Computational Modeling and Analysis For Complex Systems NSF Expedition in Computing

2nd Year Review Meeting, Carnegie Mellon University

November 3, 2011

Our Goals

- Scientific: Develop Next-Generation Model Checking and Abstract Interpretation – MCAI 2.0
- Societal: Apply MCAI 2.0 to Challenge Problems in complex biological and embedded systems
- Education & Outreach: Build a program that
 - supports CMACS' vision of research and knowledge transfer
 - serves as a primary recruitment mechanism for students, especially those from under-represented groups

Challenge Problems

Systems Biology

- Pancreatic Cancer
- Atrial Fibrillation

Embedded Systems

- Distributed Automotive Control
- Aerospace Flight Software

Uniqueness, Synergies, and Impact

- Unique in bringing together MCAI with controls, embedded systems, systems biology, medicine
- A very strong team of researchers with diverse backgrounds, working closely and learning from each other → unique and promising approaches to these major societal problems
 - Important: real, ongoing, and deep interactions, across fields and across institutions: ECE/CS, CMU/NYU, CMU/UMD, SB/JPL, SB/ Cornell, CMU/Pitt

Impact

- On undergraduates (e.g., workshops)
- On graduate students (e.g., in interdisciplinary research)
- On industry (e.g., industry workshops/input)
- On scientific fields (publications, tutorials)
- On how researchers think about problems (key publications)
- On the challenge problem areas (innovative new approaches and tools)
- On how we teach (new courses)

Significant Achievements & Impacts

- New computational methods for cancer
- New computational methods for cardiac dynamics
- New automated modeling and verification techniques for complex embedded systems
- Highly successful 2010 and 2011 Undergraduate Workshops on Pancreatic Cancer and Atrial Fibrillation for students from urban, minority-serving institutions
 - Beautiful examples of integration research and education
- CMACS Embedded Systems Industry Workshop (20 Oct. 2011, CMU)

Cross-Cutting Research Themes

- Model Checking
- Abstract Interpretation
- Modeling, Control and Analysis of Hybrid Systems
- Stochastic and Statistical Models

CMACS: Whole >> [Sum of Parts]

- Many breakthroughs due to new, cross-institutional, cross-disciplinary collaborations
- Typical example: Atrial Fibrillation Research

Stony Brook

Bartocci (Computer Sci) Glimm (Applied Math) Grosu (Computer Sci) Smolka (Computer Sci)

Cornell/RIT

Cherry (Biomedical)

Fenton (Physics)

Gilmour (Biomedical)

NYU

Le Guernic (Computer Sci)

CMACS: Whole >> [Sum of Parts]

Another example: Pancreatic Cancer Research

Translational <u>Gen</u>omics Research Institute

Rich Posner and Daniel Von Hoff

Value-Added as an Expedition

- Deep integration of MC + AI is enabling fundamental breakthroughs in modeling, analysis, and verification of complex systems
- Unique societal benefits
- We are inspiring new and under-represented groups of students to choose careers in computer science and related fields
- CMACS Research Plan & Challenge Problems require critical mass and visibility that cannot be achieved with piece-meal efforts
- Our research is inherently cross-disciplinary: CPs require large teams involving both domain scientists, computer scientists, and engineers
- Integration of research, education, and outreach. New courses. Research and education opportunities for undergraduates as well as graduates.

Looking Forward

- First two years
 - Exciting new discoveries
 - Building strong interdisciplinary foundations
 - Technical
 - Educational
 - Human

Looking Forward (contd.)

- Research
 - Continue, further develop challenge problem areas
 - More realistic cancer models, tight connections to new pancreatic cancer data; e.g., multi-cellular / multi-pathway models
 - MC & AI to developed more reduced order heart models that allow analysis & control
 - Distributed embedded control, using integrated methods
 - Continue, further develop research in cross-cutting areas
 - Stochastic models, analysis
 - Compositional modeling, reasoning
 - Hybrid systems
 - Interplay between model checking, theorem proving

Looking Forward (contd.)

- Research
 - Deepening integration of MC and AI
 - Model approximation / simplification
 - Automatic generation of abstracted models, depending on properties being checked
 - More & wider cross-institutional & cross-disciplinary collaborations; e.g.
 - apply UMD classification & dimension-reduction technology to NYU cancer models
 - apply CMU statistical model checking to SB+Cornell 2D & 3D cardiac models

Looking Forward (contd.)

Educational

- More winter workshops at Lehman
- REU experiences at CMU
- Curricular efforts
 - Further development of course materials and modules for education at all levels
 - Programs of study in complex systems science and engineering
- Outreach and knowledge transfer
 - Specialized workshops for industrialists / scientists
 - Annual advisory-board meetings
 - Special conference sessions / journal volumes