1. Problem

Verification of Stochastic Systems
- Verification of stochastic system models via statistical model checking
- Temporal logic specification: "in the next 20 min. the system is unavailable for 1sec"
- If \(\Phi \) = “in the next 20 min. the system is unavailable for 1sec.”
 - Probability (\(\Phi \)) = ?
 - Equivalently: A biased coin (Bernoulli random variable)
 - Prob (Heads) = \(p \) Prob (Tails) = 1-\(p \)
 - \(p \) is unknown
 - Question: What is \(p \)?
 - A solution: flip the coin a number of times, collect the outcomes, and use statistical estimation

2. Statistical Model Checking

Key idea (Haakan Yoones, 2001)
- System behavior w.r.t. property \(\Phi \) can be modeled by a Bernoulli random variable of parameter \(p \)
- System satisfies \(\Phi \) with (unknown) probability \(p \)
- Question: What is \(p \)?
- Draw a sample of system simulations and use:
 - Statistical estimation: returns “\(p \) in interval (a,b)" with high probability

3. Temporal Logic

A formal notation for expressing properties about the temporal evolution of a system
- Example: “within 10 time units the system will shut down and the shutdown signal will be ON until then”
- shutdown \(\text{ON} \) \(U \) 10 sybsdown
- Example: “it is not the case that in the future 25 time units the system is globally down for one time unit”
 - \(\neg (F^{25} G^1 \text{sybsdown}) \)

4. Bounded Linear Temporal Logic

- Extension of LTL with time bounds on temporal operators.
- No next operator
- Let \(\sigma = (s_0, t_0, s_1, t_1, \ldots \) be a trace of the model
- The system stays in state \(s_i \) for time \(t_i \)
- The semantics of BTLT for trace \(\sigma \) starting at state \(s_k \) (\(k \geq 0 \)):
 - \(s_k \models \alpha \iff \) true in state \(s_k \)
 - \(s_k \models \neg \alpha \iff \) false in state \(s_k \)
 - \(s_k \models \alpha_1 \lor \alpha_2 \iff \) true or false in state \(s_k \)
 - \(s_k \models \alpha \rightarrow \beta \iff \) true \(\Rightarrow \) false in state \(s_k \)
 - \(s_k \models [\alpha]_\beta \iff \) false until \(t \) in state \(s_k \)
 - \(s_k \models (\alpha . \beta) \alpha \iff \) true \(\Rightarrow \) false \(\Rightarrow \) false in state \(s_k \)

5. Rare Events

- Estimate \(\text{Pr}(X_{25}) = p \), when \(p \) is small (say \(10^{-9} \))
- Standard (Crude) Monte Carlo: generate \(K \) i.i.d. samples of \(X \); return the estimator \(e_x \)
 - \(e_x = \frac{1}{K} \sum_{i=1}^{K} I(X_i \geq t) = \frac{h_k}{k} \)
- \(\text{Prob}(e_x \rightarrow p) = 1 \) for \(K \rightarrow \infty \) (strong law LN)
- Relative Error (RE) = \(\frac{\text{var}(e_x)}{E(e_x)} = \sqrt{\frac{p(1-p)}{p_k K}} \)
- More accuracy \(\rightarrow \) more samples
- Want confidence interval of relative accuracy \(\delta \) and coverage probability \(c \), i.e., estimate \(e_x \) must satisfy:
 - \(\text{Pr}(\{ e_x - p | < \delta \}) \geq c \)
- From the CI, a 99% (approximate) confidence interval of relative accuracy \(\delta \) needs about
 - \(K \approx \frac{1-p}{p^2} \) samples \(\Rightarrow \) \text{Prob}(\{ e_x - p | < \delta \}) \approx 0.99 \)
- Example: \(p = 10^{-9} \) and \(\delta = 10^{-2} \) (ie, 1% relative accuracy) we need about \(10^{14} \) samples!!

6. Importance Sampling

\[p = E[I(X \geq t)] \]
\[= \int I(x \geq t)f(x)\,dx \]
\[= \int I(x \geq t)\frac{f(x)}{f_0(x)}f_0(x)\,dx \]
\[= \int I(x \geq t)W(x)f_0(x)\,dx \]
\[= E[I(X \geq t)|W(x)] \]

where \(f \) is the density of \(X \).
- The Importance Sampling estimator is:
 - \(p_k = \frac{1}{K} \sum_{i=1}^{K} I(X_i \geq t)W(X_i), \quad X_i \sim f_0 \)
- Need to choose a “good” biasing density (low variance)
- Optimal density: \(f_0(x) = \frac{I(x \geq t)f(x)}{p} \)
- Idea: search for a “good” density in a parameterized family

7. Cross-Entropy

- The cross-entropy of densities \(g, h \) is
 \[D(g, h) = E_x \left[\ln g(\frac{x}{h}(x)) \right] = \int g(x) \ln g(x)dx - \int g(x) \ln h(x)dx \]
- \(D(g, h) \geq 0 \)
- We can estimate \(v_x \) by Monte Carlo simulation
 \[v_x = \frac{d}{d \theta} \frac{1}{K} \sum_{i=1}^{K} I(X_i \geq t)W(X_i; u, w) \]
 where \(X_i, \ldots, X_K \) samples iid as \(f(\cdot ; w) \)

8. Applications

- Fault-tolerant controller for an aircraft elevator system
- The three hydraulic circuits can independently fail
- What is the probability that in the next 25s for 1s no control input is passed to the elevators?

\[\text{Prob}(F^{25} G^1 (H_1 _\text{fail} \lor H_2 _\text{fail}) \lor H_2 _\text{fail}) = ? \]

<table>
<thead>
<tr>
<th>Estimate</th>
<th>Relative error</th>
<th>Time (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.58 x 10^{-14}</td>
<td>0.58</td>
<td>0.23</td>
</tr>
<tr>
<td>8.54 x 10^{-14}</td>
<td>0.24</td>
<td>2.45</td>
</tr>
<tr>
<td>8.11 x 10^{-14}</td>
<td>0.17</td>
<td>23.9</td>
</tr>
</tbody>
</table>

9. References

- P. Zuliani, C. Baier, E.M. Clarke. Rare-Event Verification for Stochastic Hybrid Systems. Submitted