Delta-Complete Methods for Nonlinear Hybrid Systems

Sicun Gao, Jeremy Avigad, and Edmund M. Clarke

Introduction

Hybrid systems combine discrete and continuous
behaviors.

i) = lleosBir)] = lhcoz8i)
Wy = 10za8(y) ¥r) = 10sa8(r)
e . Bt 0

Flx(e) v elt) Flxle), ¥

L) ¥l
B f o)
elr) Fiele, vl elr) Flalr).wle))

* |n realistic hybrid systems, the continuous behaviors are
specified by nonlinear real functions and differential
equations.

* Current verification tools have great difficulty in handling
these functions.

The Call for Efficient SMT Solvers

* Modern verification tools, especially Bounded Model
Checkers, rely on efficient solvers for deciding satisfiability
of logic formulas. For instance, highly scalable SAT solvers
are the key for industrial-strength hardware model
checking tools.

* Solving verification problems for nonlinear hybrid
systems requires the use of Satisfiability Modulo Theories
(SMT) solvers over real numbers.

unroll to depth n

. > SMT Solver

system
depth n++
_~— SOLUTION
T SOLUTION? — F°‘1ND?
BUG

* However, nonlinear SMT problems over reals are in
general undecidable (with transcendental functions), and
existing tools that handle basic nonlinear formulas
(polynomials) already have very high complexity.

* On the other hand, nonlinear systems of real equalities
and inequalities are routinely solved by highly scalable
numerical algorithms.

* However, numerical algorithms always introduce errors
that can render formal verification results invalid. [Platzer

and Clarke, HSCCO07]

* We developed a way of taking numerical errors into
account in SMT solvers, and make the use of humerical
solvers legitimate.

Type-ll Computability

e Type-ll Computable Functions: A real-valued function
f(x) is Type-ll computable if given any a in its domain, and
any positive error bound e, there is an algorithm for
computing y such that |[f(a)-y|<e.

* Type-ll computability formally describes the functions
that are “numerically solvable”. Polynomials, exp,
continuous ODEs are all Type-ll computable.

Perturbations and Robustness

* We define numerical perturbations on SMT formulas
over Er=(R.0,1,F, <)

> Consider any formula ¢ := A, (V; fi; (Z) = 0).

> Inequalities are turned into interval bounds on slack variables.

» A §-perturbation on ¢ is a constant vector ¢ satisfying ||c]|ec < 9, and a
d-perturbed ¢ is:

p° = /\(\/ | fi5(Z)] = ¢ij)

g
» We say satisfiability of ¢ is d-robust (over some bounded I), if:

For any d-perturbation & 3'Z.0 Hlac.gpg.

* Robust Formulas have nice computability and complexity
properties.

» [heorem:

Satisfiability of robust bounded SMT problems over R r is decidable.

» F ={+, X, exp,sin}: NP-complete.
» JF = {Lipschitz-continuous ODEs}: PSPACE-complete.

» Continuous Dynamics:

* We can build an SMT solver with the following
correctness guarantee, which we call delta-
completeness:

» If © is decided as “unsat”, then it is indeed unsatisfiable.

» If © is decided as “sat”, then:

Under some o-perturbation c, 905 Is satisfiable.

* We use Interval Constraint Propagation (ICP)
algorithms to handle real constraints and Interval-based
ODE solvers to handle differential equations.

Unrolling Hybrid Systems

* Based on the SMT solver, we can build a Bounded
Model Checker for hybrid systems. Formulas are
generated in the following way:

dZit) = _’(a":’(t), t) » “Z is reachable after after O discrete jumps”:

0/ - L — . — - —
» The solution curve: Reach™ () := 3%o,t. [Init(Zo) A Flow(Zo, t, Z)]

a:R— X, a(t):a(())—l—/

t
0

—

fla(s), s)ds. » Inductively, “Z is reachable after k + 1 discrete jumps”:

» Define the predicate (probably no analytic forms) Reach” ™ (&) := 3&, T, t. [Reach® (F) A Jump (&,) A Flow(i, t,)]

[Flow ¢ (Zo, t,)] = {(Zo,t,Z) : «(0) = Zo, a(t) = T}

* Then using delta-complete solvers, we provide the
following correctness guarantee:

- If Reach is unsatisfiable, then the system is definitely safe
up to n.

- If Reach is satisfiable, then there exists a numerical
perturbation smaller than the (user-specified) error bound
delta, such that the system has a bug under that
perturbation.

*Note that in this way, we are able to report possible

robustness problems in the system! Exact solvers,
however, can not provide such support.

Example: Simulink Model of Transmission

Sample Property: <200 and Gear = 4 and
70<Speed<80?
Result: Reachable with the following trace on
1 critical variables:
il Speed:
@o:[1, 1]
@]:[8.35204052 19013280629, 8.367597 1547191494437]
@2: [29.844748106305949875, 29.856 108857390363909]
=) @3: [37.106093249 135007284, 37.120495559140735509]
‘ = @4: [72.981987126961513468, 72.986794613310777891]
| Time:

@0: [0, 0]
@]1:16.77425938275706052 14, 6.8383797016907 1 50734]
@2: [6.8487060830774222353, 6.91282640201 10767873]
@3:[14.75216130074438503 1, 14.821536317527019833]
@4: [14.84643947092195404, 14.92965969243 14251]
Ti:
, @0:[10, 10]

- e T @]:[63.892425818913153535,63.9471 18870255 | 38745]
1= inJ[‘bf w Al P @2:164.321812807985025984, 64.37502 1 42006447059]

L= @3: [3432.1482632916404327, 3432.2255638 1 16234877]

gear_sate

Gear:

@, @2, @3, @4

Number of Variables: 349 Number of Clauses: 793 Solving Time: 4.5s
Functions Involved: nonlinear polynomials, linear differential equations

