

Hallmarks of Cancer – Background and Motivation for a Formal Model

Cancer is a progressive disease which traverses certain discrete states (hallmarks) towards its full-blown phenotype of tissue invasion and metastasis. [...] multistep tumor progression can be portrayed as a succession of clonal expansions, each of which is triggered by the chance acquisition of an enabling mutant genotype. [Hanahan&Weinberg, 2011]

- Useful abstraction level The hallmarks view is abstract enough to allow analysis of different cancers in one framework, yet detailed enough to connect to low-level mechanisms of gene regulation, metabolism and signaling, and to therapeutic agents.
- Advantage of formalization Helps to better understand progression and resilience against therapeutic interventions. Modeling time allows us to aim for slowing down (chronic disease) instead of completely curing cancer.
- Advantage of computation Models are becoming too complex for manual planning of a therapy. A formal model of cancer progression will allow for therapies to be automatically generated.

D. Hanahan and R. A. Weinberg. The Hallmarks of Cancer, Cell, vol. 100, no. 1, pp. 57-70, 2000.

D. Hanahan and R. A. Weinberg. Hallmarks of Cancer: The Next Generation, Cell, vol. 144, no. 5, pp. 646-674, 2011. J. Luo, N. L. Solimini, and S. J. Elledge. Principles of Cancer Therapy: Oncogene and Non-oncogene Addiction, Cell, vol. 136, no. 5, pp. 823-837, Mar. 2009.

Timed CHA

Let D be a set of drugs, X a set of clocks and $\mathcal{C}(X)$ a set of cl

A Timed CHA is a tuple $H = (V, E, v_0, I, \rho)$ where

- V is a set of states, corresponding to hallmarks
- $E \subseteq V \times C(X) \times V$ is a set of directed edges labeled with
- $v_0 \in V$ is the initial state
- $I: V \times X \to \mathbb{N}$ specifies the invariant for each clock and s
- $\rho: V \times D \to X^{\mathbb{R}_{\geq 0}}$ specifies how a given drug influences t

Computation Tree Logic (CTL)

CTL can be used to specify control goals for the CHA.

KAG_{<20}¬

"It is known that metastasis () will not be read

"Whenever the tumor acquires angiogenesis (], this will tumor reaches metastasis"

Cancer Hallmark Automata

Andreas Witzel Loes Olde Loohuis Bud Mishra New York University and City University of New York

	Partial Observability a
h a clock constraint	Timed state: pair (v , va Belief set b : set of time Belief state: tuple (v , va Finite runs starting from Let T be a set of tests, A therapy maps finite ru
state the clocks at a given state	It is assumed to be un action. A therapy can be transl
	Extensions and Future
ched within 20 years" (The state of other s affected by a therap liver automaton in t Expand the formalis framework. Develop algorithms algorithms from the Connecting to data using statistical mod discover progression

to generate therapies automatically by applying and improving hybrid automata control theory literature.

by automatically generating fine-grained hallmark models from data del inference methods like GOALIE, and by mining clinical data to on "bottlenecks" (promising drug targets).

