

SCHOOL OF PUBLIC HEALTH

Department of Epidemiology and Biostatistics, University of Maryland College Park, MD

INTRODUCTION

- □ Spatial effects should be taken into consideration when studying the association between genetic network and diseases
- □ This research aims to integrate linear structures of genetic networks into genomewide analysis studies (GWAS)
- Lasso penalized logistic regression is suited for continuous model selection for individual genes in case-control disease gene mapping, especially when the number of predictor variables far exceeds the number of observations. However, it totally ignores the network structures
- □ In order to incorporate the network structure, new penalty functions need to be designed

5	20	3	1	59	72	85	99	112	126	<mark>14</mark> 3	
A	Т	A		A	С	Т	G	G	A	G	
G	C	G	2	т	Т	C	A	A	G	A	
1	6	32	46	61	9	95	100	12	2 136	150	160
C	;	Т	С	G		Т	Т	т	A	A	т
A		A	Т	A		c	C	C	G	G	С

Figure 1: SNP location map in the Candida genome. The numbers are genomic locations showing different distances between SNPs.

OBJECTIVES

- □ To incorporate the linear structure of genetic networks into the model
- □ To achieve variable selection in individual genetic markers while considering the map distances of the marker in the genome
- □ To handle the underdetermined setting where the number of parameters far exceeds the number of observations
- Objective Function

$$f(\beta) = -L(\beta) + \lambda_1 \sum_{j=1}^p |\beta_j| + \lambda_2 \sum_{j=2}^p \omega_j |\beta_j - \beta_{j-1}|$$

where

- $\succ \beta = (\beta_0, \beta_1, \dots, \beta_p)$: vector of regression coefficients
- \succ L(β): loglikelihood function of logistic regression
- \succ $|\beta_i|$: lasso (least absolute shrink and selection) operater) penalty for individual SNP selection
- $\geqslant |\beta_i \beta_{i-1}|$: fused lasso term for adjacent SNP pairs
- $\succ \lambda_1$ and λ_2 : tuning parameters controlling for the strength of selection
- $\succ \omega_i = 1/(d_i d_{i-1})$: weights for SNP pairs, where d_i is the map distance of SNP j

DOUBLY PENALIZED LOGISTIC REGRESSION FOR GENOMEWIDE ASSOCIATION STUDIES WITH LINEARLY STRUCTURED GENETIC NETWORKS

Li X. and Wu T. T.

Figure 2: Estimation in (a) lasso, (b) ridge and (c) the fused lasso regression

- Fused lasso term $|\beta_i \beta_{i-1}|$ penalizes differences of adjacent coefficients
 - incorporates the linear structure of SNPs and encourages adjacent SNPs with closer distance to have similar values

METHODS

Reformulated Objective Function

$$h_{L,\gamma}(\beta) = -\{L(\gamma) + (\beta - \gamma)^T L'(\gamma)\} + \lambda_1 \sum_{j=1}^p |\beta_j| + \lambda_2 \sum_{j=2}^p \omega_j |\beta_j - \beta_{j-1}| + \frac{L}{2} ||\beta - \gamma||^2$$

- **EFLA** steps
 - Initialize: $\gamma_1 = \gamma_0$, $a_{-1} = 0$, $a_0 = 1$, $L = L_0$
 - Loop and update
 - 1. $b_i = \frac{a_{i-2}-1}{a_{i-1}}$, $s_i = \gamma_i + b_i(\gamma_i \gamma_{i-1})$
 - 2. Find the smallest $L = L_{i-1}, 2L_{i-1}, ...$ such that $h(\gamma_{i+1}) \leq h_{L,s_i}(\gamma_{i+1})$, where $\gamma_{i+1} = \operatorname{argmin}_{\theta} h_{L,s_i}(\beta)$

3. Set
$$L_i = L$$
, $a_{i+1} = \frac{1 + \sqrt{1 + 4a^2}}{2}$

4. End loop if

$$h(\gamma_k) - h(\gamma_{k+1}) \le \frac{2\max(2\tilde{L}, L_0) \|\gamma_0 - \gamma_{k+1}\|^2}{k^2}$$

Where \tilde{L} is the Lipschitz continuous gradient of $L(\beta)$

• γ_k is the optimal solution

 \Box Determine Tuning Parameters: Grid search on (λ_1, λ_2)

SIMULATED DATA ANALYSIS

Input Data

$$\log\left(\frac{p_i}{1-p_i}\right) = \beta_0 + \sum_{j=1}^p x_{ij}\beta_j$$
, where

- $\beta = (2, 1, 0.5, 2, 0.5, 2.5, 0 \dots, 0)$
- Predictors are correlated

□ Set the Distances

Equal distance \rightarrow no linear structure considered

• Map distance \rightarrow linear structure considered

□ Simulation Results

		True Predictors								
Distance	(λ_1, λ_2)	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆			
(n,p)=(1	50,500)									
Equal	(0.03,0.09)	50	50	50	50	50	50	2.8		
Мар	(0.07,0.06)	50	50	50	50	50	50	2.6		
(n,p)=(2	200,1000)									
Equal	(0.02,0.01)	50	50	50	50	50	50	9.3		
Мар	(0.04,0.02)	50	50	50	50	50	50	6.7		

Table 1: Selection frequencies of true and noise predictors in 50 simulations

PANCREATIC CANCER DATA ANALYSIS

- □ Pancreatic cancer is the fourth leading cause of cancer death in the United States with a five-year survival rate of only 3%
- □ Pancreatic cancer data will be using this doubly penalized method
- □ The data was obtained from Biobank Japan at the Institute of Medical Science, The University of Tokyo as well as National Cancer Center Hospital.
- □ Cases=991, controls=5209, SNPS=420,236. Other covariates include age, gender, smoking status, etc.

KEY REFERENCE

- Liu, J., L. Yuan, et al. (2010). "An efficient algorithm for a class of fused lasso problems." KDD '10 Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining (underline the proceeding)
- □ Tibshirani, R., M. Saunders, et al. (2005). "Sparsity and smoothness via the fused lasso." Journal of the Royal Statistical Society: Series B 67(1): 91-108.
- □ Wu, T. T., Y. F. Chen, et al. (2009). "Genome-wide association analysis by lasso penalized logistic regression." Bioinformatics 25(6): 714.
- □ Wu, T. T. and K. Lange (2008). "Coordinate descent algorithms for lasso penalized regression." The Annals of Applied Statistics 2(1): 224-244.