Verification of Analog Circuit Designs via Statistical Model Checking Ying-Chih Wang, Anvesh Komuravelli, Paolo Zuliani, Edmund M. Clarke

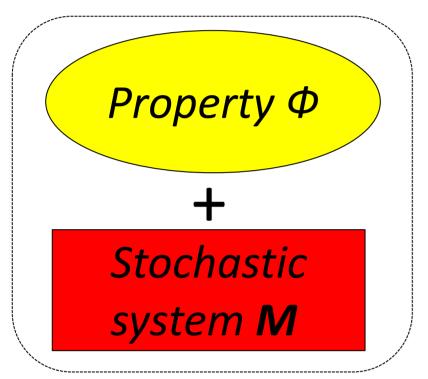
1. Problem

Verification of Analog Circuits with Process Variation

- Process Variation brings uncertainties into the system
- Model uncertainty with a distribution(Stochastic systems)

Verification of Stochastic Systems

- Property specification:
 - a **Property** and a **Probability threshold**
 - "Does the system fulfill a request within 1.2 ms with probability at least .9999?"
- If Φ = "system fulfills request within 1.2 ms", decide between: $P_{\geq,9999}(\Phi) \text{ or } P_{<,9999}(\Phi)$



System satisfies Φ with (unknown) probability p

Biased coin Bernoulli random variable of (unknown) parameter p

Question: $P_{\geq \vartheta}(\Phi)$?

2. Bayesian Statistical Model Checking

Statistical **hypothesis testing**: Null hypothesis vs. Alternative hypothesis $H_1: \mathcal{M} \models P_{<\theta}(\phi)$ $H_0: \mathcal{M} \models P_{\geqslant \theta}(\phi)$

- Suppose \mathcal{M} satisfies Φ with (unknown) probability p
 - p is given by a random variable (defined on [0,1]) with density g (the prior belief that \mathcal{M} satisfies Φ)
- Generate independent and identically distributed (iid) sample traces
- x_i : the *i*th trace $\sigma_i \models \phi$ ($x_i = 1$ iff $\sigma_i \models \phi$, $x_i = 0$ iff $\sigma_i \not\models \phi$)
- Then, x_i will be a **Bernoulli trial** with conditional density (likelihood function) : $f(x_i/u) = u^{x_i}(1-u)^{1-x_i}$
 - a sample of Bernoulli random variables
- **Prior probabilities:** $P(H_0)$, $P(H_1) \ge 0$, sum to 1
- **Posterior probability:** Ratio of Posterior Probabilities

Bayes Theorem, P(X) > 0	Baves Factor (BF)
$P(H_0 X) = \frac{P(H_0 X) - (H_0)P(H_0)}{P(X)}$	$\frac{1}{P(H_1 X)} = \frac{1}{P(X H_1)} \cdot \frac{1}{P(H_1)}$
$\Big _{P(H_1 Y)} - P(X H_0)P(H_0)\Big $	$\left P(H_0 X) P(X H_0) P(H_0) \right $

- Bayes Factor (BF) Fix threshold $T \ge 1$ and $P(H_0)$, $P(H_1)$. Continue Sampling BF > T: Accept H_0 BF < 1/T: Reject H₀ until:
- Theorem (Error bounds). When the Bayesian algorithm using threshold T – stops, the following holds:

Prob ("accept H_0 " | H_1) $\leq 1/T$ Prob ("reject H_0 " | H_0) $\leq 1/T$

Theorem (Termination). The Sequential Bayesian Statistical MC algorithm terminates with probability one.

3. SMC Algorithm

<u>**Require</u>: Property** $P_{>,9}(\Phi)$, **Threshold** $T \ge 1$,</u> **Prior density** g *n* := 0 {*number of traces drawn so far*} x := 0 {number of traces satisfying Φ so far} repeat $\sigma := draw a sample trace from SPICE (iid)$

n := *n* + 1 if $\sigma \models \Phi$ then x := x + 1endif $\mathcal{B} := BayesFactor(n, x, \vartheta, g)$ until $(\mathcal{B} > T \vee \mathcal{B} < 1/T)$ if $(\mathcal{B} > T)$ then **return** "*H*_o accepted" else

return "*H*₀ *rejected*"

endif

4. Bounded LTL

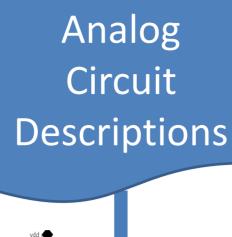
- Extension of Linear Temporal Logic (LTL) with time **bounds** on temporal operators(No ne**X**t operator)
- Let $\sigma = (s_0, t_0), (s_1, t_1), \dots$ be a trace of the model • along states s_0, s_1, \ldots , and the system stays in state s; for time t;
- Semantics of BLTL for trace σ starting at state $k(\sigma^k)$: Comparison of different probability threshold
- $\sigma^k \models ap$ iff atomic proposition ap true in state s_k
- $\sigma^k \models \phi_1 \text{ OR } \phi_2 \text{ iff } \sigma^k \models \phi_1 \text{ or } \sigma^k \models \phi_2$
- $\sigma^k \models \neg \Phi$ iff $\sigma^k \models \Phi$ does not hold

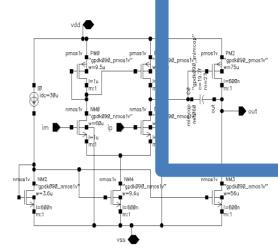
• $\sigma^k \models \phi_1 \ \mathcal{U}^t \phi_2$ iff there exists natural *i* s.t

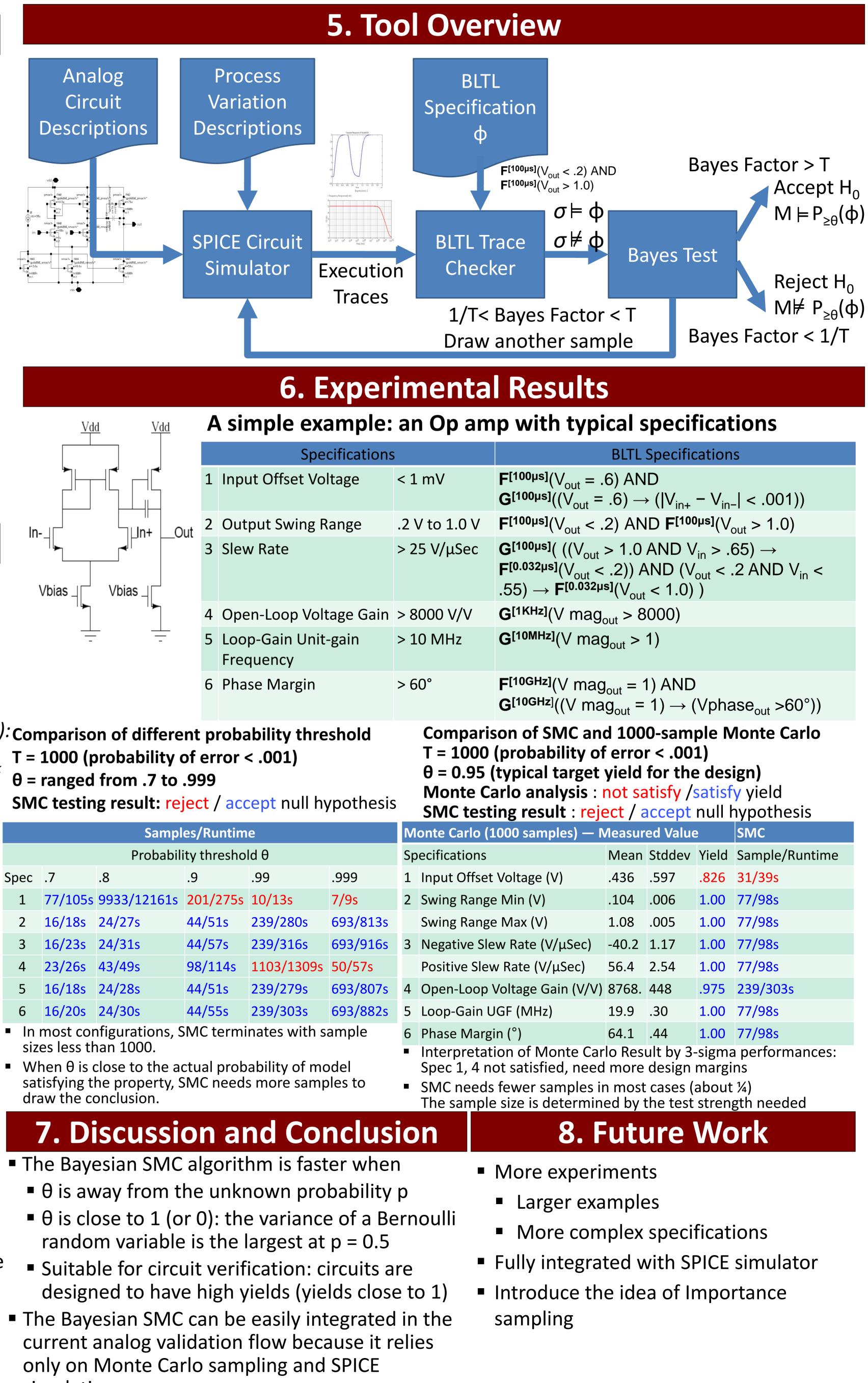
- 1) $\sigma^{k+i} \models \Phi_2$
- 2) $\Sigma_{j < i} t_{k+j} \leq t$
- 3) for each $0 \le j < i, \sigma^{k+j} \models \Phi_1$

"within time t, Φ_2 will be true and Φ_1 will hold until then"

- Online monitoring
 - Monitor the trace as it is generated, need not store the trace
 - Enable Monitoring for long traces
- Modify the model checking algorithm for alternation-free mu-calculus, to make it online
- A DAG data structure
 - Created from the parsing tree of ϕ
 - Online monitored values propagated from the leaves
 - Optimized by merging similar sub-trees and some bookkeeping
 - Algorithm terminates when the root is evaluated







		-
		Sa
		Prob
Spec	.7	.8
1	77/105s	9933/1216
2	16/18s	24/27s
3	16/23s	24/31s
4	23/26s	43/49s
5	16/18s	24/28s
6	16/20s	24/30s
		C .

sizes less than 1000.

- simulation.

