
Users can define libraries of schedulers, for example those
corresponding to the scheduling policies in VxWorks or OSEK, and
then reuse them for different applications.
The scheduling language is also suitable for specifying non-
standard constraints that may be used to prioritize a verification
search or to partition the search space, in an attempt to locate
corner cases with potentially anomalous behavior.

Analysis and Verification Support

We are developing an interactive development and analysis
framework that supports both execution and verification based on
model checking of specifications written in the new language.

The framework exploits the scheduling policies formalized explicitly
as part of the design and focuses the analysis on the relevant
behaviors. The framework supports the verification of the same
application under a range of different scheduling
policies. The analyses can proceed invisible to
the user in the background, using swarm-based
verification techniques.

Future Directions

We want to leverage parallelism that may be
available through the use of GPUs and
multiples execution cores or CPUs.

The architecture of our framework consists of three main
components:
-  an executive that keeps track of the current state and updates it

by taking a step corresponding to an action from the language;
-  a scheduler that, by looking at the current state, decides what

actions can be taken next;
-  an analysis tool (e.g. an interpreter or a model checker) that

monitors the execution, picks an action from those returned by
the scheduler, and instructs the executive to take the
corresponding step.

Specification Language

We are developing a new specification language that is close to a
systems implementation language (e.g. C), but has a formally
defined semantics, provides higher-level abstractions and allows us
to write formal specifications as part of the source code in the form
of interface standards and assertion requirements. The language is
also close to a typical specification language used in model
checking (e.g. Promela), but is richer by providing functions and
abstract data types.

The specification language is statically typed and provides support
for concurrency and channel-based message passing. The memory
model used by the language relies on the notions of ownership and
ownership transfer and avoids features that can obstruct formal
verification attempts (e.g. explicit pointers and unsafe casts).
The specification language also provides features used by the
scheduling language: defining process attributes and assigning
processes to schedulers.

Scheduling Language

We are developing a constraint-based language for specifying
common schedulers used in embedded systems. The language
operates on predefined sets of processes, like the set of enabled
processes, and can access the process attributes defined using the
specification language.

Overview

With this project we target the development of reliable safety critical
embedded applications, such as used widely in aerospace, in
automotive applications, and in medical devices.

We have identified two core issues with the current state of the art:
1.  embedded systems software is normally structured in a way that

does not leverage available analysis tools. The software is
developed in an analysis-agnostic style that often obfuscates
the abstractions made and hampers analyses;

2.  analysis tools do not leverage available knowledge of the
embedded systems’ environment. For example, embedded
systems software relies critically on specific schedulers that
differ significantly from those used on common desktop and
mainframe platforms.

Approach

We address the above two core issues by designing and building a
demonstration environment for safety-critical embedded systems
software development.
1.  The first issue is addressed by developing a new executable

specification language that enforces a code structure that is
analysis-friendly. Because scheduling disciplines can have an
important influence on both execution and analysis, the
language includes a sublanguage for describing schedulers.

2.  The second issue is addressed by building an analysis tool that
allows direct execution of specifications and also offers
verification support based on model checking. The verification
algorithms exploit the structure of the code and the schedulers
introduced using the specification language. Constraining the
analysis to traces that can occur in practice might lead to a
significant performance improvement.

Analysis-aware Design of Embedded Systems Software
Mihai Florian

mflorian@cs.caltech.edu

NSF Expeditions in Computing

SUMMARY REFERENCES
In the past many different methodologies have been developed that support the analysis of software artifacts, and a
different set of methodologies have been developed to support software development. We believe that we can gain
significant benefits if we combine these two approaches into one methodology that links software development styles
directly with existing capabilities of software analysis tools. We apply this methodology to the design and analysis of large
complex multi-threaded embedded systems software.

[1] M. Florian. A Framework for Systematic Testing of Multi-threaded Applications. Proc. PRDC 2011, to appear.
[2] G.J. Holzmann, R. Joshi, and A. Groce. Swarm verification techniques. IEEE Trans. on Software Engineering,
accepted for publication, 2011.
[3] G.J. Holzmann. Reliable software development: extending the programmer's toolbox. Proc. ETAPS 2011,
Saarbrucken, Germany.

process	 proc(priority	 :	 uint,	 steps	 :	 uint)	 	
	 	 sched	 by	 PrioSched	
{	
	 	 function	 run()	 {	 ...	 	 }	
}	

nonpreemptive	 scheduler	 PrioSched	
{	
	 	 Next	 =	 {p	 in	 Enabled	 |	 forall	 p’	 in	 Enabled	 ::	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 priority(p’)	 <=	 priority(p)}	
}	
preemptive	 scheduler	 CountSched	
{	
	 	 Next	 =	 {p	 in	 Enabled	 |	 forall	 p'	 in	 Enabled	 ::	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 abs(steps(p)	 -‐	 steps(p'))	 <	 10}	
	 	 update(steps	 :	 uint)	 {	 steps	 =	 steps	 +	 1	 ;	 }	
}	

user
system spec

scheduler

analyses running
in the background

analysis

scheduler

executive

model checking
testing

priority-based round robin
rate-based monotonic

Gerard J. Holzmann
gh@cs.caltech.edu

