

NSF Expeditions in ComputingComputer Science Department

Verifying Model-level Properties
by Abstracting C Programs
Soonho Kong Sicun Gao Edmund Clarke

• Control software implements hybrid-system models
• Two levels of properties:
-Code-level : Buffer-overflow, Divide-by-zero
-Model-level : Functional-safety properties

• Problem of verifying model-level properties

-Model-level properties are not usually specified in terms of
program variables.
-Verification needs to take physical environment into account.

Our Approach
• Reconstruct the high-level model from a low-level
program .
• The reconstructed model should “ bisimulate” the given
program .
• We can then perform bounded model checking on the
reconstructed model with respect to the model-level
specification.

P
M

M
P • TARTAN RACING Project : CMU Robotics Institute + General

Motors. The project won 2007 DARPA Urban Challenges
($2M)
• Distance Keeper Module : Core module of the vehicle
“BOSS”. It maintains the distance between the vehicle and the
front one.
- About 700 LOC C++ code (but very C-like), as starting
point. Full Software has 440K LOC.
- Main method “notify” is called periodically. It takes current
information (position, velocity, and acceleration) about the
vehicle and the front vehicle. It returns desired acceleration
and velocity value to maintain the distance.
- No dynamic allocation, pointer arithmetic.

 bisimulation Relation"�

"�

Framework

 if (v > 10) then
 a := a - 1
 else
 if(a < 5) then
 a := a + 1
 else
 a := a + 0.25
 fi
 fi

C Program
CFG

(Control Flow Graph)
 Bisimulating

Model

SMT Solver
Model-
level

Properties
Yes/No

CFG Transformation
• Input : C program without
-Pointer Arithmetic, Dynamic Allocations, Function pointers
• Output : Control Flow Graph
• Use CIL(C Intermediate Language) Framework
• Optimization: Program Slicing

-Given the set of program variables of interest, compute the
program slice which may affect the variables of interests.

 bisimulation Model Construction

• Input : (optimized) CFG ⇒ Output : Hybrid System Model

• Algorithm
- For each basic block and if-statement in CFG, we create a
control location.
- For each branching edge in CFG, we connect corresponding
control locations with the branching condition. For the other
edges, we connect corresponding control locations with
condition “True”. (JUMP part of Hybrid system).
- Translate each basic block statements into corresponding
differential equations. (FLOW part of Hybrid system).

- Mark corresponding entry block as an initial control location.

"�

Case Study

Definition
A program bisimulates a model with an error bound
 if and only if
1) Whenever we have a trace from to in the program, we
have a corresponding trajectory from to in the model
where and are values of program variables.

2) Whenever we have a trajectory from to in the model,
we have a corresponding trace from to in the program.

P M
✏

P ⇠✏ M

8~x1, ~x2.TraceP(~x1, ~x2) =) TrajM(~x✏
1, ~x

✏
2)

~x

✏
2

~x2~x1

~x2~x1

~x

✏
1

~x

✏
2~x

✏
1

"�

~x1 ~x2

8~x1, ~x2.TrajM(~x1, ~x2) =) TraceP(~x
✏
1, ~x

✏
2)

Program

Code-level Properties

Plant

Physical Environment

Cyber Physical Model
Model-level Properties

outputinput

V
al

ue
 o

f
Pr

og
ra

m
 V

ar
ia

b
le

Model Trajectory

Program Trace

Distance
Keeper
Module
(in C)

Vehicle
Model

Autonomous Vehicle Model
"The car should maintain a certain distance between the front car"

outputinput

d

max

� x

f

� x � d

min

~a,~v, ~x, ~xf
~a0, ~v0

ẋ = v v̇ = a

Introduction

Current Progress
• We translated the C++ code into equivalent C code.

• We’re implementing CFG Transformer and ε-bisimulation
model constructor.

