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Goal: Automatic Verification 
with Timing Constraints 

Formally verify program correctness 

Automate the verification 

Handle time and timing constraints, both in 
model and specification 
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Timing Constraints Exist: 
Model Constraints 

We allow the 
train to wait 
for different 
amounts of 
time 

The gate takes 
time to lower 
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Timing Constraints Exist: 
Specification Constraints 

The gate will 
be up within 2 
minutes after a 
train leaves 

Any train is in 
the region is in 
the region for 
at most 4 
minutes 
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Our Framework 

Programs modeled with timed automata 

Properties specified with a timed mu-calculus (a 
modal logic) 
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Tool Implementation Exists 

Peter Fontana and Rance Cleaveland. On-The-Fly 
Timed Automata Model Checking. Presented at 
CMACS PI Meeting on May 16, 2013   
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The Power of Proofs 

This tool generates a mathematical proof 

Verification using proof rules 

We optimize performance by using derived 
proof rules 
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The Trick: Memoization 

“Those who cannot remember the past are 
condemned to repeat it” (George Santayana) 
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The Trick: Memoization 
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Fibonacci Series: a0 = 1, a1 = 1, an = an-2 + an-1 

Compute a4: 

a4 = a2 + a3 

a2 = a1 + a0 = 1 + 1 = 2 
Memoization: Store “a2 = 2” 
a4 = 2 + a3 
a4 = 2 + (a2 + a1) 



The Details 
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Model: Timed Automata (State 
Machine + Clocks) [AD94] 

0: far 
 

1: near 
x1 < 4 

2: in 
x1 < 15 in, x1 = 4, x1 := 0 approach, 

x1 := 0 

exit, x1 > 1, x1 := 0 
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Alur-Dill Model: timing constraints use clocks 

A state is a (location, clock values) pair 



Specification: Timed Modal 
Mu-Calculus Lrel

ν,µ 

Boolean Logic 

Variables  Xi 

Action Modalities 

Time Modalities 

Fixpoints 

Relativized Time Modalities  
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Fixpoints 
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Definition (Formal): A fixpoint of a function f is a 
value x such that f(x) = x 



The Power of Fixpoints: 
Writing Always Recursively 

Always p: p is true now, and Always p is true in 
all next states. 

 

Note: This simplified formula assumes p only 
contains atomic propositions 
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The Power of Fixpoints: 
Formulas Represent States 

Always p: p is true now, and Always p is true in 
all next states. 

 

X1 is a set of states computed by this formula 

Function f: 
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The Power of Fixpoints: 
Recursion as Local Search 
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Always p: p is true now, and Always p is true in 
all next states. 

1.  Have X1 start at the initial state 
2.  Formula transitions X1 to all next states 

3.  Stop when X1 is a previously seen state 

Greatest Fixpoint (ν): Visiting a previous state 
implies formula truth 
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The Power of Fixpoints: Never 
broken (AG) 

0: far 
 

1: near 
x1 < 4 

2: in 
x1 < 15 in, x1 = 4, x1 := 0 approach, 

x1 := 0 

exit, x1 > 1, x1 := 0 
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Verifier: Location 0: far is not broken 



The Power of Fixpoints: Never 
broken (AG) 

0: far 
 

1: near 
x1 < 4 

2: in 
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Verifier: Location 0: far is not broken 



The Power of Fixpoints: Never 
broken (AG) 

0: far 
 

1: near 
x1 < 4 

2: in 
x1 < 15 in, x1 = 4, x1 := 0 approach, 

x1 := 0 

exit, x1 > 1, x1 := 0 
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Verifier: Location 1: near is not broken 



The Power of Fixpoints: Never 
broken (AG) 

0: far 
 

1: near 
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x1 := 0 

exit, x1 > 1, x1 := 0 
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Verifier: Location 1: near is not broken 



The Power of Fixpoints: Never 
broken (AG) 
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Verifier: Location 2: in is not broken 



The Power of Fixpoints: Never 
broken (AG) 

0: far 
 

1: near 
x1 < 4 
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Verifier: Location 2: in is not broken 



The Power of Fixpoints: Never 
broken (AG) 

0: far 
 

1: near 
x1 < 4 

2: in 
x1 < 15 in, x1 = 4, x1 := 0 approach, 

x1 := 0 

exit, x1 > 1, x1 := 0 
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Verifier: We have visited 0: far again (circularity); 
apply greatest fixpoint 



Proof Rules: One Step at A 
Time (X1: Always not broken) 
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Relativization Operators 
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Definition: Lrel
ν,µ relativization operators are: 

 

Definition by duality:  

Obtaining Lν,µ operators:  
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Relativization Operators give 
Expressive Power 
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Theorem: We can express all of TCTL in Lrel
ν,µ   



Relativization Operators?!? 
We Need Them! 

27 

Theorem: We cannot express TCTL formula Aφ1Rφ2 
in Lν,µ   



Proof Rule Optimization 1: 
Relativized All 
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Lemma: 

Use proof of derivation to generate a derived rule 
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Relativized All Optimization: 
Rewrite a Subrule 
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Relativized All Optimization: 
Memoize φ2 
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1.  Find all states that satisfy φ1 

2.  Find all states that satisfy φ2 

3.  Reason with memoized stored states to handle 
logic operators 
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Correctness of Proof Rules 
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Theorem: The proof rules (original and derived) 
are sound and complete. 



Conclusion 

Implementation can check more 
specifications: the entire alternation-free 
fragment of Lrel 

Using derived proof rules optimizes 
performance 
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Future Work 

Further Proof Utilization: Extra verification 
information 

Performance optimization 
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