

Towers of Abstraction for Insightful Analysis of Cardiac Models

Md. Ariful Islam, Abhishek Murthy*, Ezio Bartocci, Flavio H. Fenton, Scott Smolka and Radu Grosu *amurthy@cs.stonybrook.edu

Tower of

Abstraction for

Cardiac Models

Intermediate

Modele

a. Action Potential (AP) – Response of an excitable cell. b. Restitution Curve (RC)showing refractory properties, APD: Action Potential Duration, DI: Diastolic Interval

Towers of Abstraction [1]

Starting from large intricate models, series of principled approximations/abstractions leading to reduced models at different scales.

Cardiac Models

The Minimal Model [3]

- Scaled membrane potential u
- Abstract currents: fast inward (J_{fi}), slow outward (J_{so}), slow inward (J_{si})
- Scalable formal analysis post linearization [6]
 $$\begin{split} \dot{u} &= \nabla (\tilde{D} \nabla u) - (J_{fi} + J_{so} + J_{si}), \quad \dot{v} = \frac{(1 - H(u - \theta_v))(v_{\infty} - v)}{\tau_v} - \frac{H(u - \theta_v)v}{\tau_v^*} \\ J_{fi} &= -vH(u - \theta_v)(u - \theta_v)(u_u - u)/\tau_{fi} \\ \tau_v^- &= (1 - H(u - \theta_v^-)\tau_{v1}^- + H(u - \theta_v^-)\tau_{v2}^-, \qquad v_{\infty} = \begin{cases} 1 & u < \theta_v^- \\ 0 & u \ge \theta_v^- \end{cases} \end{split}$$

The lyer Model [2]

 Change in membrane potential V: sum of physiological currents due to ion-flows across membrane

Trans-membrane currents modeled by the lyer model. Green circles: lonic pumps, Blue circles: exchangers, single arrows: ionic channels.

Abstraction for Upstroke Phase of the AP

Abstracting I_{Na} Current of the Iyer Model

Channel gating modeled as a 13-state parametric CTMC. Scaling factor – a: dependence between m and h-type gates.

8-state parametric CTMC abstraction, based on Hodgkin-Huxley model [4]. <u>State O: open state, all three</u> <u>m gates are open and the h gate is closed.</u>

Minimal Model

Variables: /

Parameters: 27

Tusscher-Noble-

Panfilov-03 Variables: 17

Parameters: 44

APs generated by the original lyer model and the reduced version, where the 2-state abstraction has replaced the 13-state I_{Na} parametric CTMC.

Time (ms)

Internals of the upstroke phase of the two APs: (a.) Dominant current $I_{\rm Ma}$ (b.) gating probability $(\mathbf{0_1} + \mathbf{0_2})$ for the 13-state CTMC and m^3h for the 2-state abstraction.

Conclusions and Future Work

- Reduction achieved for I_{Na} current: 13-states to 2 states
- Abstraction techniques: conditional independence + invariant manifolds
- Approximate-bisimulation-based reduction
- Extending work to other phases of the AP

REFERENCES

- J. Fisher, David Harel and Thomas Henzinger, Biology as Reactivity, Communications of the ACM, October 2011.
- V. Iyer, Reza Mazhari and Raimond Winslow. A Computational Model of the Human Left-Ventricular Epicardial Myocyte. Biophys. Journal 2004.
- A. Bueno-Orovio, M.E. Cherry and F.H. Fenton. Minimal Model for Human Ventricular Potentials in Tissue. Journal of Theoretical Biology 2008.
- A.L. Hodgkin and A.F. Huxley. A Quantitative Description of Membrane Current and its Application to Conduction and Excitation in nerve. Journal of Physiology 1952.
- J. Keener. Invariant manifold reductions for Markovian Ion Channel Dynamics. Journal of Math. Biology 2009.
- 6. R. Grosu et. al. From Cardiac Cells to Genetic Regulatory Networks. CAV 2011.

ACKNOWLEDGEMENT

This work is part of the NSF project on Computational Modeling and Analysis of Complex Systems (CMACS), funded by the grant NSF CCF-0926190. http://cmacs.cs.cmu.edu/