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Abstract. We show that the 13-state sodium channel component of the
Iyer et al. cardiac cell model can be replaced with a previously identi-
fied δ-bisimilar 2-state Hodgkin Huxley-type abstraction by appealing
to a small gain theorem. To prove this feedback compositionality result,
we construct quadratic-polynomial exponentially decaying bisimulation
functions between the two sodium channel models and also for the rest of
a simplified version of the Iyer et al. model using the SOSTOOLS tool-
box. Our experimental results validate the analytical ones. To the best
of our knowledge, this is the first application of δ-bisimilar, feedback-
assisting, compositional reasoning in biological systems.

The Iyer et al. model (IMW) [3] is a physiologically detailed cardiac myocyte
(ventricular) model that can be used to to simulate the change in a cell’s trans-
membrane potential in response to an external electrical stimulus, also known
as the Action Potential (AP). In this work, we ask “assuming that the AP is
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Fig. 1. (a)The IMW model, showing various currents. (b)The sodium channel components MI

(detailed) and MH (abstract) composed with the potassium and voltage components forming the
rest of a simplified version (IMW’) of the IMW model.

the only observable, can we replace the sodium current component, MI , of IMW
with an equivalent model-order reduced Hodgkin Huxley (HH)-type model MH?”
The HH model [2], uses two variables m and h to model a squid neuron’s trans-
membrane sodium current. In [4], we proposed an algorithm to identify MH that
is δ-bisimilar (equivalent) to the 13-state voltage-controlled MI .

Compositionality of the equivalent sodium channels with the rest of the sim-
plified IMW model (IMW-RT’) can be established using Bisimulation Functions
(BFs) and a small gain theorem based on them.



Definition 1. Consider two dynamical systems Σi, as per [1], but with gi :
Xi → Yi, being the output functions that map a state to yi ∈ Yi ⊆ Rp. Let
Rδ = {(x1,x2)| ‖ g1(x1) − g2(x2) ‖≤ δ}.A smooth function S : Rδ → R+

0 is a
δ-Restricted BF (δ-RBF) over Σ1 and Σ2 if:

‖ g1(x1)− g2(x2) ‖ ≤ S(x1,x2) (1)

and there exists λ > 0, γ ≥ 0 such that ∀u1 ∈ U1,u2 ∈ U2,

∂S

∂x1
f1(x1,u1) +

∂S

∂x2
f2(x2,u2) ≤ −λS(x1,x2) + γ ‖ u1 − u2 ‖ (2)

Theorem 1. Let Σ1, Σ2 and Σ3 be three dynamical systems. Let Σ13 and Σ23

be interconnections (as defined in [1]) of Σ3 with Σ1 and Σ2 respectively. Let S12

be a δ-RBF between Σ1 and Σ2 and S3 be δ-RBF for Σ3. We denote by λ12 and
γ12 (λ3 and γ3 respectively) the constants such that Eq. (2) holds. If γ12γ3

λ12λ3 <
1, then there exists a BF S between Σ13 and Σ23 of the form S(x13,x23) =
α1S12(x1,x2) + α2S3(x3,x

′
3) where, x13 = [x1,x3], and x23 = [x2,x

′
3] The real

constants α1 and α2 can be chosen as in Eq.4 of [1] by replacing λ1 = λ12,
γ1 = γ12, λ2 = λ3 and γ2 = λ3.

The two BFs, 1) between MI and MH and 2) for IMW-RT’ were identified in
the SOSTOOLS toolbox [5] by adding the following constraint along with the
ones that define a BF: S(x,x′)− ‖ g1(x) − g2(x′) ‖≤ δ. The parameter λ was
fixed to either 10−4 and 10−5 for the two BFs and γ was found to be 10−6, which
resulted in the small-gain condition being satisfied. Fig. 2 shows experimental
evidence of the model equivalence on replacing MI by MH .
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(a) Na channel con-

ductance.
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(b) INa current.

0 5 10 15 20
−80

−60

−40

−20

0

20

40

time (ms)

V
ol

ta
ge

 (m
V

)

 

 
Original
HH−abstraction

(c) APs.
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(d) IKv43 current.

Fig. 2. IMW’ was stimulated using -100 pA/pF stimulus with MI and then MH . The resulting

mean L1 errors were ONa : 9.15× 10−4, INa: 3.8pA/pF , IKv43: 0.0078pA/pF , V : 2.29mV .
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