
Assume-Guarantee Abstraction Refinement
for Probabilistic Systems

Anvesh Komuravelli and Corina Păsăreanu NSF Expeditions in Computing

The Problem

◮ A Labeled Probabilistic Transition System (LPTS)
is a generalization of an MDP allowing
non-determinism on actions.

◮ Verifying LPTSes composed of multiple
components suffers from state explosion.

◮ Can we use Assume-Guarantee Compositional
Reasoning?

L1 ‖ A � P L2 � A

L1 ‖ L2 � P
(ASYM)

◮ Many choices for � and P.

Our Choices

◮ � is the strong simulation conformance. L1 � L2 iff
there is a relation R ⊆ S1 × S2 such that

1. s1Rs2 and s1
a
→ µ1⇒ there exists s2

a
→ µ2 with

µ1 ⊑R µ2, and
2. s0

1Rs0
2.

◮ P is another LPTS.
◮ How good are these choices?

1. � relates specifications to implementations.
2. sound and complete rule.
3. can be generalized to multiple components and

to also model checking logical properties.
◮ No previous algorithm or tool to generate

counterexamples to �.

Counterexample to L1 � L2

◮ Sub-Stochastic Tree, i.e. tree-shaped LPTS.
◮ Sub-structure of an unrolling of L1.
◮ Traces, Markov Chains, MDPs are insufficient in

general.
◮ Based on the greatest fixed point algorithm for �.

a

b c

aa

b

b

c

c

1

3

1

2 1

2

1

2

1

3

1

3

A B C

Obtaining A automatically

◮ Maintain A as an abstraction of L2, i.e. L2 � A, by
partitioning S2.

a
0.3

0.3

0.4

0.6
c1

c2

c1

c2

0.4

L2 A

a

◮ Only need to check Premise 1 of ASYM.
◮ Use counterexamples to refine A (the partition of

S2).
◮ Need at most |L2| steps.

Refining A using C

◮ C is a sub-structure of an unrolling of A inducing
an injection I between SC and S2.

◮ Find the coarsest strong simulation between C
and L2 contained in I using a bottom-up algorithm.

◮ Split abstract states when R(sa) = ∅ for some
sa ∈ SA or when the initial states are not related.

◮ Always results in a finer partition.

Experiments

◮ PRISM’s front-end for parsing models and Yices
for checking �.

Example ASYM ASYM-N MONO
(param) |L| |P| Time Mem Time Mem Time Mem
CS1(5) 94 16 7.2 15.6 99.1 15.1 0.2 8.8
CS1(6) 136 19 11.6 22.7 1k 21.4 0.5 12.2
CS1(7) 186 22 37.7 49.4 out – 0.8 17.9
CSN(2) 34 15 0.7 7.1 4.9 6.8 0.1 5.9
CSN(3) 184 54 43.0 63.0 5k 110.3 14.8 37.9
CSN(4) 960 189 out – out – 1.8k 667.5
MER (3) 16k 12 2.6 19.7 4.3 14.6 193.8 458.5
MER (4) 120k 15 15.0 53.9 28.0 37.3 out –
MER (5) 841k 18 – out 170.7 88.5 – out
SN (1) 462 18 0.2 6.2 3.0 8.5 1.5 27.7
SN (2) 7860 54 79.5 112.9 679.6 171.6 4.7k 1.3k
SN (3) 78k 162 out – 6.9k 524.9 – out

AGAR Algorithm

1. A← coarsest abstraction of L2

2. while L1 ‖ A 6� P
3. obtain a counterexample C
4. obtain projections C ↾L1 and C ↾A

5. if (C ↾L1)
α1 ‖ L2 6� P

6. a counterexample C ′

7. else
8. (, A)← analyzeAndRefine(C ↾A, A, L2)

9. return L1 ‖ L2 � P holds

Generalizing AS YM

◮ Generalized to reasoning about N ≥ 2
components using recursive invocations of the
rule for 2 components.

L1 ‖ A1 � P ... Ln � An−1

‖n
i=1 Li � P

(ASYM-N)

Need a counterexample which is a
sub-structure of an unrolling of L2 for the recursion
- line 5 of the algorithm.

◮ Can be generalized to Weak Safety or richer
logics.

L1 ‖ A |= φ L2 � A

L1 ‖ L2 |= φ

Future Work

◮ Exploring learning techniques as an alternative.
◮ Assumptions with smaller alphabets using

alphabet refinement and weak simulation.

References

1. S.J. Chaki. A CEGAR Framework for Verifying
Concurrent C Programs. PhD Thesis, CMU, 2005.

2. Bobaru et al. Automated Assume-Guarantee
Reasoning by Abstraction Refinement. CAV 2008.

