
Hybrid systems combine discrete and continuous
behaviors.

• In realistic hybrid systems, the continuous behaviors are
specified by nonlinear real functions and differential
equations.
• Current verification tools have great difficulty in handling
these functions.

• Modern verification tools, especially Bounded Model
Checkers, rely on efficient solvers for deciding satisfiability
of logic formulas. For instance, highly scalable SAT solvers
are the key for industrial-strength hardware model
checking tools.

• Solving verification problems for nonlinear hybrid
systems requires the use of Satisfiability Modulo Theories
(SMT) solvers over real numbers.

• However, nonlinear SMT problems over reals are in
general undecidable (with transcendental functions), and
existing tools that handle basic nonlinear formulas
(polynomials) already have very high complexity.

• On the other hand, nonlinear systems of real equalities
and inequalities are routinely solved by highly scalable
numerical algorithms.

• However, numerical algorithms always introduce errors
that can render formal verification results invalid. [Platzer
and Clarke, HSCC07]

• We developed a way of taking numerical errors into
account in SMT solvers, and make the use of numerical
solvers legitimate.

• Type-II Computable Functions: A real-valued function
f(x) is Type-II computable if given any a in its domain, and
any positive error bound e, there is an algorithm for
computing y such that |f(a)-y|<e.

• Type-II computability formally describes the functions
that are “numerically solvable”. Polynomials, exp,
continuous ODEs are all Type-II computable.

• We define numerical perturbations on SMT formulas
over

• Robust Formulas have nice computability and complexity
properties.

• We can build an SMT solver with the following
correctness guarantee, which we call delta-
completeness:

• We use Interval Constraint Propagation (ICP)
algorithms to handle real constraints and Interval-based
ODE solvers to handle differential equations.

• Based on the SMT solver, we can build a Bounded
Model Checker for hybrid systems. Formulas are
generated in the following way:

• Then using delta-complete solvers, we provide the
following correctness guarantee:

- If Reach is unsatisfiable, then the system is definitely safe
up to n.
- If Reach is satisfiable, then there exists a numerical
perturbation smaller than the (user-specified) error bound
delta, such that the system has a bug under that
perturbation.

•Note that in this way, we are able to report possible
robustness problems in the system! Exact solvers,
however, can not provide such support.

Delta-Complete Methods for Nonlinear Hybrid Systems
Sicun Gao, Jeremy Avigad, and Edmund M. Clarke

Hybrid System Example

Controller of an automated guided vehicle [Lee and Seshia, 2011]

5/33

The Call for Efficient SMT Solvers

Introduction

system SMT Solver
unroll to depth n

depth n++

NO
SOLUTION?

SOLUTION
FOUND?

BUG

Type-II Computability

First-order Formulas with Computable Functions

I Let F be any recursive set of Type-II computable functions.

I This is a very general framework: F can contain polynomials, exp,
sin, and solutions of Lipschitz-continuous ODEs.

I Consider RF = hR, 0, 1,F , <i and the corresponding LF .

I Can we solve SMT problems in LF over RF?

I This would allow us to solve formulas that arise in bounded model
checking of hybrid systems, almost in its full generality.

I The obvious answer is of course NO.

But what if we take into account the numerical computability of F?

16/33

Perturbations and Robustness
�-Robustness

Consequently, we could consider formulas whose satisfiability is invariant under
numerical perturbations.

I Consider any formula ' :=

V
i

(

W
j

f

ij

(~x) = 0).

I
Inequalities are turned into interval bounds on slack variables.

I A �-perturbation on ' is a constant vector ~c satisfying ||~c||1 < �, and a
�-perturbed ' is:

'

~c :=
^

i

(
_

j

|f
ij

(~x)| = c

ij

)

18/33

�-Robustness

I We say satisfiability of ' is �-robust (over some bounded ~

I), if:

For any �-perturbation ~c, 9~

I

~x.' $ 9~

I

x.'

~c

.

I Observations:

I If robust for bigger �, then robust for smaller ones.

I Strict and non-strict inequalities are inter-changeable in robust
formulas. (But negations can still be encoded.)

19/33

Computational Benefits: Decidability

As it turns out, robust formulas in LF have nice computational properties.

I Theorem:

Satisfiability of robust bounded SMT problems over RF is decidable.

I This is significant given the richness of F : exp, sin, ODEs, ...

I
But it is not surprising if you think about what robustness and compactness imply.

I Decidability can be extended to the full “robust first-order theory”.

I
Cylindrical decomposition can be simulated on a low level.

20/33

Computational Benefits: Complexity

I Theorem:

Suppose all the functions in F are in Type-II complexity class C, then
satisfiability of bounded SMT in LF can be decided in NPC.

I Corollaries:

I F = {+,⇥, exp, sin}: NP-complete.

I F = {Lipschitz-continuous ODEs}: PSPACE-complete.

21/33

Delta-Complete Decision Procedures

In practice we do not have general ways of recognizing robust formulas. But:

I Theorem:

There exists a decision algorithm that, on any bounded SMT ' in LF ,
returns “sat/unsat” satisfying:

I If ' is decided as “unsat”, then it is indeed unsatisfiable.

I If ' is decided as “sat”, then:

Under some �-perturbation ~c, '~c is satisfiable.

I If a decision procedure satisfies this property, we say it is �-complete.

23/33
Unrolling Hybrid Systems

Encoding Continuous Dynamics

I Continuous Dynamics:
d~x(t)

dt

=

~

f(~x(t), t)

I The solution curve:

↵ : R ! X, ↵(t) = ↵(0) +

Z
t

0

~

f(↵(s), s)ds.

I Define the predicate (probably no analytic forms)

JFlow
f

(~x0, t, ~x)KM = {(~x0, t, ~x) : ↵(0) = ~x0,↵(t) = ~x}

Reachability:

9~x0, ~x, t. (Init(~x0) ^ Flow
f

(~x0, t, ~x) ^ Unsafe(~x)) ?

7/33

Encoding Bounded Reachability for Hybrid Systems

For hybrid systems we combine continuous and discrete behaviors:

I “~x is reachable after after 0 discrete jumps”:

Reach0(~x) := 9~x0, t. [Init(~x0) ^ Flow(~x0, t, ~x)]

I Inductively, “~x is reachable after k + 1 discrete jumps”:

Reachk+1
(~x) := 9~x

k

, ~x

0
k

, t. [Reachk(~x
k

) ^ Jump(~x
k

, ~x

0
k

) ^ Flow(~x0
k

, t, ~x)]

(Some details are omitted.)

Reachability within n discrete jumps:

9~x. (
n_

i=0

Reachi(~x) ^ Unsafe(~x)) ?

8/33

Example: Simulink Model of Transmission

Sample Property: t<200 and Gear = 4 and
70<Speed<80?
Result: Reachable with the following trace on
critical variables:
Speed:
 @0: [1, 1]
 @1: [8.3520405219013280629, 8.3675971547191494437]
 @2: [29.844748106305949875, 29.856108857390363909]
 @3: [37.106093249135007284, 37.120495559140735509]
 @4: [72.981987126961513468, 72.986794613310777891]
Time:
 @0: [0, 0]
 @1:]6.7742593827570605214, 6.8383797016907150734]
 @2: [6.8487060830774222353, 6.9128264020110767873]
 @3: [14.752161300744385031, 14.821536317527019833]
 @4: [14.84643947092195404, 14.9296596924314251]
Ti:
 @0: [10, 10]
 @1: [63.892425818913153535, 63.947118870255138745]
 @2:]64.321812807985025984, 64.37502142006447059]
 @3: [3432.1482632916404327, 3432.2255638116234877]

Gear:
 @1, @2, @3, @4

Number of Variables: 349 Number of Clauses: 793 Solving Time: 4.5s
Functions Involved: nonlinear polynomials, linear differential equations

Theory Practice

