The Power of Proofs: New
Algorithms for Timed
Automata Model Checking

Peter Fontana and Rance Cleaveland
Department of Computer Science
CMACS 2013: Nov 22, 2013

UNIVERSITY OF

MARYLAND

®

Goal: Automatic Verification
with Timing Constraints

Formally verify program correctness
Automate the verification

Handle time and timing constraints, both in
model and specification

Timing Constraints Exist:
Model Constraints

We allow the
train to wait
for different
amounts of
time

The gate takes
time to lower

Timing Constraints Exist:
Specification Constraints

The gate will
be up within 2
minutes after a
train leaves

Any train is in
the region is in
the region for
at most 4
minutes

Our Framework

Programs modeled with timed automata

Properties specified with a timed mu-calculus (a
modal logic)

Tool Implementation Exists

Peter Fontana and Rance Cleaveland. On-The-Fly
Timed Automata Model Checking. Presented at
CMACS PI Meeting on May 16, 2013

The Power of Proofs

This tool generates a mathematical proof

Verification using proof rules

We optimize performance by using derived
proof rules

The Trick: Memoization

“"Those who cannot remember the past are
condemned to repeat it” (George Santayana)

The Trick: Memoization

Fibonacci Series: a, = 1,a;, =1,a, =a,,+ a,.4

Compute a,:
a, = a, + as
a,=a, +ta;,=1+1=2
Memoization: Store "a2 = 2”
a, = 2 + a;
a, =2+ (a, + ay)

The Details

10

Model: Timed Automata (State
Machine + Clocks) [AD94]

exit, x; > 1,x; :=0

1: near
approach, X; < 4 in,x; =4,%x,:=0
X;:=0

Alur-Dill Model: timing constraints use clocks

A state is a (location, clock values) pair

11

Specification: Timed Modal

Mu-Calculus L™

Boolean Logic

Variables X,

Action Modalities [a](¢). (a)(p), [= 1(®). (=)(®)
Time Modalities Y(®), 3()

v K

Fixpoints =,

Relativized Time Modalities Vo, (®3), o, (@5)

12

Fixpoints

Definition (Formal): A fixpoint of a function f is a
value x such that f(x) = x

13

The Power of Fixpoints:
Writing Always Recursively

Always p: p is true now, and Always p is true in
all next states.

X1 = p AV - 1(X1))

Note: This simplified formula assumes p only
contains atomic propositions

14

The Power of Fixpoints:
Formulas Represent States

Always p: p is true now, and Always p is true in
all next states.

X1 = p AY([-1(X1))
X, is a set of states computed by this formula

Function f: f(X1)=p A V([— 1(X1))

15

The Power of Fixpoints:
Recursion as Local Search

Always p: p is true now, and Always p is true in
all next states.

X1= p AV -1(X1))
1. Have X, start at the initial state
2. Formula transitions X; to all next states
3. Stop when X, is a previously seen state

Greatest Fixpoint (v): Visiting a previous state
implies formula truth

16

The Power of Fixpoints: Never
broken (AG)

exit, x; > 1,x; :=0

1: near
approach, X; < 4 in,x; =4,%x,:=0
X;:=0

Verifier: Location 0: far is not broken

17

The Power of Fixpoints: Never
broken (AG)

exit, x; > 1,x; :=0

approach,
X;:=0

Verifier: Location 0: far is not broken

18

The Power of Fixpoints: Never
broken (AG)

exit, x; > 1,x; :=0
approach, @ in, x; =4, x,:=0
X;:=0

Verifier: Location 1: near is not broken

19

The Power of Fixpoints: Never
broken (AG)

exit, x; > 1,x; :=0

approach,
X;:=0

Verifier: Location 1: near is not broken

20

The Power of Fixpoints: Never
broken (AG)

exit, x; > 1,x; :=0

1: near
approach, X; < 4 in,x; =4,%x,:=0
X;:=0

Verifier: Location 2: in is not broken

21

The Power of Fixpoints: Never
broken (AG)

exit, x; > 1,x; :=0

1: near
approach, X; < 4 in,x; =4,%x,:=0
X;:=0

Verifier: Location 2: in is not broken

22

The Power of Fixpoints: Never
broken (AG)

exit, x; > 1,x; :=0

1: near
approach, X; < 4 in,x; =4,%x,:=0
X;:=0

Verifier: We have visited 0: far again (circularity);
apply greatest fixpoint

23

Proof Rules: One Step at A
Time (X,: Always not broken)

Premise 1 S Premise n (Rule Name)
Conclusion

(0:far,{x; =0})FX; True (Greatest fixpont)

(.1. .: near,{x1 =0})F Xj

(0 : far,{xy = 0}) - -broken A all next states X

(0 : far, {Xl = O}) = X1

24

Relativization Operators

Definition: L'l | relativization operators are:

Jo,(5): for all times &' < 3, @, is true

Vo.(P,): @4 releases @, from being true

Definition by duality: 3o, (®5) 2 ~V-¢ (~@5)

Obtaining L, , operators: 3.:(), Vee (@)

25

Relativization Operators give
Expressive Power

Theorem: We can express all of TCTL in L', |

26

Relativization Operators?!?
We Need Them!

Theorem: We cannot express TCTL formula Ap,;R®,
inL,

27

Proof Rule Optimization 1:
Relativized All

Lemma: Vo, (@) =V(P3) V dp, (@1 A P3)

Use proof of derivation to generate a derived rule

28

Relativized All Optimization:
Rewrite a Subrule

Before : :I

P> P; N\ P,
After : I
(pZ (P]_

V(P2) V <o, (P1)
V(Py) V Jp,(P1 A P3)
Vo, (P3)

Relativized All Optimization:
Memoize @,

v(

1.

Py V3 (P1)

<P

Find all states that satisfy @,

. Find all states that satisfy ¢,

. Reason with memoized stored states to handle

logic operators Vv, 3

30

Correctness of Proof Rules

Theorem: The proof rules (original and derived)
are sound and complete.

31

Conclusion

Implementation can check more
specifications: the entire alternation-free
fragment of Lrel

Using derived proof rules optimizes
performance

Future Work

Further Proof Utilization: Extra verification
information

Performance optimization

33

