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Abstract. This paper shows that, in the context of the Iyer et al. 67-
variable cardiac myocycte model (IMW), it is possible to replace the
detailed 13-state continuous-time MDP model of the sodium-channel dy-
namics, with a much simpler Hodgkin-Huxley (HH)-like two-state sodium-
channel model, while only incurring a bounded approximation error. The
technical basis for this result is the construction of an approximate bisim-
ulation between the HH and IMW channel models, both of which are
input-controlled (voltage in this case) continuous-time Markov chains.
The construction of the appropriate approximate bisimulation, as well as
the overall result regarding the behavior of this modified IMW model, in-
volves: (1) The identification of the voltage-dependent parameters of the
m and h gates in the HH-type channel, based on the observations of the
IMW channel. (2) Proving that the distance between observations of the
two channels never exceeds a given error. (3) Exploring the sensitivity of
the overall IMW model to the HH-type sodium-channel approximation.
Our extensive simulation results experimentally validate our findings, for
varying IMW-type input stimuli.

1 Introduction

The emergence of high-throughput data-acquisition equipment has changed cell
biology, from a purely wet-lab-based science to also an engineering and informa-
tion science. The identification of a mathematical model from cellular experi-
mental data, and the use of this model to predict and control the cell’s behavior,
are nowadays indispensable tools in cell biology’s arsenal [35, 5].

Continual progress in data-acquisition has also led to the creation of increasingly-
sophisticated partial Differential Equations Models (DEMs) for cardiac cells (my-
ocytes). These are similar in spirit to the DEMs used in physics: their main pur-
pose is to elucidate the biological laws governing the electric behavior of cardiac
myocytes, i.e., their underlying cellular and ionic processes [9].

Inspired by the squid-neuron DEM [20] developed by Hodgkin and Huxley
(HH), Luo and Rudy (LR) devised one of the first myocyte DEMs, for guinea-
pig ventricular cells [29]. Adapting this model to human myocytes led to the



Tusscher-Noble2-Panfilov (TNNP) DEM [40], which has 17 state variables and 44
parameters. Based on more recent experimental data, Iyer, Mazhari and Winslow
(IMW) subsequently developed a DEM comprising 67 state variables and 94 pa-
rameters [21]. This DEM reflects the state-of-the-art understanding of biological
entities regulating the electric behavior of human myocytes.

From 17 to 67 variables, all such DEMs capture myocytic behavior at a
particular level of abstraction, and hence all of them play an important role in
the modeling hierarchy. It is essential, however, to maintain focus on the purpose
of a particular DEM; that is, of the particular cellular and ionic processes whose
behavior the DEM is intended to capture. Disregarding this purpose may lead
to the use of unnecessarily complex DEMs, which may render not only analysis,
but also simulation, intractable.

If the only entity-of-interest is the myocyte’s transmembrane voltage, co-
authors Cherry and Fenton have experimentally shown that a minimal DEM (MM)
consisting of only 4 variables and 27 parameters, can accurately capture voltage-
propagation properties in 1D, 2D, and 3D networks of myocytes [4]. This MM
has allowed us to obtain dramatic simulation speedups [1], and to use its linear
hybridization as the basis for formal symbolic analysis [19].

Since new technological advances are expected to lead to further insights
into myocytic behavior, it is likely that IMW will be further refined, by adding
new variables. As in model checking and controller synthesis, one would there-
fore like to compute the smallest approximation of the State-Of-the-Art DEM
(SOA), which is observationally equivalent to the SOA for the property of inter-
est, modulo some specified approximation error. This, however, is not an easy
task, as it implies the automatic approximation of very large nonlinear DEMs.

A first step towards the desired automation is to identify a set of approxima-
tion techniques that allow one to systematically remove unobservable variables
from, say, the SOA to end up with the MM, if the only observable variable is the
voltage. This is one of the goals of our work within the CMACS project [36]. A
byproduct of this work is to establish a long-missing formal relation among the
existing myocyte-DEMs, facilitating the transfer of properties established at one
layer of abstraction to the other layers. The use of such Towers of abstraction is
becoming an increasingly prevalent in systems biology [23, 11].

The main focus of this paper is on sodium-channel approximations. In the
HH DEM and the DEM of Noble [37], the sodium channel is assumed to consist
of four independent Markovian gates, whose opening and closing rates depend
on the transmembrane voltage. Three of the gates are identical activation gates
m, and the fourth is an inactivation gate h. The sodium channel is conducting
if all of four gates are in the open state.

Based on the work of Beeler and Reuter [3], TNNP refines the inactivation
gate h into two independent inactivation gates, a fast one, still labeled as h, and a
slow one, labeled as j. Hence, the encoding of the sodium channel requires in the
above DEMs two and respectively three (gating) variables. IMW, however, uses
the formulation of Irvine [28], where new experimental data is used to show that



Fig. 1. Conduction system of the human heart ((Illustration taken from F. H. Netter,
The CIBA Collection of Medical Illustrations. Vol. 5 Heart. CIBA Pharmaceutical
Comp., New York, 1978).

the five gates are interdependent. This leads to a considerably larger Markovian
model for the sodium channel, consisting of 13 state variables.

The main question posed in this paper is the following: assuming that con-
ductance of the sodium channel is the only observable, is the behavior of the HH
channel equivalent to the behavior of the IMW channel, modulo a well defined ap-
proximation error? More technically, is it possible to construct an approximate
bisimulation [12, 14, 13, 15] between the HH-channel and IMW-channel models?

The answer to this question is of broad interest, as it reduces to showing the
existence of an approximate bisimulation between two continuous-time Markov
decision processes (CT-MDPs), that is, two input-controlled (voltage in this
case) continuous-time Markov chains (CTMCs). We answer this question in the
positive, by explicitly constructing such a bisimulation.

The construction involves: (1) The identification of the voltage-dependent pa-
rameters of the m and h gates in the HH-type channel, based on the observations
of the IMW channel. (2) Proving that the distance between the observations of
the two channels never exceeds a given error. (3) Exploring the sensitivity of the
overall IMW DEM to the HH-type sodium-channel approximation.

The rest of the paper is organized as follows. Section 2 introduces the relevant
background for the HH and the IMW DEMs and their sodium-channel MDP
formulations. Section 3 presents our parameter-identification technique and the
resulting HH-type MDP for the sodium channel. Section 4 proves the existence of
an approximate bisimulation between the HH and IMW sodium-channel MDPs.
Sections 5 and 6 discuss related work, our conclusions, and future directions.

2 Background

The heart, see Fig. 1, is the central organ of the circulatory system, responsible
for pumping blood in the pulmonary and systemic circulation loops [8]. Pumping
is achieved through the synchronized contraction of around four billion myocytes.
This is controlled in a distributed fashion, through the propagation and reinforce-
ment of an electric pulse (clock). The pulse originates in the sino-atrial node of
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Fig. 2. (Left) Currents in IMW: Blue and brown arrows show ionic currents flowing
through channels. Blue circles and arrows correspond to ionic exchanger currents and
green circles denote ionic pumps. Intra-cellular currents are shown in Magenta. (Right)
The action potential (AP), its phases and associated currents. (Right-Inlay) Sodium
current in red, and the sum of all other currents in blue, in upstroke phase (UP).

the heart, and diffuses from myoucyte to myocyte, through a very sophisticated
communication inftrastructure, arranged into various sheets and fibers.

Myocytes belong to the class of excitable cells (EC), which also includes
neurons, and muscle cells. An EC has electrochemical excitability-properties,
responsible for the conduction and reinforcement of the electric pulse known as
the action potential (AP). The shape of a typical myocyte AP and its associated
phases are shown in Fig. 2(Right). While at rest, an EC polls the AP diffused
from its neighbouring cells: If the AP is above of a certain threshold, then the
EC’s membrane goes through a depolarization and a repolarization sequence,
which results in the reinforcement of the AP. In this paper, we will be mainly
concerned with the first depolarization phase, known as the the upstroke.

2.1 The IMW Cellular Model

The IMW DEM is the SOA electric model capturing the ionic processes respon-
sible for the generation of an AP in human ventricular myocytes:
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where, V is the membrane’s potential, V̇ is its first-order time derivative, C is
the membrane’s capacitance, and Iv are the ionic currents shown in Fig. 2(Left),
except for Ist. This is the stimulus current, which could be either an external
stimulus or the diffused charge from neighboring cells.

The remaining currents are the result of the flow of the sodium Na+, potas-
sium K+ and calcium Ca2+ ions, respectively, across the myocyte’s membrane.
Three transport mechanisms are responsible for the ion flows: ion channels, ion
pumps and ion exchangers. Channels are special proteins that penetrate the
membrane’s lipid bi-layer, and which are selectively permeable to ions. Depend-
ing on the conformation of the constituent-protein, the channel either allows or
does not allow, an unidirectional movement of certain ion species.

The protein conformation is voltage dependent, thus the name voltage-gated
channels. All the transmembrane currents in Fig. 2 result from voltage-gated
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ionic channels, except for INaK , INaCa, ICaK and Ip(Ca), which are exchanger- or
pump-currents. The concentration of the calcium is regulated by a sophisticated
intracellular mechanism, which is not important for purpose of this paper.

Fig. 2(Right-inlay) plots the sodium current INa and the sum of all other ionic
currents during the upstroke phase (UP), of a typical AP of the IMW DEM. The
sodium current INa dominates all the other. The opening of the sodium channel,
which causes the flow of INa, chiefly contributes to the upstroke phase, and will
be the focus of the remainder of the paper. In HH the situation is similar, and in
MM the role of INa is played by an abstract fast inward current Jfi.

2.2 The HH Sodium Current

The sodium current INa in the HH DEM is defined by the following equation:

INa = gNam
3(V )h(V ) (V − VNa)

where g is the maximum conductance of the sodium channel, VNa is the sodium’s
channel Nernst potential, m(V ) is the voltage-dependent activation gate, and
h(V ) is the voltage-dependent inactivation gate.

A graphic illustration of the sodium channel is given in Fig. 3 (Right). It
consists of four independent voltage-controlled gates, three of which are identical
activation gates m(V ), and one of which is an inactivation gate h(V ).

The activation and inactivation gates are shown in Fig. 3 (Left-bottom). They
are continuous-time Markov decision processes (CT-MDP). Both CT-MDPs have
a closed and an open state, respectively, and the rate of transitioning between
these two states is given by the voltage-dependent parameters α(V ) and β(V ).
At rest the m-gate is closed and the h-gate is open. Their DEM is as follows:

ṁ = αm(V )(1−m)− βm(V )m, ḣ = αh(V )(1− h)− βh(V )h

We refer to this DEM as MH . The linear system obtained by fixing V = v
will be denoted ad Mv

H . The observation function O of this DEM is given by
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Fig. 4. Probability for the m-gate to be open in HH: a) Numerical integration of m
for different voltage changes; b) Analytical solution of m for different voltage changes;
c) Voltage changes applied for the analytical and the numerical integration solutions.

m(V )3h(V ), which is the result of independence among the gates. Introduce now
the following notation:

x = [m,h]′, A = diag(−(αm + βm),−(αh + βh)), B = [αm, αh]′

The independence of the gates also implies that the DEM is in diagonal form,
and it can be therefore written as follows:

ẋ = Ax+B, x0 = [m0, h0]′

Despite of the linear-looking form, this equation is nonlinear, as A and B depend
on the voltage. For example, Figure 4(a) shows its numeric solution for the input
in Figure 4(c). However, HH computed an approximate closed form solution as
follows. In the resting state, defined as V = 0, and in the equilibrium state, for
a fixed V = v, the gates m and h, and the rates τ have the following values:

m0 = αm0/(αm0 + βm0), m∞ = αm/(αm + βm)
h0 = αh0

/(αh0
+ βh0

), h∞ = αh/(αh + βh)
τm = 1/(αm + βm), τh = 1/(αh + βh)

Then solving the DEM above as if A and B were constant and the differential
equation therefore linear, Hodgkin and Huxley derived the following solution:

x = [m∞ − (m∞ −m0)e−t/τm , h∞ − (h∞ − h0)e−t/τh ]′

As shown in Figure 4(b) this closed-form solution jumps for a the changing
input shown in Figure 4(c) between the solutions obtained for constant input.
This behavior is however not problematic when replaced in the cellular model,
as the voltage only jumps at the beginning, when the stimulus is applied, and
then varies in a continuous way.

One can prove that the 7-state-variables MDP (the value of the 8th results
from the stochasticity property) shown in Fig. 3(Left-top), counting the number
of m and respectively h channels open, is an exact bisimulation of the MDP in
two states. Define the state maps:

Ci = Ci3(1−m)3−imih, CiI = Ci3(1−m)3−imi(1− h)

Then taking as observation function O in the top MDP and the observation
O = m3h in the bottom MDP, one cannot distinguish between the two.



2.3 The IMW Sodium Current

The sodium current INa in the IMW DEM is defined by the following equation:

INa = gNa (O1(V ) +O2(V )) (V − VNa)

where g and VNa have the same meaning as in the HH DEM, and O1(V ) and
O2(V ) correspond to the probability of two states of the MDP shown in Fig. 5.

The SOA IMW view of the Sodium channel is shown Fig. 5[26, 28], with tran-
sition rates in Table 1. There are now four identical m gates, and the transition
rates of the h gate are constant. However, these rates indirectly depend on V
through the number of open-closed m gates (encoded as powers of a).

Moreover, taking the path C0, C1, C1I, C0I is mathematically equivalent to
taking a voltage dependent h-transition C0, C0I. The longer the paths, the less
one can distinguish between a HH-type and an IMW-type transition. This intu-
ition is the basis for our bisimulation proof. Note also that two states O1 and
O2 are now observable instead of one, and some bookeeping was also added.

Dependence and bookeeping are considerable obstacles for searching for a
closed form solution of IMW, or a bisimulation state-map, similar to the one
given previous section. We will therefore explicitly construct an HH abstraction,
and associated approximate bisimulation from the runs of the IMW.

Definition 1. Consider the 13-state model for sodium-channel dynamics shown
in Fig. 5. Let pj denote the jth state-occupancy-probability from the vector
p = (C0, C1, C2, C3, C4, O1, O2, C0I, C1I, C2I, C3I, C4I, I). The dynamics of the
model is described by the system of differential equations MI :

dpj
dt

=
∑
i6=j

kij(V )pi −
∑
i6=j

kji(V )pj i, j = 1 . . . 13 (2)

where, V is the transmembrane potential and kij(V ) is the transition rate from
the ith to the jth state as defined in Table 1. This system can be re-written as:

dpj
dt

= A(V ).p (3)

where, A(V ) is a 13×13 matrix with Aj,i(V ) = kij(V ) i 6= j, Aj,j(V ) = −
∑
i 6=j

kji.

The linear system MIv is obtained from MH by fixing V = v in Eq. 3.

rate function rate function rate function

α(V ) c.e−19.6759+0.0113V δδ(V ) c.e−38.4839−0.1440V ε 0.0227

β(V ) c.e−26.2321−0.0901V γγ(V ) c.e−21.9493+0.0301V ω 1.0890

γ(V ) c.e−16.5359+0.1097V η(V ) c.e−19.6729+0.0843V cn 0.7470

δ(V ) c.e−27.0926−0.0615V On(V ) c.e−20.6726+0.0114V cf 0.2261

ν(V ) c.e−26.3585−0.0678V Of (V ) c.e−39.7449+0.0027V a 1.4004

Table 1. Rates of the 13-state stochastic model for sodium channel dynamics in Fig. 5.
c = 8.513 × 109. Values instantiated from Table 6 of [21] at temperature T = 310K.
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3 Abstraction of Sodium Channel Dynamics

We construct a HH-type DEM MH that can substitute MI within the IMW
cardiac cell-model. We perform the following abstractions in this process:

– We reduce the number of activating subunits to 3 and use a single inacti-
vating subunit. This results in abstracting away the I, C3I, C4I, C3 and
C4I.

– We coalesce the two open states into a single open state O.
– We abstract away the conditional dependence between activating and inac-

tivating subunits of the 13-state model MI (difference D2). This is done by
abstracting away the scaling factor a.

– With the above abstractions, MI reduces to the 8-state stochastic model.
The 8-state abstraction then reduces to the 2-state HH model due to the
invariant manifold reduction.

Our approach to obtaining the 2-state HH-type abstraction from the 13-state
stochastic model is summarized in Fig. 6 and described below.

13-state
model used by 

Iyer et al.

- Set of n finite representative 
behaviors produced at constant

V 

Parameter Estimation from 
Finite Traces (PEFT)

time

Rate Function Identification
(RFI)

2-state HH-type
abstraction

Fig. 6. Abstraction process for sodium-channel dynamics.



1. Generating representative finite traces of MI

The IMW model was simulated in FORTRAN for a single cell at a time
scale of 10−4 ms. Multiple MIv systems were simulated for the values of
V observed during the FORTRAN simulation. The linear system MIv was
simulated in MATLAB using the ODE45 solver [32]. The time scale for
these simulations was 10−2 ms. The simulations ran till the steady state
was reached. The initial condition for all the simulations were taken to be
the initial condition specified in Table 4 of [21]. The motivation for these
initial conditions lies in the voltage-clamp experiments performed in [20]. In
these experiments, the voltage was initial maintained at the resting potential,
with the neuron-conductance also being in the resting state. The voltage was
suddenly increased to a specified value and the evolution of conductance was
observed till steady state.
The simulations resulted in a set B∗, of finite-length representative behaviors
(traces). Each member B∗(v) is the trajectory of the simulation of Mv

I .
2. Parameter Estimation from Finite Traces (PEFT)

This routine takes B∗ as the input and at each of the voltage-values vi,
estimates the parameters of MHvi , the two-state HH model (MH) at V = vi.
For each voltage v, the following optimization problem was solved to estimate
the parameters αvm, βvm, αvh and βvh of MHv :

minimize

tvS∑
t=0

[Ov(t)−mv(t)3hv(t)]2

subject to: αvm, β
v
m, α

v
h, β

v
h ≥ 0

(4)

where,
– t is the discrete-time step.
– tvS is the number of discrete-time steps taken by MIv to reach steady

state (MIv was simulated in MATLAB till steady-state).
– Ov(t) = Ov1(t)+Ov2(t) is the sum of the occupancy probabilities of states
O1 and O2 in the trajectory B∗(v).

– mv(t), hv(t) define a trajectory of Mv
H . At fixed membrane potential

V = v, mv(t) and hv(t) can be written in closed form as:

mv(t) =
αvm

αvm + βvm
+ (mv(0)− αvm

αvm + βvm
) exp(−(αvm + βvm)t)

hv(t) =
αvh

αvh + βvh
+ (hv(0)− αvh

αvh + βvh
) exp(−(αvh + βvh)t)

(5)

where, mv(0) and hv(0) denote initial conditions.
We used MATLAB’s constrained-optimization solver FMINCON [33] for
Eq. (4). Details of the active-set optimization algorithm implemented in the
function can be found in [30]. Three aspects of our implementation deserve
further elaboration:
– Choosing mv(0) and hv(0) - In [20], the authors choose the initial

conditions for all the voltages such that the inactivating-gating-variable
h is high and the activating-gating-variable m is low. We use the same
convention but ensure that the initial conductance (observation)



mv(0)3hv(0) = OVres , where OVres is the conductance O1 +O2 of MI at
the resting potential Vres. Specifically, mv(0) = 0.0026 and hv(0) = 0.95
for all v.

– Providing seed-values - For each voltage-value v, FMINCON needs
seed values of αvm, βvm, αvh and βvh to start optimizing over the parameter
space. We implemented a local search strategy for this purpose. The
parameters estimated at vi were used as seed-values for vi+1. For the
resting potential, when i = 1, the seed values were taken by evaluating
Eq. (16)-(18) of [37] at V = −90.66mV (the resting potential).

– Local minima - The solver is guaranteed to provide parameter-values
that locally minimize the objective function. FMINCON was run mul-
tiple times until the objective function was minimized to a value below
a pre-defined threshold. The terminal values of an iteration were per-
turbed and used as seed-values for the next iteration. A maximum of
100 iterations were performed.

PEFT resulted a in a table of parameters θ, again indexed by voltage, i.e.
θv contained the parameters of MHv .

3. Rate-Function Identification (RFI)
RFI combines the parameters θv, ofMHv , and outputs the parameter-functions
of MH , which are functions of V . This is done by identifying appropriate
forms for the parameter functions αm(V ), βm(V ), αh(V ) and βh(V ) and
then using MATLAB’s curve-fitting toolbox [31] to estimate the parameters
of the chosen form.

αm(V ) = −0.6 +
16.31

1 + exp(−0.05(V + 19.67))
(6)

αh(V ) =

{
0.07 + 0.11

1+exp(0.2495(V+53.01)) if V ≤ −32.00

0.07− 0.06
1+exp(−0.07(V−6.73)) if V > −32.00

(7)

βh(V ) = −4.8 +
145.1

1 + exp(−0.013(V − 179))
(8)

βm(V ) =


9.92− 4.575

1+exp(−73.73(V+63.78)) if V ≤ −60.28

2.32 + 2.512
1+exp(0.2173(V+50.69)) if − 60.28 < V ≤ −33.04

2.26 + 1.63
1+exp(−0.2(V+20.72)) if − 33.04 < V ≤ −1.823

−2.57 + 6.73
1+exp(0.07(V−40.23)) if V > −1.823

(9)

Empirical Validation of the reduced model MH

The 13-state model MI was substituted by MH in the IMW model. The modified
IMW model was simulated in FORTRAN. This modified model used MH to
produce the sodium current INa. Both supra and sub-threshold stimuli, lasting
for 0.5ms, were used to excite the cardiac cell. S1 and S2 denote supra-threshold
stimuli of -100 pA/pF and -120 pA/pF respectively. S3 and S4 denote sub-
threshold stimuli of -10 pA/pF and -20 pA/pF.

The results plotted in Fig. 7 show the behavioral equivalence of MH and MI .
The model retains both normal and anomalous cell-level behaviors on replacing
the 13-state sodium-channel component with the 2-state abstraction within the
complete cell model.
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(a) Comparison of INa during the
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(b) Comparison of conductances
(O1 +O2) of the 13-state model MI

and (m3h) of the 2-state abstrac-
tion MH during the upstroke phase.
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(c) Comparison of AP produced
by the original IMW model and
the modified version for supra-
threshold stimuli.
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Fig. 7. Comparison of MI and MH when used for INa in the IMW model. We do not
show the currents and conductances for sub-threshold stimuli as they are negligible.
Mean L2 errors over the duration of an AP for all stimuli: Conductance: 3.2 × 10−5,
Current: 0.1249 pA/pF, V: 0.12mV.

4 Approximate Bisimulation Equivalence of I and H

PEFT and RFI help us obtain MH , the two-state HH-type abstraction of the
13-state model for sodium-channel dynamics MI . We formalize the discrete-time
equivalence of MH and MI using approximate bisimulation [15]. This notion
of equivalence is stronger than the conventional behavioral equivalence, which
compares the observed behaviors (trajectories) of two systems.

Moreover, the approximate bisimulation relation between the state-spaces
of the systems can be utilized for gaining physiological insights from formal
analysis. Analysis can be done on the abstract model MH and the results can
be interpreted in the state-space of the physiological model MI .



In [15], Pappas et al. define approximate bisimulation equivalence of Labeled
Transition Systems (LTS), a generic modeling framework. We cast the models
MH and MI as LTS and prove approximate bisimulation equivalence of their
discrete-time versions. First we will establish stability properties of MIv . We use
Vres and Vmax to denote the resting potential and maximum potential attained
at the end of the upstroke (UP) phase.

Definition 2. A m×m square matrix M is called a closed compartmental ma-
trix if the the following two properties are satisfied:

1. Mij ≥ 0 for i 6= j - Non-diagonal entries are non-negative.

2.

n∑
j=1

Mji = 0, 1 ≤ i ≤ m - sum of the entries in each column is 0.

Compartmental matrices have been used to model a wide variety of systems
including ones derived by applying the law of mass action to a set of mono-
molecular reactions [22]. A closed compartmental system is obtained when the
degradation-rates of all the species is 0.

Lemma 1. Let Av be the constant matrix obtained by fixing V = v in Eq. (3),
where v ∈ [Vres, Vmax], the range swept by the AP during the upstroke (UP)
phase. Av is a closed compartmental matrix for all v ∈ [Vres, Vmax].

Proof. All transition rates kji(V ), from Table 1 have the form ae(bV+c), where
a > 0. Thus condition 1 of Definition 2 is satisfied by construction.

For every column i, for i 6= j, Aji is to the outgoing transition rate from
state i to state j: kji(V ). The diagonal entry in the ith column is the negated
sum of all these outgoing rates, i.e. −

∑
i 6=j kji. Thus, the second condition is

also satisfied by Av, Vres ≤ v ≤ Vmax. ut

Lemma 2. The Matrix Av, obtained by fixing V = v, is irreducible for all pos-
sible voltage values: v ∈ [Vres, Vmax]

Proof. A graph-theoretic proof can be made by first inducing a graph from the
matrix Av. Let Gv(N,E) be the graph such that there is a node in the graph for
each of the 13 states in the stochastic model in Fig. 5 and an edge (ni, nj) ∈ E
if and only if Avij 6= 0.

Proving that Gv remains connected at all values of V, amounts to proving
irreducibility of Av. This is indeed true because of the exponential functions in
Table 1. The graph Gv remains unchanged for all values v ∈ [Vres, Vmax] and is
connected in that range. ut

Theorem 1. The system of differential of equations in Eq. (3) has a stable
equilibrium at a fixed voltage V = v, where v ∈ [Vres, Vmax].

Proof. This follows from Proposition 4 in [22]. The prerequisites for the result
are:

1. The matrix Av must be a closed compartmental matrix.
2. The entries in Av must be constant.
3. The matrix Av must be irreducible.



The first condition was proved in lemma 1. The second condition holds because
the rates in Table 1 are either constants or functions of V . We proved the third
prerequisite in Lemma 2.

Proposition 4 in [22] proves that the real part of all eigenvalues of Av is non-
positive. This guarantees stability of the equilibrium. Note that Av may not be
Hurwitz (guaranteeing asymptotic stability). ut

Theorem 1 guarantees the existence of tS , the time taken to reach a stable steady
state, for any voltage V = v, by MI . We proceed to cast MI and MH as LTS.

Definition 3. The LTS corresponding to MI is the sextuple I = (XI ,V,→I ,
X0
I , ΠI , 〈〈.〉〉I):

– XI ⊆ R13 is the set of states denoting the occupancy probabilities of the
13-state stochastic model. The ordering of the states is the same as for the
vector p in Def. 1.

– V is a family of curves (signals) of the form [t0, t0 + APD] → R denoting
inputs to the LTS. The lower limit t0 is the time at which the AP commences
and Action Potential Duration (APD) is the time for which an AP lasts. V
represents different temporal patterns by which the transmembrane potential
V can be applied (fed back) to the model described by Eq. 3, guaranteeing
a solution to the system of differential equations. In the IMW model, the
pattern dictated by Eq. 1.

– →I⊆ XI×V×XI is the transition relation that captures the dynamics of the
model MI . (xI , v,x

′
I) ∈→I , written as xI

v−→I x′I , holds when there exists
curves V 3 v : [0, τ ] → R and ξ : [0, τ ] → R13 satisfying the system of
differential equations in Eq. 3 with ξ(0) = xI and ξ(τ) = xI

′.
– X0

I , a singleton consisting of the initial condition for the stochastic model in
Eq. 3, is specified in Table 4 of [21] and acts as the initial state for I.

– ΠI ⊆ R is the set of outputs of the LTS. This set denotes the observables from
the 13-state stochastic model. The INa current depends on the occupancy
probabilities of the states O1 and O2 in Fig. 5. The output set ΠI is the set
of possible values of O1 +O2, the sum of occupancy probabilities.

– 〈〈.〉〉I is the output map, that given a state xi ∈ XI , maps it to its corre-
sponding output 5 π6(xI) + π7(xI), the sum of the O1 and O2.

It should be noted that an input v ∈ V is a curve v : [0, τ ] → R that describes
both the affect of the applied voltage and also the duration of time for which it
is applied. We define a LTS for the HH model below.

Definition 4. The LTS corresponding to MH is the sextuple H = (XH ,V,→H ,
X0
H , ΠH , 〈〈.〉〉H):

– XH ⊆ R2 is the set of states denoting the values of m and h in MH .
– V, the input, is the family of curves denoting patterns of the transmembrane

potential applied to the HH-type abstraction MH . It is the same as the one
in Def. 3. The curves v ∈ V guarantee solutions MH .

5 πj(x) is the standard projection function that projects the jth element from the
vector x.



– →H⊆ XH × V × XH is the transition relation that captures the dynamics
of the abstraction MH . (xH , v,x

′
H) ∈→H , written as xH

v−→H x′H , holds
when there exists curves V 3 v : [0, τ ] → R and ψ : [0, τ ] → R2 satisfying
the system of differential equations ṁ and ḣ of MH , with ψ(0) = xH and
ψ(τ) = x′H .

– X0
H is a singleton consisting of the initial condition identified by PEFT for

MHVres , and acts as the initial state.
– ΠH ⊆ R is the set of outputs of the LTS. This set denotes the observables

from the 2-state HH-type abstraction. The INa current depends on the con-
ductance m3h for MH . The set ΠH is the set of possible values of m3h.

– 〈〈.〉〉H is the output map, that given a state xH ∈ XH , maps it to its corre-
sponding output (π1(xH))3π2(xH), the conductance m3h.

We also provide LTS-definitions for Mv
I and Mv

H .

Definition 5. The LTS corresponding to MIv is the sextuple Iv = (XIv , T,
→Iv , X

0
Iv , ΠIv , 〈〈.〉〉Iv ). The states Xv

I , outputs ΠIv and output map 〈〈.〉〉Iv is
the same as Def. 3.

– T ⊆ R≥0 is the input, denoting time.

– →Iv is the transition relation. xvI
t−→Iv xv

′

I holds if there exists a solution ξv

to the linear system (Mv
I ), satisfying ξv(0) = xvI and ξv(t) = xv

′

I .
– X0

Iv is the initial condition obtained by simulating the system of equations
in Eq. 3 in MATLAB as described in step-1 of Section 3.

Definition 6. The LTS corresponding to MHv is the sextuple Hv = (XHv , T,
→Hv , H0

v , ΠHv , 〈〈.〉〉Hv ). The states XHv , outputs ΠHv and output map 〈〈.〉〉Hv

is the same as Def. 4. The input set T is the same as Def. 5.

– →Hv is the transition relation. xvH
t−→Hv xv

′

H holds if there exists a solution

ψv to the linear system (Mv
H), satisfying ψv(0) = xvH and ψv(t) = xv

′

H .
– H0

v is the initial condition determined by PEFT at V = v as described in
step-2 of Sec 3.

Definition 7. The two LTS T1(Q1, Σ,→1, Q
0
1, Π, 〈〈.〉〉1) and T2(Q2, Σ,→2,

Q0
2, Π, 〈〈.〉〉2) are approximate bisimulation equivalent, also termed approximately

bisimilar, with precision δ (denoted as T1 ∼=δ T2), if there exists a relation Bδ ⊆
Q1 ×Q2 such that:

1. For every q1 ∈ Q0
1, there exists a q2 ∈ Q0

2 such that (q1, q2) ∈ Bδ
2. For every (q1, q2) ∈ Bδ, dΠ(〈〈q1〉〉1, 〈〈q2〉〉2) ≤ δ
3. For every (q1, q2) ∈ Bδ:

(a) q1
σ−→1 q

′
1, σ ∈ Σ implies the existence of q2

σ−→2 q
′
2 such that (q′1, q

′
2) ∈

Bδ.
(b) q2

σ−→2 q
′
2, σ ∈ Σ implies the existence of q1

σ−→1 q
′
1 such that (q′1, q

′
2) ∈

Bδ.
The relation Bδ is called the approximate bisimulation relation.

We prove a simple lemma relating finite-length trajectories of two Linear Au-
tonomous Dynamical Systems (LADS).



Lemma 3. Consider two LADS {ẋ1 = M1.x2, x1(0) = x0
1} and {ẋ2 = M2.x2,

x2(0) = x0
2} where x1,x2,x

0
1,x

0
2 ∈ Rn and M1 and M2 are n × n matrices. Let

x1(t) and x2(t) be the respective solution trajectories. Let I1[t1, t2] and I2[t2, t3]
be two time-intervals of arbitrary lengths such that:

– |x1(t)− x2(t)| ≤ δ for t ∈ I1.
– |x1(t)− x2(t)| ≤ δ for t ∈ I2.

Then |x1(t)− x2(t)| ≤ δ for t ∈ I12[t1, t3].

Proof. The proof follows from uniqueness and continuity of the trajectories in
I12 ut

Theorem 2. Let Iv be the LTS corresponding to MIv . Let Hv be the LTS of
MHv identified by PEFT. Then PEFT can ensure that Iv ∼=δv H

v for any v ∈
[Vres, Vmax]. The precision δv is the maximum L2 error incurred by the optimizer
while solving Eq. (4).

Proof. The approximate bisimulation relation Bδv ⊆ XIv × XHv can be con-
structed as follows.
1. The initial condition in x0

Iv ∈ X0
Iv is paired with the initial condition x0

Hv ∈
X0
Hv .

2. Consider a state xIv ∈ XIv such that x0
Iv

t−→Iv xIv , t ∈ T . Also say xHv ∈
XHv such that x0

Hv

t−→Hv xHv . Then, (xIv ,xHv ) ∈ Bδv . The existence of
states xIv and xHv satisfying the conditions is guaranteed due to uniqueness
and existence of solutions to LADS.

The relation Bδv is a valid approximate bisimulation relation:

1. The relation Bδv satisfies condition 1 in Def. 7 by construction.
2. Consider the pair (xIv ,xHv ) ∈ Bδv . The construction of Bδv and uniqueness

and existence of the solutions to Mv
I and Mv

H ensure that if x0
Iv

t−→Iv xIv ,

then x0
Hv

t−→Hv xHv . Depending on t, the time taken to evolve to xIv or xHv

from the initial state, two cases arise:
– Case 1: t ≤ tS , the time taken to reach steady state

PEFT ensures that 〈〈xIv 〉〉Iv − 〈〈xHv 〉〉Hv is bounded 6. The bound δv

is the worst-case L2 error incurred while solving Eq. (4).
– Case 2: t > tS
〈〈xIv 〉〉Iv − 〈〈xHv 〉〉Hv is still bounded by δv because the output does
not change after the steady state is reached. A stable steady state is
guaranteed by Theorem 1 for any v ∈ [Vres, Vmax].

This proves that condition 2 in Def. 7 is satisfied.
3. Step 3 of constructing Bδv ensures that condition 3 of Def. 7 is also satisfied,

due to Lemma 3. ut

We now define perturbed LADS. Then we prove the discrete-time approximate
bisimilarity of MH , the 2-state abstraction identified by the procedure described
in Sec. 3, and MI the 13-state stochastic model of sodium-channel dynamics.

6 Lipschitz continuity of the solution-trajectories is assumed. This is needed to port
the result from the discrete-time bound obtained by PEFT to continuous-time.



Definition 8. Consider a LADS {ẋ = M.x, x(0) = x0}, where x ∈ Rn, M is
a n× n matrix and x(0) is the initial condition. An ε-perturbation of the LADS
is obtained by perturbing any of the entries in M or x(0) by at-most ε ∈ R.

Theorem 3. In discrete-time , Hd ∼=δ Id, where Hd is the discrete-time LTS
corresponding to MH , and Id is the discrete-time LTS corresponding to MI . The
precision δ ≤ 7.58× 10−4.

Proof. The discrete-time LTS Hd and Id are similar to H and I in Def. 4 and
Def. 3 respectively, with the following differences:

– The input curves v are discrete-time signals of voltage of the the form
[v1, v2, . . . , vi, . . .], where vi is the voltage at the ith discrete-time step.

– The transition relation of Hd follows the dynamics of Mv
H but in discrete-

time. Similarly, the transition relation of Id follows Eq. (3) in discrete time.
Chapter 11 of [27] provides details about converting continuous-time models
to discrete-time version via techniques like sample and hold.

In discrete-time, the evolution of the abstraction MH can be modeled as a series
of one-step evolutions of MHv . For example, when the input signal is of the
form [v1, . . . , vi, vi+1 . . .], at the ith time-step, the LADS MHvi evolves for one
time-step, followed by MHvi+1 and so on. This idea is also illustrated in Fig. 4(b).

For an arbitrary input signal v = [v1, . . . , vi, . . . ], at the ith time-step, the
LADS MHvi is an ε-perturbation of M

Hv∗
i
, where v∗i is a voltage-value that was

processed by PEFT, i.e a trajectory of M
Iv
∗
i

was matched by estimating the
parameters of M

Hv∗
i
. We bound the perturbation ε as follows:

ε = max(ε1, ε2) where,

ε1 = max
1≤j≤n

[max{|αm(vj)− αm(vj+1)|, |βm(vj)− βm(vj+1)|, |αh(vj)− αh(vj+1)|,

|βh(vj)− βh(vj+1)|}]

ε2 =max[|αm(v∆)− αm(v∆+1)|, |βm(v∆)− βm(v∆+1)|, |αh(v∆)− αh(v∆+1)|,
|βh(v∆)− βh(v∆+1)|]

∆ = argmax
1≤j≤n

[
|vj−vj+1|

2 ]

The limit n is the total number of voltage-values processed by PEFT (also the
size of the parameter-table τ and the set of finite-length behaviors B∗). The
rate-functions αm(V ), βm(V ), αh(V ), βh(V ) were found by the RFI procedure.
The term ε1 accounts for sharp changes in these functions. On the other hand, ε2
accounts for sparsity in the voltage-values observed in the UP phase. Given the
input signal v, the ith step vi may be at most ∆ mV away from a voltage-value
processed by PEFT.

It should be noted that ε provides a bound for the perturbation of MHvi

wrt the “closest” M
Hv∗

i
, i.e. at the ith time-step, the perturbation is the least

for M
Hv∗

i
among all the other voltage-values that were processed by PEFT.

As the input signal v changes, this closest-system changes. At the ith step, let



MHvi be an ε-perturbation of M
Hv∗

i
and at the (i+ 1)th step, let MHvi+1 be an

ε-perturbation of M
H

v∗
i+1

. We can always ensure that v∗i 6= v∗i+1. This can be
done by first bounding the time-scale, which determines the maximum rate-of-
change of the membrane potential (|vi− vi+1|). Once we know the least value of
|vi − vi+1|, we can perform the PEFT procedure for voltage-values that satisfy
∆ ≤ |vi − vi+1|.

Using the above-mentioned approach, we ensure that at the ith step, the
perturbed-system MHvi diverges from M

Hv∗
i

for at most one time-step. We now
bound the one-step divergence between the trajectories of MHvi and M

Hv∗
i
. The

system M
Hv∗

i
at V = v∗i , consists of uncoupled differential equations for the

state variables m and h. We calculate the sensitivity of the variable m to an ε-
change in the parameters and the initial conditions below.

ṁv∗i = α
v∗i
m (1−m) + β

v∗i
mm

mv∗i [1] = m
v∗i
0 + [α

v∗i
m (1−mv∗i

0 ) + β
v∗i
mm

v∗i
0 ] (in discrete-time)

mvi [1] = m
v∗i
0 + ε+ [(α

v∗i
m + ε)(1−mv∗i

0 ) + (β
v∗i
m + ε)m

v∗i
0 ](perturbed)

|mv∗i [1]−mvi [1]| = |ε[1 + (1− 2m− αvim − 2ε− βvim)]| (divergence)

≤ |2ε|

The divergence is maximized when m = 0 and the transition rates α, β = 0.
Thus given an initial separation of ε, the trajectories diverge by at most 2ε in
one time-step. The same calculation can be repeated independently for h.

Theorem 2 dictates that the trajectories of M
Iv
∗
i

and M
Hv∗

i
may not diverge

beyond δv
∗
. This is implied by their approximate bisimulation equivalence.

Using a similar approach as above, we now bound the divergence of trajec-

tories of Mvi
I from M

v∗i
I , where v∗i is determined as above. Voltage v∗i depends

upon the current state of MHvi . At any voltage V = vi, the maximum possible

perturbation µ of Mvi
I from M

v∗i
I , where v∗i is the nearest voltage processed by

PEFT, can be bound as was done for ε. The solution trajectory of M
v∗i
I is given

by the matrix exponential eA(v∗i )t, where A is the matrix in Eq.(3). An arbitrary
voltage vi in the input-signal presents a µ-perturbation of A(v∗i ). The evolution
of MIvi is then approximated by the corresponding perturbation of eA(v∗i )t.

The matrix exponential is determined by the eigenvalues of A(v∗i ). Bauer-Fike
theorem [2] bounds the spectral perturbation caused due to a perturbation of
the original matrix. It ensures that the eigenvalues of A(vi) are µ-perturbations

of the eigenvalues of A(v∗i ). Thus, the maximum divergence7 of Mvi
I from M

v∗i
I

in one time-step is at most eµ.

Thus, δ ≤ 16ε4 + argmax
1≤i≤n

[δv
∗
i ] + eµ, sum of the following quantities:

7 A tighter bound can be found, as was done for MHvi , by projecting the error onto
the O1 and O2 dimensions.



– Maximum divergence of MHvi from M
Hv∗

i
over one time-step: 16ε4. This is

due to the conductance being m3h. We bound the divergence of m and h
individually at 2ε.

– Maximum divergence of any M
Hv∗

i
from M

Iv
∗
i

over all n voltages processed

during PEFT: argmax
1≤i≤n

[δv
∗
i ]. This was estimated to be 2.79× 10−4.

– Maximum divergence of MIvi from M
Iv
∗
i

over one time-step: eµ. ut

5 Related Work

Various model-reduction (also known as coarse-graining) techniques have been
used to reduce the simulation-time and complexity of multi-scale state-space
models of chemical-reaction-kinetics [7, 18, 38]. Singular perturbation [24, 34] and
invariant manifold reduction [6, 16, 17] are two such techniques. Reduction of
Markovian ion-channel models, which is the central topic of this paper, has been
explored in [41, 42]. The emphasis of the papers is on reducing simulation time,
rather than obtaining a formal reduction. In [39] Smith et al. reduce a stochastic
model for the sodium-potassium pump by lumping the states of their model. In
[10], Fink et al. use mixed formulations of a HH-type model and a Markovian
model to reduce the number of state variables for the calcium current.

In this paper, we provide a systematic reduction of the sodium channel re-
sponsible for the crucial upstroke phase of an AP. Conventional approaches like
[25] use behavioral equivalence to validate the reduced models. Approximate
bisimulation, used in this paper, formalize equivalence in a compositional set-
ting and also help in insightful analysis. Formal reduction of the sodium-channel
helps us build a tower of abstraction [23, 11] for the sodium-channel.

6 Conclusions and Future Work

We constructed a two-state Hodgkin-Huxley-type model MH that can replace
the 13-state continuous-time MDP model MI for sodium-channel dynamics, in
the context of the IMW cardiac-cell model.

The reduction was formalized by proving the abstract and the concrete mod-
els to be approximately bisimilar. This notion of system-equivalence can be used
for compostional reasoning. When H is appropriately composed with rest of
the larger whole-cell IMW model, approximate bisimulation guarantees that the
overall composed-system retains the properties of the original system. The orig-
inal system can be modeled as an appropriate composition of I and rest of the
IMW model. In the future, further complicated non-deterministic models will
be explored and reduced. Tighter bounds will also be pursued for the precision
of the bisimulation relation. We then plan to use the towers of abstraction, con-
structed by the strategy outlined in the paper, for insightful analysis of cardiac
models.
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