
Hybrid systems combine discrete and continuous 
behaviors. 

• In realistic hybrid systems, the continuous behaviors are 
specified by nonlinear real functions and differential 
equations. 
• Current verification tools have great difficulty in handling 
these functions. 

• Modern verification tools, especially Bounded Model 
Checkers, rely on efficient solvers for deciding satisfiability 
of logic formulas. For instance, highly scalable SAT solvers 
are the key for industrial-strength hardware model 
checking tools. 

• Solving verification problems for nonlinear hybrid 
systems requires the use of Satisfiability Modulo Theories 
(SMT) solvers over real numbers. 

• However, nonlinear SMT problems over reals are in 
general undecidable (with transcendental functions), and 
existing tools that handle basic nonlinear formulas 
(polynomials) already have very high complexity.  

• On the other hand, nonlinear systems of real equalities 
and inequalities are routinely solved by highly scalable 
numerical algorithms.

• However, numerical algorithms always introduce errors 
that can render formal verification results invalid. [Platzer 
and Clarke, HSCC07]

• We developed a way of taking numerical errors into 
account in SMT solvers, and make the use of numerical 
solvers legitimate.  

•  Type-II Computable Functions:  A real-valued function 
f(x) is Type-II computable if given any a in its domain,  and 
any positive error bound e, there is an algorithm for 
computing y such that |f(a)-y|<e. 

• Type-II computability formally describes the functions 
that are “numerically solvable”. Polynomials, exp, 
continuous ODEs are all Type-II computable. 

•  We define numerical perturbations on SMT formulas 
over                     

  

• Robust Formulas have nice computability and complexity 
properties. 

•  We can build an SMT solver with the following 
correctness guarantee, which we call delta-
completeness:

•  We use Interval Constraint Propagation (ICP) 
algorithms to handle real constraints and Interval-based 
ODE solvers to handle differential equations.

• Based on the SMT solver,  we can build a Bounded 
Model Checker for hybrid systems. Formulas are 
generated in the following way: 

•  Then using delta-complete solvers, we provide the 
following correctness guarantee: 

- If Reach is unsatisfiable, then the system is definitely safe 
up to n.
- If Reach is satisfiable, then there exists a numerical 
perturbation smaller than the (user-specified) error bound 
delta, such that the system has a bug under that 
perturbation.
 
•Note that in this way, we are able to report possible 
robustness problems in the system! Exact solvers, 
however, can not provide such support.

Delta-Complete Methods for Nonlinear Hybrid Systems
Sicun Gao, Jeremy Avigad, and Edmund M. Clarke

Hybrid System Example

Controller of an automated guided vehicle [Lee and Seshia, 2011]
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The Call for Efficient SMT Solvers

Introduction

system SMT Solver
unroll to depth n

depth n++

NO 
SOLUTION?

SOLUTION
FOUND?

BUG

Type-II Computability

First-order Formulas with Computable Functions

I Let F be any recursive set of Type-II computable functions.

I This is a very general framework: F can contain polynomials, exp,
sin, and solutions of Lipschitz-continuous ODEs.

I Consider RF = hR, 0, 1,F , <i and the corresponding LF .

I Can we solve SMT problems in LF over RF?

I This would allow us to solve formulas that arise in bounded model
checking of hybrid systems, almost in its full generality.

I The obvious answer is of course NO.

But what if we take into account the numerical computability of F?
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Perturbations and Robustness
�-Robustness

Consequently, we could consider formulas whose satisfiability is invariant under
numerical perturbations.

I Consider any formula ' :=
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I
Inequalities are turned into interval bounds on slack variables.

I A �-perturbation on ' is a constant vector ~c satisfying ||~c||1 < �, and a
�-perturbed ' is:
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�-Robustness

I We say satisfiability of ' is �-robust (over some bounded ~

I), if:

For any �-perturbation ~c, 9~

I

~x.' $ 9~

I

x.'

~c

.

I Observations:

I If robust for bigger �, then robust for smaller ones.

I Strict and non-strict inequalities are inter-changeable in robust
formulas. (But negations can still be encoded.)
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Computational Benefits: Decidability

As it turns out, robust formulas in LF have nice computational properties.

I Theorem:

Satisfiability of robust bounded SMT problems over RF is decidable.

I This is significant given the richness of F : exp, sin, ODEs, ...

I
But it is not surprising if you think about what robustness and compactness imply.

I Decidability can be extended to the full “robust first-order theory”.

I
Cylindrical decomposition can be simulated on a low level.
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Computational Benefits: Complexity

I Theorem:

Suppose all the functions in F are in Type-II complexity class C, then
satisfiability of bounded SMT in LF can be decided in NPC.

I Corollaries:

I F = {+,⇥, exp, sin}: NP-complete.

I F = {Lipschitz-continuous ODEs}: PSPACE-complete.
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Delta-Complete Decision Procedures

In practice we do not have general ways of recognizing robust formulas. But:

I Theorem:

There exists a decision algorithm that, on any bounded SMT ' in LF ,
returns “sat/unsat” satisfying:

I If ' is decided as “unsat”, then it is indeed unsatisfiable.

I If ' is decided as “sat”, then:

Under some �-perturbation ~c, '~c is satisfiable.

I If a decision procedure satisfies this property, we say it is �-complete.
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Unrolling Hybrid Systems

Encoding Continuous Dynamics

I Continuous Dynamics:
d~x(t)

dt

=

~

f(~x(t), t)

I The solution curve:

↵ : R ! X, ↵(t) = ↵(0) +

Z
t

0

~

f(↵(s), s)ds.

I Define the predicate (probably no analytic forms)

JFlow
f

(~x0, t, ~x)KM = {(~x0, t, ~x) : ↵(0) = ~x0,↵(t) = ~x}

Reachability:

9~x0, ~x, t. (Init(~x0) ^ Flow
f

(~x0, t, ~x) ^ Unsafe(~x)) ?
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Encoding Bounded Reachability for Hybrid Systems

For hybrid systems we combine continuous and discrete behaviors:

I “~x is reachable after after 0 discrete jumps”:

Reach0(~x) := 9~x0, t. [Init(~x0) ^ Flow(~x0, t, ~x)]

I Inductively, “~x is reachable after k + 1 discrete jumps”:

Reachk+1
(~x) := 9~x

k

, ~x

0
k

, t. [Reachk(~x
k

) ^ Jump(~x
k

, ~x

0
k

) ^ Flow(~x0
k

, t, ~x)]

(Some details are omitted.)

Reachability within n discrete jumps:

9~x. (
n_

i=0

Reachi(~x) ^ Unsafe(~x)) ?
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Example: Simulink Model of Transmission 

Sample Property: t<200 and Gear = 4 and 
70<Speed<80?
Result: Reachable with the following trace on 
critical variables:
Speed:
        @0: [1, 1]
        @1: [8.3520405219013280629, 8.3675971547191494437]
        @2: [29.844748106305949875, 29.856108857390363909]
        @3: [37.106093249135007284, 37.120495559140735509]
        @4: [72.981987126961513468, 72.986794613310777891]
Time:
        @0: [0, 0]
        @1: ]6.7742593827570605214, 6.8383797016907150734]
        @2: [6.8487060830774222353, 6.9128264020110767873]
        @3: [14.752161300744385031, 14.821536317527019833]
        @4: [14.84643947092195404, 14.9296596924314251]
Ti: 
        @0: [10, 10]
        @1: [63.892425818913153535, 63.947118870255138745]
        @2: ]64.321812807985025984, 64.37502142006447059]
        @3: [3432.1482632916404327, 3432.2255638116234877]

Gear:
        @1, @2, @3, @4

Number of Variables:  349  Number of Clauses:  793  Solving Time: 4.5s
Functions Involved: nonlinear polynomials, linear differential equations

Theory Practice


