
Data Automata in Scala

Klaus Havelund
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, USA

Klaus.Havelund@jpl.nasa.gov

Abstract—The field of runtime verification has during the
last decade seen a multitude of systems for monitoring event
sequences (traces) emitted by a running system. The objective
is to ensure correctness of a system by checking its execution
traces against formal specifications representing requirements.
A special challenge is data parameterized events, where mon-
itors have to keep track of the combination of control states
as well as data constraints, relating events and the data they
carry across time points. This poses a challenge wrt. efficiency
of monitors, as well as expressiveness of logics. Data automata
is a form of automata where states are parameterized with
data, supporting monitoring of data parameterized events. We
describe the full details of a very simple API in the Scala
programming language, an internal DSL (Domain-Specific
Language), implementing data automata. The small implemen-
tation suggests a design pattern. Data automata allow transition
conditions to refer to other states than the source state, and
allow target states of transitions to be inlined, offering a
temporal logic flavored notation. An embedding of a logic in a
high-level language like Scala in addition allows monitors to be
programmed using all of Scala’s language constructs, offering
the full flexibility of a programming language. The framework
is demonstrated on an XML processing scenario previously
addressed in related work.

Keywords-runtime verification; monitor; parameterized state
machines; internal DSL; Scala; XML;

I. INTRODUCTION

The purpose of formal methods is to assist in the design
and development of correct systems, be they software,
hardware, or cyber physical systems. Usually a formal
method supports analysis of all execution paths of the
system, with resulting scalability issues as a consequence.
Runtime verification (RV), also referred to as monitoring,
however, is focused on just verifying single executions of
the system, typically against some formalized specification.
Monitoring can occur online as the systems executes, or
offline by analysis of generated log files. It is desirable if
an RV specification logic is expressive and the associated
monitors are efficient. RV systems are typically complex,
with logics of limited expressiveness. Logics are usually
variations of state machines, regular expressions, temporal
logics, grammars, or rule-based systems. The ideal logic
must enable quantification over data in data-parameterized
events, must enable past time logic as well as future time
logic, and must enable data aggregation and processing (for

example counting).
In this paper we illustrate an automaton concept referred

to as data automata, also referred to as DAUT, for mon-
itoring data-parameterized events. It is implemented as a
shallow internal DSL (Domain-Specific Language) in the
SCALA programming language, meaning that DSL con-
structs are composed purely of host language constructs,
using the interpreter of the host language. This is in contrast
to a deep internal DSL, where the program exists as data
(AST), and where an interpreter is implemented in the host
language. In our case, the DSL is essentially an API in
SCALA, but SCALA supports the definition of APIs that look
and feel like DSLs. The interesting aspect of this solution
is its small implementation, which can be characterized as
suggesting a design pattern for writing monitors / data-
parameterized state machines in SCALA. Since it is an
extension of SCALA, all of SCALA’s programming features
can be used for monitoring, which in practice turns out to be
useful for even moderately complex monitoring situations,
including analysis of log files.

Our data automata are illustrated by examples inspired by
the Amazon E-Commerce Service (ECS), which has been
discussed and specified in [1] using the domain-specific
temporal logic LTL-FO+. Here messages between clients
and a server are XML messages, and LTL-FO+ supports
formulas over such. We shall illustrate how SCALA’s support
for XML can be used for obtaining equivalent specifications
in DAUT.

The paper is organized as follows. Section II outlines
related work. Section III presents the internal DSL through
a collection of example properties. Section IV describes the
implementation of the DSL. Section V concludes the paper.

II. RELATED WORK

Data automata were first introduced in [2], where an
internal DSL was presented briefly and listed in full in
an appendix. The DSL presented in this paper is slightly
different, as motivated by the Amazon web-service case
study. DAUT is conceptually closely related to the external
DSL LOGSCOPE [3], and specifically to the internal SCALA
DSL TRACECONTRACT [4]. It is a simplification of TRACE-
CONTRACT by focusing purely on automata (TRACECON-
TRACT also supports LTL), but goes beyond by adding the

possibility of expressing past time properties in a more
uniform manner. Our earlier work includes the rule-based
systems LOGFIRE [5], also an internal SCALA DSL, and
its predecessor RULER [6]. Rule-based systems appear to
be ideal wrt. expressive power (short of a programming
language), and are attractive for that reason, but they are
also more complex to implement.

Early monitoring systems handling data-parameterized
events include [7]–[10]. Of these, MOP [10] is the most
efficient, based on parametric trace slicing: a trace of data
carrying events is sliced to a set of propositional traces. This
approach results in an impressive performance, however,
at the price of some lack of expressiveness, as pointed
out in [11]. MOPBOX [12] is a modular JAVA library
for monitoring, implementing MOP’s algorithms. ORCHIDS
[13], is a comprehensive state machine based monitoring
framework created for intrusion detection. Several systems
have appeared that monitor first order extensions of proposi-
tional linear temporal logic (LTL). These extensions include
[14], an embedding of LTL in HASKELL; as well as [1],
[15]–[18],

III. INTRODUCTION TO DATA AUTOMATA

The scenario we shall adopt for illustrating data automata
is the Amazon E-Commerce Service, which is described
and formalized for runtime verification in [1] using the
logic LTL-FO+, an extension of LTL providing first-order
quantification over the data inside a trace of XML messages.
We have chosen this scenario in order to illustrate the
use of SCALA’s XML processing capabilities for writing
monitors over XML message streams. This is, however,
only a secondary point of the presentation. The system in
[1] is implemented as a JAVA applet, named BEEPBEEP.
BEEPBEEP is demonstrated on the client side, by analyzing
messages sent to and received from the server, and by
possibly blocking messages or calling user defined functions
if violations are found. However, a monitor can be placed on
the server side. It is also possible to simply analyze produced
logs offline.

The Amazon service makes Amazon.com’s inventory
available through a web service interface. In addition to sim-
ple search and browsing functionalities, ECS also provides
shopping cart manipulation operations that allow a client
to create a shopping cart, and to add and delete items to
and from it. Assume that a cart is identified by a cart Id
‘c’, that ‘its’ is a list of shopping items, and that ‘txt’ is a
string. The operations supported by the service include the
following (for our example), where arrows indicate direction
of messages (→ from client to Amazon server, and ← from
server to client):

ItemSearch(txt) → search items on site
CartCreate(its) → create cart with items
CartCreateResponse(c) ← get cart id back
CartGetResponse(c, its) ← result of get query
CartAdd(c, its) → add items
CartRemove(c, its) → remove items
CartClear(c) → clear cart
CartDelete(c) → delete cart

Such messages appear as XML messages in Amazon’s
web-service. For example, a CartAdd(1, 〈 10, 20 〉) message
may have the following format1:

<CartAdd>
<CartId>1</CartId>
<Items>
<Item>
<ASIN>10</ASIN>

</Item>
<Item>
<ASIN>20</ASIN>

</Item>
</Items>

</CartAdd>

We shall in the following illustrate two approaches to
monitor such XML messages. In the first approach, we
design case classes (a special form of classes in SCALA)
representing these events together with a parsing function,
which creates objects of these classes from strings containing
the XML messages. In the second approach we will write
properties directly over the XML messages. Although the
latter solution is interesting due to SCALA’s support for XML
as a data type, the former solution appears preferable, as
shall be discussed.

A. Events as Case Classes

The event kinds introduced above can be represented in
SCALA as case classes, as illustrated in Figure 1. Objects
of a case class can be created without the use of the new
keyword, and more importantly: can be used in pattern
matching, which turns out to be essential for the elegance
of our DSL. Objects of these classes can be generated from
strings submitted between server and clients containing XML
messages. Figure 2 presents a function xmlStringToObject,
which transforms a string containing an XML message to
an object of one of the classes in Figure 1. The function
refers to two auxiliary functions getId and getItems, which
extract respectively the cart id and the shopping items from
an XML message using SCALA’s implementation of XPATH
expressions [19]. The term x \ ”str” extracts from the first
inner layer of the XML node x the sequence of nodes of the
form <str> . . . </str>. Furthermore, x.text for a given

1Amazon’s Standard Identification Numbers (ASIN) are here for simpli-
fication just small integers.

atomic XML node x (having no further nesting) returns the
text it contains.

case class Item(asin : String)

trait Event
case class ItemSearch(text : String) extends Event
case class CartCreate (items : List [Item]) extends Event
case class CartCreateResponse(id : Int) extends Event
case class CartGetResponse(id: Int , items : List [Item])

extends Event
case class CartAdd(id: Int , items : List [Item])

extends Event
case class CartRemove(id:Int , items : List [Item])

extends Event
case class CartClear (id : Int) extends Event
case class CartDelete (id : Int) extends Event

Figure 1. Case classes representing types of events

def xmlToObject(xml:scala .xml.Node):Event =
xml match {

...
case x @ <CartAdd>{ ∗ }</CartAdd> ⇒

CartAdd(getId(x), getItems (x))
...

}

def xmlStringToObject(msg:String): Event = {
val xml = scala .xml.XML.loadString(msg)
xmlToObject(xml)
}

def getId (xml:scala .xml.Node):Int =
(xml \ "CartId").text.toInt

def getItems (xml:scala .xml.Node):List [Item] =
(xml \ "Items" \ "Item" \ "ASIN").

toList .map(i ⇒ Item(i . text))

Figure 2. Transforming XML to objects

We now proceed to formalize the following five proper-
ties, the first four of which were also formalized in [1] using
LTL-FO+. Property 5 is introduced to illustrate the need for
past time logic, which LTL-FO+ does not support.

• Property 1 - Until a cart is created, the only operation
allowed is ItemSearch.

• Property 2 - A client cannot remove something from a
cart that has just been emptied.

• Property 3 - A client cannot add the same item twice
to the shopping cart.

• Property 4 - A shopping cart created with an item
should contain that item until it is deleted.

• Property 5 - A client cannot add items to a non-existing
cart.

A DAUT monitor defines a set of data parameterized
states, and identifies which of these are initial. A state is
in part characterized by a transition function representing
the transitions leading out of the state. There are various
forms of states that can be defined, corresponding to the
classical temporal operators known from linear temporal
logic [20]. Assume transition functions ts, ts1, and ts2, and
assume for a given transition function ts that dtse is the
corresponding LTL formula (this is not a formal argument,
but serves illustration only). Then DAUT offers the following
states (with the corresponding LTL formulas in parenthesis):
always{ts} (� dtse), hot{ts} (♦ dtse, usually referred to
as eventually), next{ts} (X dtse), wnext{ts} (weak version
of X), until{ts1}{ts2} (dts1e U dts2e), unless{ts1}{ts2}
(dts1e W dts2e), and finally a state watch{ts} that just waits
for one of the transitions in ts to fire, upon which the state
is left. Versions of these functions with capital initial letters,
for example Always, define such states as initial states of a
monitor.

Various shorthands allow such monitors to have the flavor
of temporal logic specifications, which we shall illustrate
first. Properties 1-4 are formalized in Figure 3. Each property
is defined as a class, which extends the class Monitor, which
itself is parameterized with the event type, and which offers
a collection of methods for defining properties.

Property 1 is defined as containing one single state, a
so-called unless state, which is defined by two sets of
transitions. The first set of transitions are applied to each
incoming event (if they are defined for that event), unless the
second set of transitions are able to fire. In this case: unless
a cart is created, only ItemSearch events are permitted.
Transitions are modeled using SCALA’s partial functions,
which are defined in between curly brackets using pattern
matching case statements. Unless is a weak until, where the
second set of transitions do not have to eventually fire.

Property 2 contains one so-called always state, which
is always active, and which contains one transition which
fires upon observation of a CartClear event, binding the
parameter to the variable c. Upon firing this transition an
unless state is entered, which is active until a CartAdd event
occurs with the same cart id c (the fact that it must be the
same is indicated with quotes around the variable). Any
CartRemove event with the same cart id triggers an error
until then.

Property 3 expresses that upon a CartCreate(items) event,
then in the next state, if a CartCreateResponse(c) event is
received, providing the identification of the cart created, then
from then on any items added with a CartAdd(‘c‘, items)

must be disjoint from the originally added items. This
is how the property is defined in [1]. The property is,
however, conservatively formulated since it does not take
into consideration the removal of items.

Property 4 expresses that when items are added to a
cart, then for every item i added (using SCALA’s for-yield
construct) a monitor unless state is created, which checks
that any response to a get-query asking for the contents of
the cart returns a set of items that contains i, unless i is
removed.

Property 5 is a property that requires reference to the
past in a manner not supported by LTL-FO+. Note that
in the presence of data parameterized events, representing
past time logic in terms of future time logic is not possible
(a conjecture), as it is in the propositional case. Figure
4 shows how this property can be formalized in DAUT
using an explicit state to record whether a cart with a
certain cart identifier has been created or not. In the initial
state, upon a CartCreateResponse(c) event, a CartCreated(c)
state is created. CartCreated states are objects of a case
class defined in the monitor, which is parameterized with
the cart id. This state itself is defined as a watch state,
which goes away on a CartDelete event for that cart id.
In the initial state, if a CartAdd(c,) is observed, and
there is no CartCreated(c) state active, it is an error. This
demonstrates how parameterized states can be referred to in
transition conditions, making it possible to express past time
properties.

This approach generally allows for definition of data
parameterized state machines, including state parameters
which are updated as a result of events. For example we
could reformulate property 3 to take removal of items into
account, thereby allowing items to be re-added to a cart if
they have been previously removed. This is shown in Figure
5. Note how SCALA’s val (constant definition) and if-else
constructs are used, illustrating how programming and logic
can be mixed. The ‘+−’ operator has been user-defined to
only add elements from the right-hand side argument that
do not already occur in the left-hand side argument. Note
also how target states of a transition can be composed with
‘&’, forming a set of states.

B. Events as XML nodes

The properties 1-4 were in [1] formalized directly over
XML messages. SCALA supports XML as a data type with
values having the format of XML trees, allowing pattern
matching and path expressions (as in XPATH) over such.
Figure 6 shows how property 4 can be formalized in
DAUT using pattern matching and path expressions over
XML terms. The other properties have similar but simpler
formulations. The type of XML nodes, scala.xml.Elem,
is imported, and renamed to Xml. As can be seen, the
formalization is not as succinct as the one using case classes
shown in Figure 3. In general, we believe that it is a

class Property1 extends Monitor[Event] {
Unless {

case ItemSearch() ⇒ ok
case ⇒ error
} {

case CartCreate () ⇒ ok
}
}

class Property2 extends Monitor[Event] {
Always {

case CartClear (c) ⇒ unless {
case CartRemove(‘c‘,) ⇒ error
} {

case CartAdd(‘c ‘,) ⇒ ok
}
}
}

class Property3 extends Monitor[Event] {
Always {

case CartCreate (items) ⇒ next {
case CartCreateResponse(c) ⇒ always {

case CartAdd(‘c ‘, items) ⇒
items disjointWith items

}
}
}
}

class Property4 extends Monitor[Event] {
Always {

case CartAdd(c, items) ⇒
for (i ∈ items) yield unless {

case CartGetResponse(‘c ‘, items) ⇒
items contains i

} {
case CartRemove(‘c‘, items)

if items contains i ⇒ ok
}

}
}

Figure 3. Properties 1-4 formalized

better approach to transform XML events to objects of case
classes, and write properties over these. This also makes
the properties less dependent on the format of the XML
messages, allowing an XML-to-object transformer, like the
one shown in Figure 2, to handle any changes in formats.
Furthermore, SCALA’s support for pattern matching over

class Property5 extends Monitor[Event] {
Always {

case CartCreateResponse(c) ⇒ CartCreated (c)
case CartAdd(c,) if !CartCreated (c) ⇒ error
}

case class CartCreated(c: Int) extends state {
Watch {

case CartDelete (‘ c ‘) ⇒ ok
}
}
}

Figure 4. Property 5 formalized

class Property3Liberalized extends Monitor[Event] {
Always {

case CartCreate (items) ⇒ next {
case CartCreateResponse(c) ⇒

CartCreated(c , items)
}
}

case class CartCreated(id : Int , items : List [Item])
extends state {

Watch {
case CartAdd(‘id ‘, items) ⇒

val newCart = CartCreated(id , items +− items)
if (items disjointWith items)

newCart
else

error & newCart
case CartRemove(‘id‘, items) ⇒

CartCreated(id , items diff items)
}
}
}

Figure 5. Property 3 liberalized

XML terms is not optimal. For example, the formalization
in Figure 6 uses a combination of pattern matching and path
expressions, which seems sub-optimal.

C. Combining and Applying Monitors

The monitors presented in Sub-section III-A can be com-
bined and applied to analyze a file stored in XML format as
shown in Figure 7.

import scala .xml.{ Elem ⇒Xml }

class Property4XML extends Monitor[Xml] {
Always {

case add @ <CartAdd>{ ∗}</CartAdd> ⇒
val c = getId (add)
val items = getItems (add)
for (i ∈ items) yield unless {

case res @
<CartGetResponse>{ ∗}</CartGetResponse>
if c == getId(res) ⇒

getItems (res) contains i
} {

case rem @
<CartRemove>{ ∗}</CartRemove>
if c == getId(rem) &&

(getItems (rem) contains i) ⇒ ok
}

}
}

Figure 6. Property 4 formalized over XML trees

class Properties extends Monitor[Event] {
monitor(

new Property1 (), new Property2 (), new Property3 (),
new Property4 (), new Property5())

}

object Main {
def main(args : Array[String]) {

val m = new Properties
val file : String = "..."
val xmlEvents = scala .xml.XML.loadFile(file)

for (elem ∈ xmlEvents \ "_") {
m.verify (xmlToObject(elem))
}
m.end()
}
}

Figure 7. Combining and applying monitors

IV. IMPLEMENTATION

This section describes the implementation of the full
DAUT DSL. As demonstrated in Figures 3, 4, and 5, a
user-defined monitor extends the class Monitor, which is
parameterized with the event type. The Monitor class is

shown below, leaving out its main parts, which will be
introduced in the remaining part of this section (all being
inserted at the position of the three dots).

class Monitor[E <: AnyRef] {
val monitorName = this.getClass (). getSimpleName()
var monitors : List [Monitor[E]] = List ()
var states : Set[state] = Set ()

def monitor(monitors :Monitor[E]∗) {
this .monitors ++= monitors

}
...

}

The event type E must be a subtype of type AnyRef, which
is SCALA’s equivalent of JAVA’s type Object2. The variable
monitorName contains the name of the user-defined monitor,
and is useful for printing error messages, identifying the
property in case of violations.

The two main variables of a monitor are: monitors and
states. DAUT supports monitors to contain sub-monitors
(representing a simple conjunction of these), allowing hi-
erarchical grouping. The sub-monitors of a monitor are
stored in the variable monitors, and are added via calls
of the method monitor(monitors:Monitor[E]*), which takes
a variable length number of monitors as arguments. The
variable states contains the active states of the monitor. The
type state of states will be defined subsequently. This set
contains initially the initial state(s) of the monitor. Next
follows a set of auxiliary definitions.

type Transitions = PartialFunction [E, Set[state]]

def noTransitions : Transitions = {
case if false ⇒ null
}

val emptySet : Set[state] = Set ()

The type Transitions represents transitions out of a state.
A value of this type is a partial function, which in SCALA
can be defined by a sequence of case statements enclosed
in curly brackets as we saw in Figures 3, 4, and 5. Such a
partial function is only defined for the cases provided. Given
a partial function t (representing transitions), one can test
whether it is defined for a certain value e (representing an
event) with the Boolean valued expression t.isDefinedAt(e).
We shall need a default value, noTransitions, representing
the transition function that is undefined for all events, the
empty transition. We shall also for efficiency reasons keep

2This restriction forbids for example type Int as event type. The limitation
is for rather non-important technical reasons and could be eliminated.

an empty set, emptySet, around, since we shall need such
frequently during monitoring. Next we define the type of
states.

class state {
var transitions : Transitions = noTransitions
var isFinal : Boolean = true

def apply(event :E):Set[state] =
if (transitions . isDefinedAt (event))

transitions (event) else emptySet

def Watch(ts : Transitions) {
transitions = ts

}

def Always(ts: Transitions) {
transitions = ts andThen (+ this)

}

def Hot(ts : Transitions) {
Watch(ts); isFinal = false
}

def Wnext(ts: Transitions) {
transitions = ts orElse {

case ⇒ ok
}
}

def Next(ts : Transitions) {
Wnext(ts); isFinal = false
}

def Unless(ts1 : Transitions)(ts2 : Transitions) {
transitions = ts2 orElse

(ts1 andThen (+ this))
}

def Until (ts1 : Transitions)(ts2 : Transitions) {
Unless(ts1)(ts2); isFinal = false
}
}

A state contains a transition function transitions, which
initially is empty. A Boolean flag indicates whether a state
is final. As a default, all states are final unless otherwise
specified. The apply method is essential, and takes as argu-
ment an event and returns a set of states, namely the target
states of transitions. This set is empty in case no transitions
fire, and non-empty if any transitions fire.

What follows is a set of definitions of methods, which
define this transition function, depending on what kind of

state it is. The Wait method just stores its argument as the
transition function, corresponding to waiting for one of the
transitions to fire, and then move on. The Always method
modifies the transition function by adding the current state,
represented by this , to the set resulting states, modeling the
fact that we stay in the source state even if a transition fires.
A Hot state is like a Wait state except that it is not final. A
Wnext state (weak next) is defined such that if the argument
transition function is not defined for the incoming event,
a transition is taken anyway, leaving the state. The Next
state is similar, except that it is not final. Finally, the Unless
state takes two transition functions as arguments. For a given
event it applies the second transition function if defined, and
otherwise the first, if defined, with the addition of the source
state to the set of target states, modeling that we stay in this
state unless the second transition function applies. The Until
state is similar, except that it is not final. The predefined
leaf states are ok and error. We define an additional function
allowing user-defined error messages to be displayed in case
of an error.

case object ok extends state
case object error extends state

def error (msg:String): state = {
println ("\n*** " + msg + "\n")
error

}

The monitors in Figures 3, 4, and 5 used a technique
of inlined states, where the target of a transition could be
any of the states we have discussed so far, however, without
naming these states, giving a look and feel of temporal logic.
The functions that make this possible are the following,
which take transition functions as arguments, and return
state objects upon which the corresponding transition update
methods are called.

def watch(ts : Transitions) = new state {Watch(ts)}
def always(ts : Transitions) = new state {Always(ts)}
def hot(ts : Transitions) = new state {Hot(ts)}
def wnext(ts : Transitions) = new state {Wnext(ts)}
def next(ts : Transitions) = new state {Next(ts)}

def unless (ts1 : Transitions)(ts2 : Transitions) =
new state { Unless(ts1)(ts2) }

def until (ts1 : Transitions)(ts2 : Transitions) =
new state { Until (ts1)(ts2) }

The methods that allow us to define states directly at the
top level of a monitor are the following, of which we shall
only show those used in the examples (the remaining ones

follow the exact same pattern).

def initial (s : state) { states += s }

def Always(ts: Transitions) { initial (always(ts)) }

def Unless(ts1 : Transitions)(ts2 : Transitions) {
initial (unless (ts1)(ts2))

}

The method initial takes a state as argument and adds it to
the set of active states. The method Always adds an always
state to the set of active states, and similarly for Unless.

Recall how it is possible to refer to active parameterized
states in conditions. Figure 4 illustrates this, where the ex-
pression CartCreated(c), which is fundamentally a construc-
tor call, creating an object of the case class CartCreated, is
used as a Boolean expression in a condition on a transition.
The following definition makes this possible.

implicit def stateAsBoolean(s : state): Boolean =
states contains s

The function stateAsBoolean is a so-called implicit func-
tion, which is not explicitly applied anywhere, but which is
implicitly applied by the SCALA compiler to any state (in
this case) occurring where a Boolean expression is expected,
lifting it to a Boolean expression. In this case, a state is
lifted to a Boolean predicate returning true iff. the state is
contained in the set of active states. The name of an implicit
function has no importance.

Note, that in order to use a parameterized state as a
predicate in this manner (being true if the state is in the
set of active states), one has to provide all the arguments to
the state. In cases where not all arguments are known, the
function stateExists allows alternatively to search for states
that satisfy a predicate, returning true if any such exists.

def stateExists (p: PartialFunction [state ,Boolean]):
Boolean = {

states exists (p orElse { case ⇒ false })
}

The monitors shown in our examples rely on a collection
of additional implicit functions, shown below. The functions
lift various values to sets of states: the results of transition
right-hand sides, and hence allow us to use various different
forms of right-hand sides.

implicit def ss1(u:Unit): Set[state] = Set(ok)

implicit def ss2(b:Boolean):Set[state] =

Set(if (b) ok else error)

implicit def ss3(s : state): Set[state] = Set(s)

implicit def ss4(ss : List [state]): Set[state] =
ss . toSet

implicit def ss5(s1: state) = new {
def &(s2: state): Set[state] = Set(s1 , s2)
}

implicit def ss6(set :Set[state]) = new {
def &(s: state): Set[state] = set + s
}

The function ss1 lifts the Unit value to a set of states. This
allows us to use a SCALA statement with side effects on
the right-hand side of a transition (not shown in examples).
The function ss2 lifts a Boolean value, used for example in
monitors Property3 and Property4 in Figure 3. The function
ss3 lifts a state, as demonstrated in most of the monitors
shown. The function ss4 lifts a list of states. This is used in
monitor Property4 in Figure 3, where the SCALA construct
‘for (i ∈ items) yield ... ’ returns a list of states (since
items is a list). The functions ss5 and ss6 lift a state,
respectively a set of states, to an object, which defines an ‘&’
method, which as argument takes another state, and forms
a set of states. This is used to form sets of multiple target
states using infix notation, as illustrated in Figure 5.

Finally, the Monitor class provides the methods
verify(event:E) , which verifies an individual event, and
end(), which finishes monitoring, for example, useful when
analyzing a log file and the end of the log has been reached.
The verify method operates on two variables:

var statesToRemove : Set[state] = Set ()
var statesToAdd : Set[state] = Set ()

For each new incoming event these are initialized to the
empty set, and are then updated to hold the states to remove,
respectively add, as a results of matching all the active states
of a monitor against an event, caused by transitions firing in
these states. These variables represent the frontier of states,
which are separate from the current active states, thereby
avoiding non-deterministic evaluation caused by interference
between current and next states. The verify method is defined
as follows.

def verify (event :E) {
for (sourceState ∈ states) {

val targetStates = sourceState (event)
if (! targetStates . isEmpty) {

statesToRemove += sourceState

for (targetState ∈ targetStates) {
targetState match {

case ‘ error ‘ ⇒
println ("\n*** error!\n")

case ‘ok‘ ⇒
case ⇒ statesToAdd += targetState
}
}
}
}
states −−= statesToRemove
states ++= statesToAdd
statesToRemove = emptySet
statesToAdd = emptySet
for (monitor ∈ monitors) {

monitor. verify (event)
}
}

The method takes as argument an event and iterates
through the current active states, and for each applies the
state’s transition function. If the set of target states is non-
empty, the source state is identified to be removed from
the set of current states, and the target states are added,
operating on the frontier. Error states cause an error message,
while ok states cause no action. When all current states
have been processed, the current set of states is updated
with the temporary frontier, and finally the sub-monitors are
evaluated similarly.

The last method is the end method, which issues error
messages for all non-final states in the current set of states.
This method is supposed to be called in situations where
monitoring terminates, for example in offline monitoring of
a log file. For online monitoring it may never be called.

def end() {
val hotStates = states filter (! . isFinal)
if (! hotStates . isEmpty) {

println (s"hot $monitorName states:")
hotStates foreach println

}
for (monitor ∈ monitors) {

monitor.end()
}
}

V. CONCLUSION

We have presented an internal DSL for data automata
in SCALA for monitoring event sequences. A version of
this DSL has been presented previously in [2], including
a more theoretical presentation. However, this paper details
the implementation, which has also been modified compared

to [2]. An earlier definition of such an internal DSL was
TRACECONTRACT [4]. The DSL was first demonstrated by
programming a collection of monitors for processing streams
of XML messages, relating to earlier work on this subject.
The full implementation of the DSL was then presented.
The implementation is remarkably small considering that
experiments carried out in [2] demonstrate that monitors
are relatively efficient compared to other systems, except
for the most efficient such as the MOP system [10]. The
implementation can be considered as suggesting a design
pattern for writing monitors with data parameterized state
machines, which is a contribution on its own. Concerning
future work, one can consider adding disjunction of tar-
get states. Furthermore, since the DSL is shallow, it is a
challenge to optimize it. Deep internal DSL’s are easier to
optimize since programs (in the DSL) are data. Future work
will explore the space between internal and external DSLs.

ACKNOWLEDGMENT

The work was carried out at Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the
National Aeronautics and Space Administration. The work
was furthermore supported by NSF Grant CCF-0926190.

REFERENCES

[1] S. Hallé and R. Villemaire, “Runtime enforcement of web
service message contracts with data,” IEEE Transactions on
Services Computing, vol. 5, no. 2, pp. 192–206, 2012.

[2] K. Havelund, “Monitoring with data automata,” in 6th Inter-
national Symposium On Leveraging Applications of Formal
Methods, Verification and Validation. Track: Statistical Model
Checking, Past Present and Future (organized by Kim Larsen
and Axel Legay), Corfu, Greece, October 8-11. Proceedings,
ser. LNCS (volume TBD), T. Margaria and B. Steffen, Eds.
Springer, 2014.

[3] H. Barringer, A. Groce, K. Havelund, and M. Smith, “Formal
analysis of log files,” J. of Aerospace Computing, Information,
and Communication, vol. 7, no. 11, pp. 365–390, 2010.

[4] H. Barringer and K. Havelund, “TraceContract: A Scala
DSL for trace analysis,” in 17th International Symposium
on Formal Methods (FM’11), Limerick, Ireland, June 20-24,
2011. Proceedings, ser. LNCS, vol. 6664. Springer, 2011,
pp. 57–72.

[5] K. Havelund, “Rule-based runtime verification revisited,”
Software Tools for Technology Transfer (STTT), April 2014,
published online.

[6] H. Barringer, D. E. Rydeheard, and K. Havelund, “Rule
systems for run-time monitoring: from Eagle to RuleR,” J.
Log. Comput., vol. 20, no. 3, pp. 675–706, 2010.

[7] H. Barringer, A. Goldberg, K. Havelund, and K. Sen, “Rule-
based runtime verification,” in VMCAI, ser. LNCS, vol. 2937.
Springer, 2004, pp. 44–57.

[8] V. Stolz and E. Bodden, “Temporal assertions using AspectJ,”
in Proc. of the 5th Int. Workshop on Runtime Verification
(RV’05), ser. ENTCS, vol. 144(4). Elsevier, 2006, pp. 109–
124.

[9] C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren,
S. Kuzins, O. Lhoták, O. de Moor, D. Sereni, G. Sittamplan,
and J. Tibble, “Adding trace matching with free variables to
AspectJ,” in OOPSLA’05. ACM Press, 2005.

[10] P. Meredith, D. Jin, D. Griffith, F. Chen, and G. Roşu,
“An overview of the MOP runtime verification framework,”
Software Tools for Technology Transfer (STTT), vol. 14, no. 3,
pp. 249–289, 2012.

[11] H. Barringer, Y. Falcone, K. Havelund, G. Reger, and D. Ry-
deheard, “Quantified Event Automata - towards expressive
and efficient runtime monitors,” in 18th International Sym-
posium on Formal Methods (FM’12), Paris, France, August
27-31, 2012. Proceedings, ser. LNCS, vol. 7436. Springer,
2012.

[12] E. Bodden, “MOPBox: A library approach to runtime verifi-
cation,” in Runtime Verification - 2nd Int. Conference, RV’11,
San Francisco, USA, September 27-30, 2011. Proceedings,
ser. LNCS, vol. 7186. Springer, 2011, pp. 365–369.

[13] J. Goubault-Larrecq and J. Olivain, “A smell of ORCHIDS,”
in Proc. of the 8th Int. Workshop on Runtime Verification
(RV’08), ser. LNCS, vol. 5289. Budapest, Hungary: Springer,
2008, pp. 1–20.

[14] V. Stolz and F. Huch, “Runtime verification of concurrent
Haskell programs,” in Proc. of the 4th Int. Workshop on
Runtime Verification (RV’04), ser. ENTCS, vol. 113. Elsevier,
2005, pp. 201–216.

[15] V. Stolz, “Temporal assertions with parameterized proposi-
tions,” in Proc. of the 7th Int. Workshop on Runtime Verifi-
cation (RV’07), ser. LNCS, vol. 4839. Vancouver, Canada:
Springer, 2007, pp. 176–187.

[16] D. A. Basin, F. Klaedtke, and S. Müller, “Policy monitoring
in first-order temporal logic,” in Computer Aided Verification,
22nd International Conference, CAV 2010, Edinburgh, UK,
July 15-19, Proceedings, ser. LNCS, T. Touili, B. Cook, and
P. Jackson, Eds., vol. 6174. Springer, 2010, pp. 1–18.

[17] A. Bauer, J.-C. Küster, and G. Vegliach, “From propositional
to first-order monitoring,” in Runtime Verification - 4th Int.
Conference, RV’13, Rennes, France, September 24-27, 2013,
ser. LNCS, vol. 8174. Springer, 2013, pp. 59–75.

[18] N. Decker, M. Leucker, and D. Thoma, “Monitoring modulo
theories,” in Tools and Algorithms for the Construction and
Analysis of Systems - 20th International Conference, TACAS
2014, Grenoble, France, April 7-11, 2014. Proceedings, ser.
LNCS, E. Ábrahám and K. Havelund, Eds., vol. 8413.
Springer, 2014, pp. 341–356.

[19] “XML XPath 2.0 website. http://www.w3.org/TR/xpath20.”

[20] A. Pnueli, “The temporal logic of programs,” in 18th Annual
Symposium on Foundations of Computer Science. IEEE
Computer Society, 1977, pp. 46–57.

