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Overview

We are working on a method for automatically in-
ferring loop invariants that are universally quantified
over elements of a collection — e.g., properties such as
“for any two distinct keys k1 and k2 in dictionary d,
d[k1] 6= d[k2]”. Our approach is especially suitable for
dynamic languages such as Python that support dic-
tionaries (associative arrays), dynamic dispatch, and
dynamic typing. We can handle recursive data struc-

tures such as AVL binary search trees, for which we can
infer invariants about sortedness and non-aliasing. Our
technique works by computing an overapproximation of
the set of reachable states via a fixed-point procedure.
The main contribution of our work is a technique for
summarizing heap memory for dynamic languages in a
way that automatically preserves invariants.

Representation of Program States

Given a program, we use a finite set of atomic proposi-
tions (shown in a box below) to describe states of the
program. As usual in symbolic model checking, a state
of a program is identified with the set of atomic propo-
sitions that are true in the state. Likewise, a propo-
sitional formula is identified with the set of states in
which it is true.

In order to have a bounded-size representation of pro-
grams that use heap-allocated data structure (whose
size doesn’t have a fixed bound), we must perform
some sort of summarization of the program state. In
our approach, we restrict the names of objects to have
no more than two dictionary lookups; an object that
would require three or more lookups is summarized.

For summarization of heap memory, we use two free
ghost variables, denoted “u1” and “u2”. These repre-
sent arbitrary objects, so it is valid to perform Uni-
versal Generalization on them. In other words, if we

know that a formula φ containing u1 is true in a pro-
gram state, then we can obtain another true formula
by replacing all occurrences of u1 in φ with any ob-
ject. For example, to represent the fact that a dic-
tionary d is empty, we use the atomic proposition
lookup(d, u1) = undef. This implies that no object,
not even a summarized object, is a key in d. As an-
other example, to represent that the keys of a dictio-
nary d1 are mutually exclusive with the keys of another
dictionary d2, we can use:

(d1[u1] = undef) ∨ (d2[u1] = undef)

The restriction to only two free ghost variables means
that we can only infer invariants with at most two quan-
tifiers. Although the restriction is arbitrary, we believe
it represents a good trade-off between precision and
speed of analysis.

Language
We ultimately aim to analyze and verify real-world
programs written in a language such as Python. How-
ever, in order to present our ideas more clearly and
concisely, we consider a stripped-down language. The
nondet() function returns an arbitrary object.

expr ::= var | integer-literal | string-literal
| (var == var) | (var < var) | !var

stmt ::= var = expr
| var = nondet()
| var = new dict() /* dict alloc */
| var = var[var] /* dict read */
| var[var] = var /* dict write */
| var = (var in var) /* dict test */
| stmt ; stmt
| assume(var) | assume(∀u1. φ)
| verify(var) | verify(∀u1. φ)
| if (var) {stmt} else {stmt}
| while (nondet()) {stmt}
| func var(var) {stmt}
| var(var)

Atomic Propositions

ap ::= obj ref = obj ref
| obj ref < obj ref
| AllocOf(obj ref ) = alloc site

obj ref ::= var(var name, ctrl pt)
| lookup(obj refdict , obj refkey, ctrl pt)
| str_const(string literal)
| int_const(integer literal)
| undef
| u1 | u2

| outer_stack_frame(func, var)

alloc site ::= ast node | str | int

ctrl pt ::= old, now, entry

ast node ::= Node in the abstract-syntax tree

To bound the number of possible atomic propositions,
we allow at most two lookups in an obj ref .

We may abbreviate lookup(d, k, ctrl pt) by d[k] when
ctrl pt is irrelevent or understood from context.

Representation of State Formulas

The performance of our approach depends greatly on
the representation of the state formula. If the represen-
tation is inefficient, we can easily run out of time and
memory. We would like a representation that (1) is gen-
erally small, (2) can be efficiently manipulated by the
predicate transformers associated with program state-
ments, (3) allows for us to efficiently check whether a
verification condition (e.g., a user assertion or absense
of a run-time exception) is valid, and (4) provides a
reasonably closed-form final answer for loop invariants.

One clear optimization is to simplify the state formula
by leaving out facts implied by the theory of equality,
uninterpreted functions, and partial orders. For exam-
ple, (a = b) ∧ (b = c)∧ ⇒ (a = c) is true in all possible
states, but this tautology doesn’t necessarily need to
explicitly be part of the state formula. On the other
hand, if this implied fact is contradicted (e.g., by the
guard of a conditional statement or by a user asser-
tion), we would like to detect it and take appropriate
action.

When we overwrite a variable or heap cell, or when a
heap cell becomes summarized, or when we join two
memory states, we may in danger of losing information
implied by the theory of equality if we don’t explicitly
include it in the state formula. For example, consider
the below program:

a = nondet(); b = nondet(); c = nondet();
if (a == b && b == c) {

a = (a == c);
verify(a);

}

If we’re too lazy in propagating equality information,
then we might lose it and be unable to verify that the
above program is correct. Our current plan is to prop-
agate such information only when necessary. We had
tried eager propagation, thinking that would be accept-
able for small programs, but even on small toy pro-
grams it quickly exploded into an unmanageably huge
size.

Summarization By Allocation Site

Consider the following program that builds a singly-
linked list and then traverses it:

1. head = new dict();
2. head["next"] = 0;
3. while (nondet()) {
4. node = new dict();
5. node["next"] = head;
6. head = tmp;
7. }
8. while (head["next"]) {
9. head = head["next"];
10. }

If presented with this program, our analyzer should
be able to verify that the key “next” is present in
the dictionary whenever it is read. How? We let

the free ghost variables u1 and u2 range over dictio-
nary references as well as ints and strings. At the
start of the program, our initial state formula includes
AllocOf(u1) 6= Line1. After Line 1 is executed, this
becomes (AllocOf(u1) = Line1) ⇔ (u1 = head).
Eventually, the original head node may no longer be
reachable within two hops of the program variables.
Before this happens, we must propagate the informa-
tion about this node to the free ghost variables, which
now may be the node’s only nameable aliases. Specifi-
cically, for each atomic proposition ap mentioning the
node, we add (head = u1) ⇔ ap[head/u1] to the state
formula, where ap[head/u1] denotes the result of substi-
tuting head with u1. After we quantify away all atomic
props that mention head, the state formula will imply
(u1["next"] = undef) ⇒ (AllocOf(u1) 6= Line1).

Function Summaries

Small functions may be profitably inlined. However,
this cannot be done with recursive functions; instead,
we use function summarization. To create a function
summary, when we enter a function, we maintain a copy
of the memory state at entry (using ctrl pt=entry).
We can then relate the output memory state to the

input memory state; this relation comprises the func-
tion summary. The values of the local variables of the
calling function are explicitly included in the memory
state. If there are multiple stack frames for a given
caller, the stack frames are summarized together.


