analysis of complex software

gerard holzmann
jpl laboratory for reliable software
gh@jpl.nasa.gov

+30 [Viking (1976) and MER (2004)]

same destination (mars)
same nr of instruments (~8)
similar landed mass (~550kg)
same # person-months

two orders of magnitude more code
The code size has grown after a 2-year postponement of the mission in 2009:
software grows with time.

It is a general trend
(all aerospace software – military, commercial, space)

Top: manned
Bottom: robotic
automotive software
example: the Mercedes-Benz S-Class 2003

- more than 50 embedded controllers
- more than 600,000 lines of code

IBM claims that approximately 50 percent of car warranty costs are now related to electronics and their embedded software, costing automakers in the United States around $350 and European automakers €250 per vehicle in 2005.

In 2005, Toyota voluntarily recalled 160,000 of its 2004 and some early 2005 model year Prius hybrids because of a software problem that caused the car to suddenly stall or shut down. The time needed to repair the software was estimated at about 90 minutes per vehicle, or about 240,000 person-hours. Even at cost, that is a lot of money.

unintended acceleration
our investigation of possible software causes

http://www.spectrum.ieee.org/feb09/7649
our plan

- **objective:** scale logic model checking techniques to handle complex software applications (as used in automobiles, spacecraft, power plants)
 - significantly improve over currently used methods for software testing
- **method:** leverage grid/cloud/multi-core verification techniques and search randomization techniques
 1. develop new efficient algorithms, and prove them correct
 2. make them trivial to use by any software developer
 3. evaluate them on complex mission-critical spacecraft software
- **metric:** quantifiable improvements over the currently used verification methods for complex software systems in the target domain (aerospace & automotive)

thank you!