

Statistical Model Checking for Rare Events

Paolo Zuliani **Computer Science Department Carnegie Mellon University**

4. Bounded Linear Temporal Logic 6. Importance Sampling

Extension of LTL with time bounds on temporal operators. No neXt operator = • Let $\sigma = (s_0, t_0), (s_1, t_1), \dots$ be a trace of the model • the system stays in state *s_i* for time *t_i* = • The semantics of BLTL for trace σ starting at state k (σ^k): • $\sigma^k \models ap$ iff atomic proposition ap true in state s_k = iff $\sigma^k \models \Phi_1$ or $\sigma^k \models \Phi_2$ • $\sigma^k \models \Phi_1 \lor \Phi_2$ iff $\sigma^k \models \Phi$ does not hold • $\sigma^k \models \neg \phi$ iff there exists natural *i* such that $\bullet \sigma^k \models \Phi_1 \mathbf{U}^{\mathsf{t}} \Phi_2$ 1) $\sigma^{k+i} \models \Phi_2$ 2) $\Sigma_{j \le i} t_{k+j} \le t$ 3) for each $0 \le j < i, \sigma^{k+j} \models \Phi_1$ "within time t, Φ_2 will be true and Φ_1 will hold until then" • In particular, $\mathbf{F}^{t} \Phi = true \mathbf{U}^{t} \Phi$, $\mathbf{G}^{t} \Phi = \neg \mathbf{F}^{t} \neg \Phi$ **Definition:** The time bound of *Φ*: ■#(*ap*) = 0 $\blacksquare \#(\neg \Phi) = \#(\Phi)$ = #($\Phi_1 \vee \Phi_2$) = max (#(Φ_1), #(Φ_2)) $= #(\Phi_1 \mathbf{U}^t \Phi_2) = t + \max(\#(\Phi_1), \#(\Phi_2))$ Lemma: "Bounded simulations suffice" Let Φ be a BLTL property, and k ≥ 0 . For any two infinite traces ρ , σ such that ρ^k and σ^k "equal up to time #(Φ)" we have $\rho^{k} \models \Phi$ iff $\sigma^{k} \models \Phi$ Sensors 5. Rare Events

• Estimate Prob(X $\geq t$) = p, when p is <u>small</u> (say 10⁻⁹)

Standard (Crude) Monte Carlo: generate K i.i.d. samples of X; return the estimator e_{ν}

$$\boldsymbol{e}_{\boldsymbol{K}} = \frac{1}{K} \sum_{i=1}^{K} I(X_i \ge t) = \frac{k_t}{K}$$

• Prob $(e_{\kappa} \rightarrow p) = 1$ for $K \rightarrow \infty$ (strong law LN) • Relative Error (RE) = $\frac{\sqrt{\operatorname{var}[e_K]}}{2} = \frac{\sqrt{p(1-p)}}{2}$ $\mathrm{E}[e_{K}]$ $p\sqrt{K}$

• More accuracy \rightarrow more samples

• Want confidence interval of relative accuracy δ and coverage probability c, i.e., estimate e_{κ} must satisfy:

 $Prob(|e_{\kappa} - p| < \delta \cdot p) \ge c$

From the CLT, a 99% (approximate) confidence interval of relative accuracy δ needs about

$$X \approx \frac{1-p}{p\delta^2}$$
 samples (\rightarrow Prob($|e_{\kappa} - p| < \delta p$) ≈ 0.99)

• Example: $p = 10^{-9}$ and $\delta = 10^{-2}$ (*ie*, 1% relative accuracy) we need about **10¹³ samples**!!

$$=E_*[$$

$$\boldsymbol{p}_{k} = \frac{1}{K} \sum_{i=1}^{K} I(X_{i} \ge t) W(X_{i}), \qquad (X_{i} \sim f_{*})$$

- Need to choose a "good" biasing density (low variance)
- Optimal der
- Idea: search for a "good density" in a parameterized family

 $\boldsymbol{\rho} = E[I(X \ge t)]$

$$I(x \ge t)f(x) \ dx$$

$$I(x \ge t) \frac{f(x)}{f_*(x)} f_*(x) \ dx$$

- $I(x \ge t)W(x)f_*(x) \ dx$
- $[I(X \ge t)W(X)]$

where *f* is the density of *X*.

tance Sampling estimator is:

nsity:
$$f_*(x) = \frac{I(x \ge t)f(x)}{p}$$

7. Cross-Entropy

The cross-entropy of densities g, h is

■
$$D(g,h) \neq D(h,g)$$

min $D(f_*, f(-))$

optimal density f_*

- The Cross-Entropy Method has two steps
- 1. find $v_* = \arg \min D(f_*(\cdot), f(\cdot; v))$
- 2. run importance sampling with biasing density $f(\cdot; v_*)$
- We can estimate v_{*} by Monte Carlo simulation

$$\bar{v}_{*} = \frac{\sum_{i=1}^{K} [I(X_{i} \ge t)W(X_{i};u,w)]}{\sum_{i=1}^{K} [I(X_{i} \ge t)W(X_{i};u,w)]}$$

where $X_1, ..., X_k$ samples iid as $f(\cdot; w)$

8. Applications

H2_press H2_pre H3_press H3_pre	55			
low_press Hydraulic Pressures	ess	Estimate	Relative error	Т
Samples	Step 1:100Step 2:1,000	1.58 x 10 ⁻¹⁴	0.58	
	Step 1: 1,000 Step 2: 10,000	8.54 x 10 ⁻¹⁴	0.24	
	Step 1: 10,000 Step 2: 100,000	8.11 x 10 ⁻¹⁴	0.17	

9. References

• P. Zuliani, A. Platzer, E. M. Clarke. Bayesian Statistical Model Checking with Application to Stateflow/Simulink Verification.

• E. M. Clarke and P. Zuliani. Statistical Model Checking for Cyber-Physical Systems. In ATVA 2011, LNCS 6996, pages 1-12. P. Zuliani, C. Baier, E.M. Clarke. Rare-Event Verification for Stochastic Hybrid Systems. Submitted