do not always conform neither, in order to be faith-
ful to the formulations chosen by the various authors.
In truth, the majority of the papers surveyed are con-
cerned with verification rather than validation. See [80]
for a description of the knowledge-acquisition process for
models and heuristics of a complex autonomous system
based on P&S, and [61] for a review of V&V problems
and methods suitable for AI-based systems.

P&S systems have unique architectural features, that
give rise to new V&V challenges. A planning system typ-
ically consists of a planner, see Figure 1, that is largely
stable across applications. A planner takes as input a
declaratively-specified domain model, stable for a partic-
ular application, and a problem model defining a given
initial state and a goal to be achieved, varying within
an application. From these two inputs, the planner pro-
duces, usually taking advantage of heuristic search, a
plan of actions achieving the goal. The plan is subse-
quently executed by an exec, which controls a plant via
actuators. The execution in turn produces an execution
trace of actions executed, which are fed to a monitor,
which also reads the status of the controlled plant via
sensors. Based on these observations, the monitor deter-
mines whether the execution is well-behaved, and as a
result provides input to generate new goals (updating
the problem model) for the next planning step.

Experience has shown that most errors are in do-
main models, which can be inconsistent, incomplete, or
inaccurate models of the target domains. There are cur-
rently few tools to support the model construction pro-
cess itself, and even fewer that can be used to verify
and validate the models once they are constructed [85,
76]. Another challenge to V&V of P&S systems is to
demonstrate that specific heuristic strategies have reli-
able and predictable behaviors.

A field closely related to planning is program syn-
thesis. We shall only briefly mention this area of re-
search, without going into details. A thorough survey of
the topic can be found in [16]. The general aim of pro-

gram synthesis is to derive low-level programs from high-
level logical declarative specifications. Planning likewise
is concerned with deriving “programs” (referred to as
plans) from declarative models, namely the domain mod-
els. Two kinds of synthesis are mentioned in [16]: (i) syn-
thesis of controllers for reactive systems as well as syn-
thesis of hardware circuits, and (ii) synthesis of data-
oriented functional and imperative programs. The for-
mer category is of specific relevance to planning. A pop-
ular approach here is to synthesize finite state programs
(automata) from Linear Temporal Logic (LTL) [70] spec-
ifications. Examples include [71,54,69]. Such programs
are typically non-terminating, i.e., programs that accept
an infinite stream of requests. In contrast, plans typically
do not contain loops.

Previous work has been dedicated to the study of
semantics/constraint-based work flow synthesis [36]. The
basis here is SLTL (Semantic Linear Time Logic), which
is interpreted over regular languages (finite words) rather
than omega languages (infinite words). Other work in-
cludes [84], which presents synthesis technology to auto-
matically compose tool chains in a goal-oriented fashion,
and [83] which uses this approach to automatically gen-
erate benchmark programs with known temporal prop-
erties. The reader may find further references in [16].

The work on NASA’s Remote Agent led to the cre-
ation of the VVPS workshop series in 20051 aiming at
establishing a long-term forum focusing on the interac-
tion between V&V and P&S. The original goal of the
VVPS workshop series was to identify innovative V&V
tools and methodologies, that can be applied to ensure
the correctness and reliability of P&S systems. How-
ever, the workshop series has also attracted papers with
slightly different bends, such as using verification sys-
tems, for example model checkers, as planners (planning
as model checking). Of course, whether a model checker
is used to verify a domain model by exploring its state
space, or is used as the planner, is only a subtle dif-
ference, using similar ideas but with different objectives
(verification versus planning). Finally, work has emerged
that goes in the complete opposite direction, namely fo-
cusing on the use of P&S systems to solve V&V prob-
lems for traditional software systems.

The three pieces of work selected and included in this
volume of the International Journal on Software Tools
for Technology Transfer, are briefly described in the fol-
lowing.

Article [42] “A loop acceleration technique to speed up
verification of automatically-generated plans”, by Gold-
man, Pelican and Musliner, presents the integration of
an optimization technique (called loop acceleration) in
the CIRCA planning system, to address the state space

1 In 2004 Remote Agent P&S scientist Kanna Rajan suggested
to V&V scientist Klaus Havelund (both at NASA Ames Research
Center at the time) to organize a workshop on the topic: “V&V of
P&S systems”. The series was started in 2005 [2] and continued
in 2009 [3] and 2011 [4].



Bensalem, Havelund, Orlandini: Verification & Validation Meets Planning & Scheduling 3

explosion issue while performing runtime verification of
reactive plans. In particular, such problem is encoun-
tered while checking CIRCA controllers, that execute
quick reactions to meet environmental threats, while si-
multaneously monitoring long-duration processes. The
paper describes the technique and its implementation,
showing that it radically speeds up the verification pro-
cess.

Article [26] “Authorized workflow schemas : Deciding
realizability through LTL(F) model checking”, by Cramp-
ton, Huth, and Kuo, proposes the use of model check-
ing of an NP-complete fragment of propositional linear
temporal logic (LTL) as an alternative solution to the
workflow satisfiability problem, i.e., the problem of de-
termining whether there exists a workflow plan that real-
izes workflow specifications. A suitable LTL encoding is
reported aiming at modeling business processes as work-
flows and, thus, showing the verification method effec-
tiveness while checking authorization plans against busi-
ness rules, legal requirements and authorization policies.

Article [75] “Generating effective tests for concur-
rent programs via AI automated planning techniques”,
by Razavi, Farzan, and McIlraith, presents a general ap-
proach to concurrent program testing, that is based on
AI automated planning techniques. A framework is pro-
posed for finding concurrent program runs that violate a
collection of specifications. The problem of finding fail-
ing runs is characterized as a sequential planning prob-
lem, with the temporally extended goal of achieving a
particular violating pattern.

The remaining part of this introductory article pro-
vides a brief survey of other articles published broadly
within the intersection of V&V and P&S.

The paper is structured as follows. Section 2 surveys
literature on V&V of P&S systems (the originally in-
tended theme of the workshop series). Specifically (See
Figure 1) V&V of domain models in Section 2.1, plans
in Section 2.2, plan executions in Section 2.3, planners in
Section 2.4, execution engines in Section 2.5, and mon-
itors in Section 2.6. Section 3 surveys literature on the
use of V&V technology for performing planning and
scheduling. This includes planning as model checking in
Section 3.1, and logic-based approaches to planning in
Section 3.2. In the other direction, Section 4 surveys lit-
erature on the use of P&S technology for verification of
tradition software systems. Finally Section 5 concludes
the paper.

2 V&V of P&S Systems

V&V can as already mentioned be applied to differ-
ent artifacts of a P&S system, specifically the domain
model, plans, plan executions, the planner, the exec, and
the monitor. The following sub-sections cover selected
V&V literature in these respective areas.

Most of the approaches mentioned solve specific prob-
lems. In [17], however, is described a more comprehensive
approach to on-board autonomy, relying on model-based
reasoning. This approach offers a uniform formal frame-
work, including model validation, plan generation, plan
validation, plan execution and monitoring, as well as
fault detection identification and recovery. The approach
is based on a symbolic representation of the system to
control, and uses model checking techniques (specifically
the NuSMV model checker) to validate the symbolic rep-
resentation of the system, in essence following a planning
as model checking approach (see later Sec. 3.1). Repre-
senting a formal model in terms of a Kripke structure al-
lows to validate the model to guarantee, that it captures
the behaviors of the system. Plans contain assumptions
that can be checked during execution. The work in [17]
is similar in spirit to the Remote Agent experiment, but
differs by using the same formal model in all phases.

2.1 V&V of Domain Models

In P&S systems, the domain model plays a crucial role.
A domain model formalizes what actions are possible,
and their constraints (such as for example orderings: ac-
tion A must always precede action B). A domain model
in part reflects the complex environment in which the
plant is operating. The correctness of a domain model
has a direct impact on plan correctness (e.g., safety, live-
ness) and performance. Due to modeling errors, a plan
model can, however, be inconsistent, incomplete, or sim-
ply inaccurate. Domain model languages are typically
declarative, such as for example PDDL [60], and mod-
els are usually small compared to industrial sized soft-
ware programs. In spite of these characteristics, it is the
declarative nature of domain models, that makes it a
challenge to explore all possible planning scenarios up
front. For these reasons, V&V of domain models is a
critical task, that has been considered by several au-
thors, and which perhaps is the biggest V&V challenge
to the P&S community.

Domain model verification aims at showing that (i)
plans can, or cannot, be generated for various goals, and
(ii) that generated plans satisfy given properties. This
can be done using formal methods, e.g., model check-
ing, or just using more traditional testing. Testing can
only show the presence of errors (i.e., if no error is found
there is no guarantee that none exists), whereas model
checking in theory also can demonstrate the absence of
errors (i.e., if no error is found we are guaranteed that
none exists). Not surprisingly, model checking is compu-
tationally much more expensive than just testing, since
the former will look at all reachable states of the domain
model. Because the number of such states in general is
exponential in the domain size (state explosion), only
moderate size domains can typically be handled using
model checking techniques for exhaustive verification.
Note, that the problem is different when using model



4 Bensalem, Havelund, Orlandini: Verification & Validation Meets Planning & Scheduling

checkers for planning (planning as model checking), since
the goal there is to find a single plan (error trace), rather
than to perform an exhaustive search. In a testing-based
approach to domain model verification, a large number
of plans are generated and then checked to verify that
each of them satisfies the given properties. Testing-based
domain verification rests on plan verification, which will
be discussed in Section 2.2.

In [56] is discussed in general terms the problem of
verifying and validating domain models. The paper iden-
tifies some examples of domain modeling errors and dis-
cusses how common they are, noting that domain mod-
els usually are much smaller than traditional software.
One technique suggested is to cast a domain model into
different representations, each focusing on different as-
pects of the model. This process enhances inspection by
requiring the reader to go through a process of mental
evaluation. The paper also discusses how plan validation
is a process to indirectly validate domain models, com-
paring plan validation with unit testing.

2.1.1 V&V of Domain Models using Model Checking

In a model checking approach, a domain model is for-
mulated as a model in the modeling language of a model
checker. The model checker can then be used as a plan-
ner by formulating the planning problem as a temporal
logic satisfaction problem, where the goal is transformed
into a temporal logic formula representing the negation
of the goal: that it cannot be reached from the initial
state. The model checker will then, if the goal is reach-
able, produce an error trace leading to the goal state.
The error trace represents the plan. Stated in a slightly
more formal manner, although still in generic terms, a
planning problem:

Π = 〈D,P (i, g)〉

consists of a domain modelD and a problem model P (i, g),
stating a particular initial situation i and a goal g. Solv-
ing the planning problem consists of applying the plan-
ner to the problem to obtain a plan:

plan := planner(Π)

The planning problem can alternatively be reformulated
as a model checking problem as follows. Let ΠMC be the
corresponding model represented in the model checker’s
input language. Using LTL (Linear Temporal Logic) [70]
for writing properties, and assuming for simplicity that
the goal g can be carried across unmodified, the planning
problem can be formulated as the following satisfaction
problem:

ΠMC |= ¬ � g

This represents the assertion, to be proved by the model
checker, that there is no execution trace in ΠMC from

the initial state, for which it holds that eventually (�)
the goal state g is reached. If, however, there is a such,
the model checker will produce an error trace, leading
from the initial state to the goal state, effectively a plan.

Furthermore, checking that a temporal property Φ
is true on all plans generated from Π to reach a goal
g, would correspond to formulating the following model
checking problem, which states that if a trace eventually
reaches the goal g then that trace also satisfies Φ:

ΠMC |= ((�g)⇒ Φ)

The use of model checking for V&V of domain models
was pioneered in [68], using three model checkers (Spin,
SMV, Murphi). This work studied expressiveness, as well
as efficiency and scalability of verification of safety and
liveness properties of simple planning domains for the
HSTS planner [63]. Also the work described in [81,43]
explores the use of model checking with Spin to guar-
antee that all plans enabled by a domain model meet
certain desired properties. Real-time temporal proper-
ties and temporally flexible plans are not addressed in
either of these works.

Formal methods applied to timeline-based temporal
planning are considered within the ANML framework,
a timeline-based domain modeling language proposed
at NASA Ames Research Center. In [77] the authors
present a translator from ANMLite (a simplified ver-
sion of ANML) to the SAL model checker. Given this
mapping, the authors illustrate preliminary results to
assess the efficiency of model checking in plan synthesis.
The main purpose with this work, however, is to support
NASA Ames in the definition of the ANML language, by
offering a verification technology for analyzing ANML
domain models in an exhaustive manner.

Using a more expressive temporal model to repre-
sent time constraints, the authors of [52,53] propose to
map from interval-based temporal relation models (i.e.,
DDL models for HSTS) to timed automata models (UP-
PAAL). This mapping was in part introduced in order
to understand the relationship between timed automata
and P&S technology, and in part to explore the ap-
plication of V&V techniques in timeline-based tempo-
ral planning. Analogously, [86] presents a mapping from
contingent temporal constraint networks to Timed Game
Automata (TGA).

2.1.2 V&V of Domain Models using Testing

In [74] is presented a methodology and tool (PDVer)
for testing PDDL domain models, based on generating
tests from LTL formulas. More specifically, from an LTL
formula is generated a set of test cases, each consisting
of a PDDL goal; and the planner itself is then used to
“run the test”: generate a plan or fail. LTL coverage
criteria drive the test case generation. The work is based
on the basic observation, that the alternative approach
of translation a domain model into the language of a



Bensalem, Havelund, Orlandini: Verification & Validation Meets Planning & Scheduling 5

model checker, and then apply model checking to explore
the domain model, is not practical due to the size of
the state space; and the fact that the PDDL model of
the system could include features (such as durations and
costs) that are hard to encode in the input language of
a model checker.

In [39] is described an approach to regression testing
of a plan models using a planner and a temporal prop-
erty synthesizer. The scenario is one where a plan model
is constantly modified, and after each modification one
needs to ensure that it satisfies certain properties from
a planning perspective. For a given goal (test input) the
planner generates a plan, while emitting planning oper-
ations on a log. From the same input is also generated a
temporal property that this planner log must satisfy. The
satisfaction reflects the fact that the plan model itself is
correct wrt. certain criteria. By checking logs against
temporal properties, higher flexibility is achieved than
if comparing logs from different regression runs against
each other.

2.2 V&V of Plans

Plan verification consists of checking, that a generated
plan satisfies certain properties. A typical approach is
to generate a limited number of sample plans, which
are then checked by automated test oracles. For exam-
ple, this method was employed in the testing of the Re-
mote Agent [79,78], where a few hundreds of plans were
generated to validate the domain model. The effort in
this case, however, was still long and expensive, since,
although the automated test oracles pointed out viola-
tions, humans still had to investigate the error reports
manually to identify the actual causes of the violations.
This and similar efforts have indeed motivated further
research on automatic tools for plan verification. Note
that plan verification can be also used for automated
testing of the planner as well, by showing that the plan-
ner’s output is correct with respect to given properties.
Checking plans is considerably easier than showing cor-
rectness of the planner itself.

Verification of temporal plans expressed in PDDL
with durative actions is enabled by the VAL plan ver-
ification tool [46], that has been used during interna-
tional planning competitions since 2002. However, flex-
ible temporal plans, complex temporal constraints, and
other temporal features are still to be addressed [35].

The MURPHY system [40] is proposed to analyze
a plan to identify ways that uncontrolled (disturbance)
actions could cause the plan to fail in execution, and
produce counterexample traces that would show how
failures could occur. MURPHY translates a plan into a
counter planning problem, combining a representation of
the initial plan with the definition of a set of uncontrolled
actions. These uncontrolled actions may be the actions of
other agents in the environment, either friendly, indiffer-
ent or hostile, or they may be events that simply occur.

The result of this translation is a disjunctive planning
problem, which is further processed in order to play into
the strengths of existing classical planners. Using this
formulation, a classical planner can find counter exam-
ples that illustrate ways a plan may go awry.

More recently, work has been performed on verifying
flexible timeline-based plans, by translating them into
timed game automata, which are then analyzed using
model checking techniques, specifically UPPAAL-TIGA
[12]. In this regard, a suitable TGA formalism has been
proposed to verify flexible plans [21,22].

In [82] is described an approach for finding condi-
tional plans with loops and branches for planning in
situations with uncertainty in state properties as well
as in object quantities. A state abstraction technique
from static analysis of programs is used to build such
plans incrementally, using generalizations of input exam-
ple plans generated by classical planners. Pre-conditions
of the resulting plans with loops are computed. Although
this work focuses on generating conditional and looping
plans, by determining the plan pre-conditions, the work
effectively addresses verification of plans with program-
like structure, including branches and loops.

A problem related to plan verification is the problem
of determining the distance between plans generated by
a planner using different planning strategies, for exam-
ple in a dynamic environment where a plan has to be
adapted and replaced with an alternative plan achiev-
ing the same goals. The work in [67] defines a notion of
plan proximity, that is more precise than a previously
suggested notion of plan stability. Plan proximity con-
siders actions missing from the reference plan, extra ac-
tions added in the new plan, sequential ordering of the
plans, and the expected outcome states of these plans.
Robust plan validation during execution is considered
in [34], where hybrid timed automata are deployed to
handle plan validation with temporal uncertainty. The
paper proposes a probing strategy, where plans around
a selected original plan are generated, forming a tube
around the original plan, to exercise robustness in the
face of uncertainties concerning the timing of selected
actions. The width of the tube is a parameter, which can
be adjusted to present a degree of robustness testing.

In [11] is described an approach, applied in a NASA
mission, to verification of command sequences against
a set of flight rules, before the sequences are sent to a
satellite. A command sequence is usually created manu-
ally on ground by scientists and engineers, but has the
same characteristics as a plan: it is a sequence of actions
(commands) to be executed on board the satellite. The
flight rules are properties that command sequences must
satisfy, and are in this approach formulated as monitors
in the TraceContract tool, an API in the Scala program-
ming language. The API offers classes and methods for
writing linear temporal logic properties as well as data
parameterized state machines. TraceContract was orig-
inally designed for analyzing program execution traces,



6 Bensalem, Havelund, Orlandini: Verification & Validation Meets Planning & Scheduling

where an execution trace is a sequence of events that
occur during execution of a program/system. However,
from the tool’s perspective, a command sequence is just
a sequence of events (commands).

NASA operates manned spacecraft according to rig-
orously defined procedures. Procedures can be viewed as
plans for crew and flight controllers. Procedure V&V
is currently mostly done through human reviews. The
paper [19] describes an approach to verification of pro-
cedures for human space flight (the Space Shuttle and
ISS) based on model checking, specifically with the JPF
(Java PathFinder) Java model checker. Procedures for-
mulated in PRL (Procedure Representation Language)
are translated into finite state machines (in Java), which,
when coupled with a finite state machine representing
the controlled system, can be verified.

Some procedures can be executed both automati-
cally and manually. In some cases manual procedures
are defined as backup for automated procedures. In [64]
is described an approach to demonstrate that proce-
dures defined in the two different procedure description
languages SCL and PRL are equivalent. This is accom-
plished by translating both procedures to the common
verification language Promela, and using the Spin model
checker to confirm that the procedures behave identically
when given identical inputs. The objective is to provide
assurance for NASA engineers, that if an automatic SCL
program cannot be executed, a backup manual proce-
dure in PRL will be equivalent and safe. The approach
generalizes to comparisons between other procedure rep-
resentation languages.

2.3 V&V of Plan Executions

V&V of plan executions can be categorized into runtime
verification, verifying the executions against properties,
and runtime enforcement, enforcing robust plan execu-
tion.

2.3.1 Verification of Plan Executions

V&V of the planner, the domain model, and even the
generated plans themselves, does not guarantee robust-
ness of actual plan execution. Indeed, a valid plan can be
brittle at execution time due to environment conditions
that cannot be modeled in advance (e.g., disturbances).
As a last line of defense, V&V techniques can be used
for plan execution verification, also referred to as run-
time verification. Several P&S systems include a moni-
tor component, which monitors plan executions, and re-
act accordingly in case expectations are violated. The
Livingstone system [88] is an example of a such, part
of the Remote Agent P&S system, designed to control
the NASA DS-1 spacecraft. Sub-section 2.6 is specifically
devoted to V&V of such monitors.

In [7] is described an approach to automatically test
the NASA K9 execution engine based on checking plan

executions against temporal properties. A test case con-
sists of a plan and an oracle expressed in temporal logic,
that can be used to test, that the execution of the gener-
ated plan conforms with the intended plan semantics. As
a follow-up of the experiment described in [7], the work
of [37] describes a compositional approach to V&V ap-
plied to the K9 Rover executive system, using the same
runtime verification techniques for checking plan execu-
tions, but in a compositional verification context. In [18]
is described a study comparing different techniques to
verify the K9 execution engine. The techniques include
monitoring plan executions against hand-written tempo-
ral properties, reflecting the plan semantics, as well as
execution trace based deadlock and data race analysis.

The K9 rover plan execution scenario is also con-
sidered in [15]. Here, a generated plan for the rover is
transformed into a timed automaton. An observer is syn-
thesized from the timed automaton to check whether the
sequence of observations complies with the specification.

2.3.2 Robust Plan Execution

Robust plan execution in uncertain and dynamic envi-
ronments is a critical issue for plan-based autonomous
systems. Indeed, once a planner has generated a tempo-
ral plan, it is up to the exec to decide, at run-time, how
and when to execute each planned activity, preserving
both plan consistency and controllability. Such a capa-
bility is even more crucial when the generated plan is
temporally flexible and partially specified. Such a plan
captures an envelope of potential behaviors, to be instan-
tiated during the execution, taking into account tem-
poral/causal constraints and controllable/uncontrollable
activities and events. In this regard, several authors (e.g.,
[62]) proposed a dynamically controllable execution ap-
proach where a flexible temporal plan is then used by an
exec system that schedules activities on-line while guar-
anteeing constraint satisfaction. Then, given a plan, a
plan controller can be defined as a scheduling function
that provides suitable timings for plan actions execution.
And, an exec system can be endowed with a plan con-
troller to guide plan executions. In this regard, several
research initiatives integrate P&S and V&V techniques
aiming to enforce robust execution and monitoring.

The work in [66] presents a method to synthesize
robust plan controllers for timeline-based flexible plans,
solving a TGA model checking problem. In this work,
flexible temporal plan evolutions are modeled as TGA
automata and, a winning strategy generated after the
UPPAAL-TIGA verification process is used to generate
a flexible plan controller, that achieves planning goals
maintaining dynamic controllability during the overall
plan execution.

In [35] is described the VAL framework, coupled with
a plan-execution architecture, which has been applied to
on-board plan verification and repair. This can be con-
sidered as an element in robust plan execution. The ob-



Bensalem, Havelund, Orlandini: Verification & Validation Meets Planning & Scheduling 7

servation made by the authors is, that while on-board
planning technology has an important role to play, state
of the art technology does not make it practical for sys-
tems with limited resources (the success in the Remote
Agent experiment notwithstanding). Their goal has been
to provide an on-board “planning assistant”, performing
adjustment and repair of plans on-board, when circum-
stances make it impossible to execute the plans as they
were constructed on the ground by humans.

The CIRCA planning system [41] is an architecture
for intelligent real-time control. It includes a real-time
subsystem used to execute reactive control plans that
are guaranteed to meet the domain’s real-time deadlines,
keeping the system safe. In this regard, CIRCA automat-
ically creates reactive plans and uses formal verification
techniques to prove that those plans will preserve sys-
tem safety. In particular, the CIRCA’s Controller Syn-
thesis Module (CSM) uses timed automata to gener-
ate reactive plans as time discrete controllers, and uses
a model-checking based plan verifier to check reactive
plans against safety requirements.

2.4 V&V of Planners

V&V of a planner consists of ensuring that the planner
itself works correctly. This task corresponds to the more
traditional V&V task of ensuring, that a large piece of
complex software works correctly. As discussed above,
formal methods have mostly been applied to V&V of
domain models, plans, and plan executions, since those
artifacts appear somewhat more manageable than the
planner software (and any of the other involved software
systems, such as exec and monitor). Traditional testing
is therefore still the most commonly applied V&V ap-
proach in practice to ensure correctness of planners. For
example, the verification of the P&S system for the Re-
mote Agent [65,79,48] is based on test cases to check for
convergence and plan correctness. More specifically, the
P&S system is verified by generating hundreds of plans
for a variety of initial states and goals, and by verifying
that the generated plans meet a validated set of plan
correctness requirements. Plan verification can be done
by using an automated plan-checker.

A similar approach has been followed at JPL for vali-
dating the EO-1 science agent [23]. A key issue in empir-
ical testing is achieving adequate coverage with a man-
ageable number of tests. Test selection should be guided
by a coverage metric. However classical approaches used
for testing traditional software systems are not suitable
for planning systems because of the complex search en-
gines and rich input/output space. Within the IDEA
framework of the Remote Agent [48], model checking
techniques are used to explore the space of input scenar-
ios in order to generate tests for the planner [73].

In [47] is described a project to automate the schedul-
ing process for NASAs Deep Space Network (DSN). The

paper lays out an approach to verification and valida-
tion of the scheduling engine component of this sys-
tem. The scheduling engine is responsible for interpret-
ing users requests for communications and other services
from the DSN, then generating and checking schedules
that achieve those requests. The verification process de-
scribed involves several elements, including regression
testing, performance testing, script-based test case gen-
eration, as well as a test GUI allowing to easily experi-
ment with the system and generate tests. Users are given
access to the GUI, and are therefore part of the process
of defining test cases. Various static and dynamic pro-
gram analysis tools are used.

In [33] it is noted that it is easier to check that a plan
is correct with respect to a model, than it is to produce a
proof that the planner itself is correct. They load a plan
resulting from execution of the planner into a database,
and then check the database against constraints gener-
ated from the model.

2.5 V&V of Plan Execution Engines (Exec)

V&V of a plan execution engine (exec) consists of en-
suring, that plan execution works correctly for any input
plan. As is the case for V&V of the planner, this task
corresponds to the more traditional V&V task of ensur-
ing, that a piece of software works correctly. Also for the
exec, traditional testing is the most commonly applied
V&V approach in practice.

The work [18,7,37] already mentioned in Section 2.3.1
on verification of plan executions, is relevant for plan ex-
ecution engine verification as well, for obvious reasons.
In [18] is described a study comparing different tech-
niques to verify the K9 plan execution engine, consist-
ing of 35,000 lines of C++ code, for which a downscaled
6000 line Java version was used for part of the exper-
iment. The techniques include monitoring plan execu-
tions against hand-written temporal properties, reflect-
ing the plan semantics, deadlock and data race analysis,
model checking, static analysis, and traditional testing.

In [7] is described an approach to automatically test
the K9 execution engine, based on checking plan execu-
tions against temporal properties (using a different tem-
poral logic than the one used in [18]). The test framework
uses model checking and symbolic execution to automat-
ically generate test cases, which are then applied. A test
case consists of a plan and an oracle, expressed in tem-
poral logic, that can be used to test that the execution
of the generated plan conforms with the intended plan
semantics. The plan language allows for branching based
on conditions that need to be checked, and also for flex-
ibility with respect to the starting time and ending time
of an action.

As a follow-up on the K9 experiments described above,
the work of [37] describes a compositional approach to
V&V applied to the K9 rover plan execution engine, by
deploying formal methods throughout the overall design



8 Bensalem, Havelund, Orlandini: Verification & Validation Meets Planning & Scheduling

and development lifecycle. The approach uses the same
temporal logic monitoring framework as used in [7].

Another example of checking execution traces against
specifications is the work described in [10]. The approach
here is to verify the operation of a spacecraft software
controller (NASA’s Mars Curiosity Rover [1]) by analyz-
ing logs generated by the running software against tem-
poral properties. The rover receives command sequences
from ground, similar to plans, to be executed over a lim-
ited time period.

In [45,57] is described an application of model check-
ing to verify the correctness of the plan execution en-
gine for NASA’s DS-1 spacecraft. An abstraction of the
exec (programmed in LISP) was modeled in the Promela
modeling language of the Spin model checker. In [44] is
described a followup analysis (using the Java PathFinder
Java model checker, based on Spin) of the same code af-
ter one of the errors, identified in [45] as a data race,
actually occurred in flight causing a deadlock.

In [8] is described a dynamic data race detection anal-
ysis algorithm (analysis is performed during execution
of an instrumented program) detecting inconsistencies
in the way groups of variables are protected by locks in
a concurrent program. Such data races involving several
variables are referred to as high-level data races. Lack
of such consistency may reflect coding errors. The high-
level data race problem was inspired by the actual data
race in the DS-1 spacecraft, also identified in [45] be-
fore flight using model checking, which caused the before
mentioned deadlock in space, as documented in [44] after
flight, also using model checking. The dynamic analysis
approach is a scalable alternative to model checking for
detecting this kind of error.

2.6 V&V of Plan Execution Monitors

A monitor analyzes the execution of a plan, and initi-
ates recovery actions in case the expected behavior is
violated. As such, a monitor is itself part of the V&V
solution. However, even the monitor can be incorrectly
programmed. V&V of a monitoring system consists of
verifying and validating, that the monitor makes the
right judgments about the correctness of the current ex-
ecution, and in case of execution errors, that the right
reactions are triggered.

There is not a large amount of work on V&V of
P&S monitoring systems. At the best of our knowl-
edge, the only relevant work is related to the Livingstone
PathFinder (LPF) [55], a system for testing Livingstone
models. Livingstone is the model-based monitoring and
diagnosis system for the Remote Agent. LPF consists
of a test driver, that generates a sequence consisting of
either commands or injected faults, a simulator of the
modeled device, and the Livingstone engine. The sys-
tem checks whether the diagnosis system can detect the
faults injected into the input stream.

3 V&V Systems used for P&S

In the approaches mentioned so far, various methods,
including formal methods, have been used to analyze
planning artifacts. A slightly different bend is the use
of formal methods to actually perform planning. Such
approaches reflect the observation, that both kinds of
techniques (V&V and P&S) are based on search, which
has created an interesting cross fertilization between for-
mal methods and artificial intelligence. Note, that just
the fact that a formal methods based tool is used for
planning, does not necessarily mean that the generated
plans are correct by construction. A model checker can
contain errors, just as can a planner. However, some ver-
ification tools, such as some theorem provers, are based
on a very small kernel, which can be estimated to be
correct with a very high probability.

3.1 Planning as Model Checking

The “planning as model checking” approach [24,25,38]
considers the planning problem as a model checking prob-
lem, using a model checker to perform planning. This
approach is based on the representation of a domain
model as a finite state automaton, effectively a model
in the modeling language of the model checker. Plan-
ning is done by verifying whether temporal formulas are
true or not wrt. the model, along the lines illustrated
in Section 2.1.1. In the above mentioned work, symbolic
representation and exploration techniques based on sym-
bolic model checking, using Binary Decision Diagrams
(BDDs), allow for efficient planning in non-deterministic
domains. In [17] is described the later result of a com-
prehensive approach to on-board autonomy relying on
using the NuSMV model checker to perform planning,
using a symbolic representation of the system to con-
trol. Representing a formal model in terms of a Kripke
structure allows to validate the model to guarantee, that
it captures the behaviors of the system.

An interesting application of real-time model check-
ing [13] has been dedicated to extend and retarget the
timed automata technology towards optimal planning
and scheduling. Two interesting applications have been
studied, demonstrating the use of UPPAAL-CORA for
the generation of optimal plans and schedules. In [14],
task graph scheduling problems are modeled as networks
of priced timed automata (PTA), and then solved by
means of a branch-and-bound algorithm for solving cost-
optimal reachability problems. In [27], planning prob-
lems are defined by means of a variant of PDDL 2.1,
i.e., considering duration-dependent and continuous ef-
fects. Planning problems are then translated into linearly
priced automata, and UPPAAL-CORA is exploited to
generate cost-optimal traces which represent valid plans.

In [5], the authors investigate and compare constraint
based temporal planning techniques and timed game



Bensalem, Havelund, Orlandini: Verification & Validation Meets Planning & Scheduling 9

automata methods for representing and solving realis-
tic temporal planning problems. In this direction, they
propose a mapping from IxTeT planning problems to
UPPAAL-TIGA game-reachability problems and present
a comparison of the two planning approaches.

3.2 Logic-based Approaches to Planning

Traditionally, planning has been formalized as deduc-
tion: plans are generated by constructive proofs of so-
called plan specification formulae, stating that there ex-
ists a plan leading from the initial state to a state satis-
fying the goal. The best-known logical formalization of
planning in the deductive view is the Situation Calculus
[59]. Such seminal work has influenced many works. Re-
lated to the VVPS workshop series, in [28] is described
an approach, which tackles the planning problem as a
theorem proving task. The paper describes a formal-
ization of the planning problem in the Isabelle/HOL
theorem proving system of Intuitionistic Linear Logic
(ILL), specifying the initial state and possible actions.
The theorem proving task is then to show that some
goal resources can be realized from the given resources,
using actions as basic inference steps. Furthermore, such
a proof can be mapped mechanically into a typed func-
tional programming language, yielding an executable plan.
The plans so found are provably correct, by construction
(assuming the correctness of the theorem prover).

Dually to the planning as derivability approach, the
planning as satisfiability paradigm was introduced by
[51], and carried on in [49,50]. According to this paradigm,
a planning problem is encoded by a logical theory, mod-
eling the rules governing the world evolution, in such a
way that any model of the theory corresponds to a valid
plan. Based on the above cited works is the planner SAT-
PLAN. In SATPLAN, the target logic of the encoding is
classical propositional logic. The work presented in [58,
20] conforms to the planning as satisfiability paradigm
but, differently from [51], the logic used to encode plan-
ning problems is propositional LTL. The choice of LTL
is mainly motivated by the fact that it allows a sim-
ple and natural representation of a world that changes
over time. Moreover, domain dependent knowledge can
be expressed in LTL, as well as domain restrictions and
intermediate tasks.

It is also worth to underscore that, as a side effect, the
use of logic-based approaches enables the exploitation of
well known formal method tools/techniques to perform
V&V of planning systems following such approaches.

4 P&S Systems used for V&V

Search heuristics, inspired by those used in planning,
have been studied for verification systems, for example
as described in [87]. However, one can go even further,

and apply planning technology directly as a verification
technology for ensuring correctness of traditional soft-
ware systems. For example, the effectiveness of trans-
lating model checking inputs into PDDL has been de-
scribed in several papers, including from communication
protocol specification languages, [29], Petri nets [30], µ-
calculus formulae [9], and graph transition systems [31].

In [6] the main idea is to formulate the system model
to be analyzed, as well as the property it has to satisfy,
as a planning problem. To illustrate the approach, mod-
els in NuSMV and Promela (Spin’s modeling language)
are translated to planning domain models and goals in
PDDL. Experimental results comparing the planning ap-
proach to NuSMV and Spin show that planners can pro-
vide significant time improvements when checking safety
and liveness properties that are violated, compared to
state-of-the-art model checkers, especially on large tasks.
Results are less convincing in the case where proper-
ties are not violated, and the whole state space therefore
must be explored. In other words, for error detection (in
contrast to proof of correctness) the approach appears
promising.

The work presented in [32] relies on the translation of
concurrent C/C++ programs into PDDL domain mod-
els. The system then runs a heuristic-search based plan-
ner on such a generated PDDL model to generate a plan,
read: error trace, for locating programming bugs. This
counter-example error trace is then used to provide an
interactive debugging aid.

5 Conclusion

This paper introduces extended versions of papers se-
lected from the 3rd workshop on Verification and Vali-
dation of Planning and Scheduling Systems, The paper
continues with an overview of work done in the inter-
section of V&V and P&S. This includes work on V&V
of P&S systems for ensuring the correctness of the lat-
ter; work on using V&V systems to perform P&S, and
finally the use of P&S systems to perform V&V of tradi-
tional software systems. The overview is not exhaustive
by any means.

The original focus of the VVPS workshop series was
the study of V&V techniques to ensure the correctness
of P&S systems. The model-based nature of P&S sys-
tems should in principle make it easier to apply V&V
techniques. However, as it turns out, P&S systems present
features that make them hard to verify and validate, such
as the non-deterministic nature of the domain models
and planner heuristics. Thus, powerful tools/methods,
such as model checkers originating from the formal meth-
ods/software engineering community, have been studied
for this purpose.

However, it is clear that the other interactions be-
tween V&V and P&S as mentioned above are interest-
ing, including topics such as planning as model checking



10 Bensalem, Havelund, Orlandini: Verification & Validation Meets Planning & Scheduling

and model checking as planning. The common thread in
these techniques are specification languages and search-
based analysis techniques. Research in the cross section
between V&V and P&S is important for both fields,
since the impact seems to bi-directional.

An interesting topic for future research is the rela-
tionship between model-based programming and model-
based planning. The former relies on program synthesis
techniques to derive programs from models, or verifi-
cation techniques to prove a program correct wrt. the
model. The latter relies on generating plans (programs)
on the fly from models, incorporating models, programs
and fault protection within one framework. It would be
desirable to formulate a unifying framework encompass-
ing these different views.

References

1. Mars Science Laboratory (MSL) mission website.
http://mars.jpl.nasa.gov/msl.

2. VVPS 2005 workshop website.
http://icaps05.uni-ulm.de/workshops.html.

3. VVPS 2009 workshop website.
http://www-vvps09.imag.fr.

4. VVPS 2011 workshop website.
http://icaps11.icaps-conference.org/workshops/vvps.html.

5. Y. Abdedaim, E. Asarin, M. Gallien, F. Ingrand,
C. Lesire, and M. Sighireanu. Planning robust tempo-
ral plans: A comparison between CBTP and TGA ap-
proaches. In ICAPS’07. Proceedings of the Seventeenth
International Conference on Automated Planning and
Scheduling, pages 2–10, 2007.

6. A. Albarghouthi, J. A. Baier, and S. A. McIlraith. On the
use of planning technology for verification. In VVPS’09.
Proceedings of the ICAPS Workshop on Verification &
Validation of Planning & Scheduling Systems, 2009.

7. C. Artho, H. Barringer, A. Goldberg, K. Havelund,
S. Khurshid, M. Lowry, C. Pasareanu, G. Rosu, K. Sen,
W. Visser, and R. Washington. Combining test-case gen-
eration and runtime verification. Theoretical Computer
Science, 336(2–3):209–234, May 2005.

8. C. Artho, K. Havelund, and A. Biere. High-level data
races. Software Testing, Verification and Reliability,
13(4), 2004.

9. M. Bakera, S. Edelkamp, P. Kissmann, and C. D. Renner.
Solving µ-calculus parity games by symbolic planning. In
D. Peled and M. Wooldridge, editors, MoChArt, volume
5348 of Lecture Notes in Computer Science, pages 15–33.
Springer, 2008.

10. H. Barringer, A. Groce, K. Havelund, and M. Smith. For-
mal analysis of log files. Journal of Aerospace Computing,
Information, and Communication, 7(11):365–390, 2010.

11. H. Barringer, K. Havelund, E. Kurklu, and R. Morris.
Checking flight rules with TraceContract: Application of
a Scala DSL for trace analysis. In Scala Days 2011, Stan-
ford University, California, 2011.

12. G. Behrmann, A. Cougnard, A. David, E. Fleury,
K. Larsen, and D. Lime. UPPAAL-TIGA: Time for play-
ing games! In Proc. of 19th International Conference on

Computer Aided Verification (CAV’07), number 4590 in
LNCS, pages 121–125. Springer, 2007.

13. G. Behrmann, A. Fehnker, T. Hune, K. Larsen, P. Pet-
tersson, and J. Romijn. Efficient guiding towards cost-
optimality in UPPAAL. Springer, 2001.

14. G. Behrmann, K. G. Larsen, and J. I. Rasmussen.
Optimal scheduling using priced timed automata. In
VVPS’05. Proceedings of the ICAPS Workshop on
Verification & Validation of Model-Based Planning &
Scheduling Systems, 2005.

15. S. Bensalem, M. Bozga, M. Krichen, and S. Tripakis.
Testing conformance of real-time applications: Case of
planetary rover controller. In VVPS’05. Proceedings of
the ICAPS Workshop on Verification & Validation of
Model-Based Planning & Scheduling Systems, pages 23–
32, 2005.

16. R. Bodik and B. Jobstmann. Algorithmic program syn-
thesis: Introduction. International Journal on Software
Tools for Technology Transfer, STTT, 15(5-6):397–411,
October 2013.

17. M. Bozzano, A. Cimatti, M. Roveri, and A. Tchaltsev.
A comprehensive approach to on-board autonomy veri-
fication and validation. In VVPS’09. Proceedings of the
ICAPS Workshop on Verification & Validation of Plan-
ning & Scheduling Systems, 2009.

18. G. Brat, D. Drusinsky, D. Giannakopoulou, A. Goldberg,
K. Havelund, M. Lowry, C. Pasareanu, W. Visser, and
R. Washington. Experimental evaluation of verification
and validation tools on Martian rover software. Formal
Methods in System Design, 25(2), 2004.

19. G. Brat, D. Gannakopoulou, M. Izygon, E. Alex,
L. Wang, J. Frank, and A. Molin. Model-based ver-
ification and validation for procedure authoring. In
VVPS’09. Proceedings of the ICAPS Workshop on Veri-
fication & Validation of Planning & Scheduling Systems,
2009.

20. S. Cerrito and M. C. Mayer. Using linear temporal logic
to model and solve planning problems. In Artificial Intel-
ligence: Methodology, Systems, and Applications, pages
141–152. Springer, 1998.

21. A. Cesta, A. Finzi, S. Fratini, A. Orlandini, and
E. Tronci. Verifying flexible timeline-based plans. In
VVPS’09. Proceedings of the ICAPS Workshop on Veri-
fication & Validation of Planning & Scheduling Systems,
2009.

22. A. Cesta, A. Finzi, S. Fratini, A. Orlandini, and
E. Tronci. Flexible plan verification: Feasibility results.
Fundamenta Informaticae, 107:111–137, 2011.

23. B. Cichy, S. Chien, S. Schaffer, D. Tran, G. Rabideau,
and R. Sherwood. Validating the autonomous EO-1
science agent. In VVPS’05. Proceedings of the ICAPS
Workshop on Verification & Validation of Model-Based
Planning & Scheduling Systems, pages 75–85, 2005.

24. A. Cimatti, F. Giunchiglia, E. Giunchiglia, and
P. Traverso. Planning via model checking: A decision
procedure for AR. In S. Steel and R. Alami, editors,
ECP, volume 1348 of Lecture Notes in Computer Sci-
ence, pages 130–142. Springer, 1997.

25. A. Cimatti, M. Roveri, and P. Traverso. Strong plan-
ning in non-deterministic domains via model checking.
In R. G. Simmons, M. M. Veloso, and S. F. Smith, edi-
tors, AIPS, pages 36–43. AAAI, 1998.



Bensalem, Havelund, Orlandini: Verification & Validation Meets Planning & Scheduling 11

26. J. Crampton, M. Huth, and J. H.-P. Kuo. Autho-
rized workflow schemas : Deciding realizability through
LTL(F) model checking. International Journal on Soft-
ware Tools for Technology Transfer, STTT, in this issue,
2014.

27. H. Dierks. Finding optimal plans for domains with re-
stricted continuous effects with UPPAAL-CORA. In
VVPS’05. Proceedings of the ICAPS Workshop on
Verification & Validation of Model-Based Planning &
Scheduling Systems, 2005.

28. L. Dixon, A. Smaill, and A. Bundy. Verified planning
by deductive synthesis in intuitionistic linear logic. In
VVPS’09. Proceedings of the ICAPS Workshop on Veri-
fication & Validation of Planning & Scheduling Systems,
2009.

29. S. Edelkamp. Promela planning. In T. Ball and S. K.
Rajamani, editors, SPIN, volume 2648 of Lecture Notes
in Computer Science, pages 197–212. Springer, 2003.

30. S. Edelkamp and S. Jabbar. Action planning for directed
model checking of Petri nets. Electr. Notes Theor. Com-
put. Sci., 149(2):3–18, 2006.

31. S. Edelkamp, S. Jabbar, and A. Lluch-Lafuente. Cost-
algebraic heuristic search. In M. M. Veloso and S. Kamb-
hampati, editors, AAAI, pages 1362–1367. AAAI Press
/ The MIT Press, 2005.

32. S. Edelkamp, M. Kellershoff, and D. Sulewski. Pro-
gram model checking via action planning. In R. van der
Meyden and J.-G. Smaus, editors, MoChArt, volume
6572 of Lecture Notes in Computer Science, pages 32–
51. Springer, 2010.

33. M. Feather and B. Smith. Automatic generation of test
oracles - from pilot studies to application. Automated
Software Engineering, 8(1):31–61, 2001.

34. M. Fox, R. Howey, and D. Long. Exploration of the ro-
bustness of plans. In VVPS’05. Proceedings of the ICAPS
Workshop on Verification & Validation of Model-Based
Planning & Scheduling Systems, pages 67–74, 2005.

35. M. Fox, D. Long, L. Baldwin, G. Wilson, M. Woods,
D. Jameux, and R. Aylett. On-board timeline validation
and repair: A feasibility study. In IWPSS’06. Proceedings
of 5th International Workshop on Planning and Schedul-
ing for Space, 2006.

36. B. Freitag, T. Margaria, and B. Steffen. A pragmatic
approach to software synthesis. In J. M. Wing and
R. L. Wexelblat, editors, Workshop on Interface Defi-
nition Languages, Portland, Oregon, USA, pages 46–58.
ACM Press, 1994.

37. D. Giannakopoulou, C. S. Pasareanu, M. Lowry, and
R. Washington. Lifecycle verification of the NASA
Ames K9 rover executive. In VVPS’05. Proceedings of
the ICAPS Workshop on Verification & Validation of
Model-Based Planning & Scheduling Systems, pages 75–
85, 2005.

38. F. Giunchiglia and P. Traverso. Planning as model check-
ing. In S. Biundo and M. Fox, editors, ECP, volume
1809 of Lecture Notes in Computer Science, pages 1–20.
Springer, 1999.

39. A. Goldberg, K. Havelund, and C. McGann. Runtime
verification for autonomous spacecraft software. In Pro-
ceedings of IEEE Aerospace Conference. IEEE Computer
Society, 2005.

40. R. P. Goldman, U. Kuter, and A. Schneider. Using clas-
sical planners for plan verification and counterexample

generation. In Proceedings of AAAI Workshop on Prob-
lem Solving Using Classical Planning, 2012.

41. R. P. Goldman, D. J. Musliner, , and M. J. Pelican.
Exploiting implicit representations in timed automaton
verification for controller synthesis. In HSCC’02. Pro-
ceedings of the Fifth Int. Workshop on Hybrid Systems:
Computation and Control, 2002.

42. R. P. Goldman, M. J. Pelican, and D. J. Musliner. A
loop acceleration technique to speed up verification of
automatically-generated plans. International Journal on
Software Tools for Technology Transfer, STTT, in this
issue, 2014.

43. K. Havelund, A. Groce, G. Holzmann, R. Joshi, and
M. Smith. Automated testing of planning models.
In Proceedings of the Fifth International Workshop on
Model Checking and Artificial Intelligence, pages 90–105,
2008.

44. K. Havelund, M. Lowry, S. Park, C. Pecheur, J. Penix,
W. Visser, and J. L. White. Formal analysis of the Re-
mote Agent - before and after flight. In The Fifth NASA
Langley Formal Methods Workshop, Virginia., 2001.

45. K. Havelund, M. Lowry, and J. Penix. Formal analysis of
a spacecraft controller using SPIN. IEEE Transactions
on Software Engineering, 27(8):749–765, 2001. An earlier
version occurred in the Proc. 4th SPIN workshop, 1998.

46. R. Howey and D. Long. VAL’s progress: The auto-
matic validation tool for PDDL2.1 used in the inter-
national planning competition. In Proceedings of the
ICAPS Workshop on The Competition: Impact, Orga-
nization, Evaluation, Benchmarks, pages 28–37, Trento,
Italy, June 2003.

47. M. D. Johnston and D. Tran. Verification and valida-
tion of a deep space network scheduling application. In
VVPS’09. Proceedings of the ICAPS Workshop on Veri-
fication & Validation of Planning & Scheduling Systems,
2009.

48. A. Jonsson, P. Morris, N. Muscettola, K. Rajan, and
B. Smith. Planning in interplanetary space: Theory and
practice. In AIPS’00. Proceedings of the Fifth Int. Conf.
on Artificial Intelligence Planning and Scheduling, pages
177–186, 2000.

49. H. Kautz and B. Selman. BLACKBOX: A new approach
to the application of theorem proving to problem solv-
ing. In AIPS’98 Workshop on Planning as Combinatorial
Search, pages 58–60, 1998.

50. H. Kautz and B. Selman. Unifying sat-based and graph-
based planning. In Proc. of the International Joint Con-
ference on Artificial Intelligence. (IJCAI-99), volume 99,
pages 318–325, 1999.

51. H. A. Kautz, B. Selman, et al. Planning as satisfiability.
In Proc. of the International European Conference on
Artificial Intelligence. (ECAI-92), volume 92, pages 359–
363, 1992.

52. L. Khatib, N. Muscettola, and K. Havelund. Verification
of plan models using UPPAAL. In First International
Workshop on Formal Approaches to Agent-Based Sys-
tems, NASA’s Goddard Space center, Maryland, volume
1871 of Lecture Notes in Artificial Intelligence. Springer,
2000.

53. L. Khatib, N. Muscettola, and K. Havelund. Mapping
temporal planning constraints into timed automata. In
TIME’01. The Eigth Int. Symposium on Temporal Rep-
resentation and Reasoning, pages 21–27, 2001.



12 Bensalem, Havelund, Orlandini: Verification & Validation Meets Planning & Scheduling

54. O. Kupferman and M. Y. Vardi. Safraless decision proce-
dures. In 46th Annual IEEE Symposium on Foundations
of Computer Science (FOCS’05), Pittsburgh, PA, pages
531–542, October 2005.

55. T. Lindsey and C. Pecheur. Simulation-based verification
of autonomous controllers with Livingstone PathFinder.
In Proceedings of the 10th International Conference on
Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’04), Barcelona, Spain, volume 2988
of Lecture Notes in Computer Science, 2004.

56. D. Long, M. Fox, and R. Howey. Planning domains and
plans: validation, verification and analysis. In VVPS’09.
Proceedings of the ICAPS Workshop on Verification &
Validation of Planning & Scheduling Systems, 2009.

57. M. R. Lowry, K. Havelund, and J. Penix. Verification and
validation of AI systems that control deep-space space-
craft. In Foundations of Intelligent Systems, 10th Inter-
national Symposium, ISMIS’97, Charlotte, North Car-
olina, USA, October 15-18, 1997, Proceedings, volume
1325 of Lecture Notes in Computer Science, pages 35–
47. Springer, 1997.

58. M. C. Mayer, C. Limongelli, A. Orlandini, and V. Pog-
gioni. Linear temporal logic as an executable semantics
for planning languages. Journal of Logic, Language and
Information, 16(1):63–89, 2007.

59. J. McCarthy and P. Hayes. Some philosophical problems
from the standpoint of artificial intelligence. Stanford
University, 1968.

60. D. McDermott, M. Ghallab, A. Howe, C. Knoblock,
A. Ram, M. Veloso, D. Weld, and D. Wilkins. PDDL
- the Planning Domain Definition Language. Technical
Report CVC TR98003/DCS TR1165, New Haven, CT:
Yale Center for Computational Vision and Control, 1998.

61. T. Menzies and C. Pecheur. Verification and validation
and artificial intelligence. Advances in Computers, 65:5–
45, 2005.

62. P. H. Morris and N. Muscettola. Temporal Dynamic
Controllability Revisited. In Proc. of the 20th National
Conference on Artificial Intelligence (AAAI-05), 2005.

63. N. Muscettola. HSTS: Integrating planning and schedul-
ing. In Zweben, M. and Fox, M.S., editor, Intelligent
Scheduling. Morgan Kauffmann, 1994.

64. D. J. Musliner, M. J. S. Pelican, and P. J. Schlette. Ver-
ifying equivalence of procedures in different languages:
preliminary results. In VVPS’09. Proceedings of the
ICAPS Workshop on Verification & Validation of Plan-
ning & Scheduling Systems, 2009.

65. P. P. Nayak, D. E. Bernard, G. Dorais, E. B. Gamble,
B. Kanefsky, J. Kurien, W. Millar, N. Muscettola, K. Ra-
jan, N. Rouquette, B. D. Smith, and W. Taylor. Validat-
ing the DS1 Remote Agent experiment. In iSAIRAS’99.
Proceeedings Fifth Int. Symposium on Artificial Intelli-
gence, Robotics and Automation in Space, 1999.

66. A. Orlandini, A. Finzi, A. Cesta, and S. Fratini. TGA-
based controllers for flexible plan execution. In KI 2011:
Advances in Artificial Intelligence, 34th Annual German
Conference on AI., volume 7006 of Lecture Notes in
Computer Science, pages 233–245. Springer, 2011.

67. P. Patron and A. Birch. Plan proximity: an enhanced
metric for plan stability. In VVPS’09. Proceedings of the
ICAPS Workshop on Verification & Validation of Plan-
ning & Scheduling Systems, 2009.

68. J. Penix, C. Pecheur, and K. Havelund. Using model
checking to validate AI planner domain models. In Pro-
ceedings of the 23rd Annual Software Engineering Work-
shop, 1998.

69. N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of re-
active(1) designs. In 7th International Conference on
Verification, Model Checking and Abstract Interpretation
(VMCAI’06), volume 3855 of Lecture Notes in Computer
Science, pages 364–380. Springer, 2006.

70. A. Pnueli. The temporal logic of programs. In 18th An-
nual Symposium on Foundations of Computer Science,
pages 46–57. IEEE Computer Society, 1977.

71. A. Pnueli and R. Rosner. On the synthesis of a reactive
module. In Symposium on Principles of Programming
Languages (POPL’89), pages 179–190, 1989.

72. A. Preece. Evaluating verification and validation meth-
ods in knowledge engineering. In R. Roy, editor, Micro-
Level Knowledge Management, pages 123–145. Morgan-
Kaufman, 2001.

73. M. D. R-Moreno, G. Brat, N. Muscettola, and D. Rijs-
man. Validation of a multi-agent architecture for plan-
ning and execution. In DX’07. Proceedings of 18th In-
ternational Workshop on Principles of Diagnosis, 2007.

74. F. Raimondi, C. Pecheur, and G. Brat. PDVer, a tool to
verify PDDL planning domains. In VVPS’09. Proceed-
ings of the ICAPS Workshop on Verification & Valida-
tion of Planning & Scheduling Systems, 2009.

75. N. Razavi, A. Farzan, and S. A. McIlraith. Generating
effective tests for concurrent programs via AI automated
planning techniques. International Journal on Software
Tools for Technology Transfer, STTT, in this issue, 2014.

76. M. Shah, L. Chrpa, F. Jimoh, D. Kitchin, T. McCluskey,
S. Parkinson, and M. Vallati. Knowledge engineering
tools in planning: State-of-the-art and future challenges.
In Proc. of the ICAPS Workshop on Knowledge Engi-
neering for Planning and Scheduling (KEPS 2013), 2013.

77. R. I. Siminiceanu, R. W. Butler, and C. A. Munoz. Ex-
perimental evaluation of a planning language suitable for
formal verification. In Proceedings of the Fifth Interna-
tional Workshop on Model Checking and Artificial Intel-
ligence, pages 18–34, 2008.

78. B. Smith, M. Feather, and N. Muscettola. Challenges
and methods in testing the Remote Agent planner. In
AIPS’00. Proceedings of the Fifth Int. Conf. on Artifi-
cial Intelligence Planning and Scheduling, pages 254–263,
2000.

79. B. Smith, W. Millar, J. Dunphy, Y.-W. Tung, P. Nayak,
E. Gamble, and M. Clark. Validation and verification of
the Remote Agent for spacecraft autonomy. In Proceed-
ings of IEEE Aerospace Conference, 1999.

80. B. Smith, K. Rajan, and N. Muscettola. Knowledge
acquisition for the onboard planner of an autonomous
spacecraft. In EKAW’97. 10th European Workshop on
Knowledge Acquisition, Modeling and Management, vol-
ume 1319 of Lecture Notes in Computer Science, pages
253–268, 1997.

81. M. H. Smith, G. J. Holzmann, G. C. Cucullu, and B. D.
Smith. Model checking autonomous planners: Even the
best laid plans must be verified. In Proceedings of IEEE
Aerospace Conference, pages 1 – 11. IEEE Computer So-
ciety, 2005.

82. S. Srivastava, N. Immerman, and S. Zilberstein. Find-
ing plans with branches, loops and preconditions. In



Bensalem, Havelund, Orlandini: Verification & Validation Meets Planning & Scheduling 13

VVPS’09. Proceedings of the ICAPS Workshop on Veri-
fication & Validation of Planning & Scheduling Systems,
2009.

83. B. Steffen, M. Isberner, S. Naujokat, T. Margaria, and
M. Geske. Property-driven benchmark generation. In
E. Bartocci and C. Ramakrishnan, editors, Model Check-
ing Software, volume 7976 of Lecture Notes in Com-
puter Science, pages 341–357. Springer Berlin Heidel-
berg, 2013.

84. B. Steffen, T. Margaria, and V. Braun. The electronic
tool integration platform: concepts and design. Interna-
tional Journal on Software Tools for Technology Trans-
fer, STTT, 1(1-2):9–30, 1997.

85. T. Vaquero, J. Silva, and J. Beck. A brief review of
tools and methods for knowledge engineering for plan-
ning & scheduling. In Proc. of the ICAPS Workshop
on Knowledge Engineering for Planning and Scheduling
(KEPS 2011), 2011.

86. T. Vidal. A unified dynamic approach for dealing
with temporal uncertainty and conditional planning. In
AIPS’00. Proceedings of the Fifth Int. Conf. on Artificial
Intelligence Planning and Scheduling, 2000.

87. M. Wehrle and M. Helmert. The causal graph revisited
for directed model checking. In J. Palsberg and Z. Su,
editors, SAS, volume 5673 of Lecture Notes in Computer
Science, pages 86–101. Springer, 2009.

88. B. C. Williams and P. P. Nayak. A model-based approach
to reactive self-configuring systems. AAAI/IAAI, 2:971–
978, 1996.


