Requirements Extraction from Models of Automotive Software

Rance Cleaveland
Department of Computer Science
University of Maryland

4 March 2010

Joint work with Sam Huang, Chris Ackermann (UMD); Arnab Ray (Fraunhofer CESE); Charles Shelton, Beth Latronico (Robert Bosch)

©2010 Fraunhofer USA Inc.
The Model Checking Problem

\[M \models \varphi \]

- **system / model**
- **property / requirement**
- **satisfies / possesses**
The Synthesis Problem

? \models \varphi
The Requirements-Extraction Problem

\[M \models ? \]
Motivation for Requirements Extraction

• System comprehension

• Specification reconstruction
 – Missing / incomplete / out-of-date documentation
 – “Implicit requirements” (introduced by developers)
Requirements Extraction for Automotive Software

• Joint project: UMD, Fraunhofer, Bosch

• Outline
 – Automotive software development
 – Reqts-extraction via machine learning
 – Pilot study
 – Conclusion
Automotive Software

• Driver of innovation

 90% of new feature content based on sw [GM]
 50M+ lines of code [GM]

• Rising cost

 20% of 2006 vehicle cost due to software [Conti]

• Warranty, liability, quality

 High-profile recalls in Germany, Japan, US
Automotive Software Development

• Ensure high quality of automotive software
 – ... while preserving time to market
 – … at reasonable cost

• How?
 – Model-based development (MBD)

 Efficiencies in production

 – Automated testing

 Efficiencies in verification and validation (V&V)
Models: Simulink®

- Block-diagram modeling language of The MathWorks, Inc.
- Hierarchical modeling
- Simulation
- Continuous, discrete semantics

©2010 Fraunhofer USA Inc.
Models: Stateflow®

©2010 Fraunhofer USA Inc.
Semantics

• Simulink has different “solvers” (= semantics)
 – Continuous: inputs / outputs are signals
 – Discrete: inputs / outputs are data values

• Analog modeling: continuous solvers

• Digital-controller modeling: discrete solvers
 – Synchronous
 – Run-to-completion
 – Time-driven

©2010 Fraunhofer USA Inc.
Automated Testing: Reactis®

- Automatic test suites from Simulink / Stateflow
 - Maximize coverage
 - Capture outputs
- Uses
 - Compare models, systems
 - Model validation via *Instrumentation-Based Verification*
Coverage Testing via Guided Simulation

- Test = simulation run = sequence of I/O vectors
- Goal: maximize model coverage
e.g. branch, state, transition, MC/DC, etc.
- Method: guided simulation
 - Simulate model, BUT
 - Choose input data to guide simulation to uncovered parts
 - Turn simulation runs into test data
- Input selection by Monte Carlo, constraint solving
- Implemented in Reactis®
Instrumentation-Based Verification

- Formulate requirements as *monitor models*
 - Inputs: signals in model
 - Outputs: boolean flags
 - Flag = true: no violation
 - Flag = false: violation
- Instrument main model with monitors
- Test instrumented model to search for violations

“If speed is < 30, cruise control must remain inactive”
(Model-Based) Development

Models

- Models formalize specifications, design
- Models support V&V, testing, code generation
- Models facilitate communication among teams

©2010 Fraunhofer USA Inc.
Requirements Extraction

• The extraction problem
 – Given: system (M)
 – Produce: requirements (φ)

• Approach
 – Generate test data satisfying coverage criteria
 – Use machine learning to propose invariants
 – Check invariants using instrumentation-based verification
Machine Learning

• Tools for inferring relationships among variables based on time-series data
 – Input: table
 | Time | x | y |
 |------|-----|-----|
 | 0 | 1 | 0 |
 | 1 | -1 | -1 |
 | 2 | 2 | 1 |
 | … | … | … |

 – Output: relationships (“association rules”)
 e.g. $0 \leq x \leq 3 \implies y \geq 0$
Machine Learning and Requirements Extraction

• General idea
 – Treat tests (I/O sequences) as experimental data
 – Use machine learning to infer relationships between inputs, outputs

• Our insight
 – Ensure test cases satisfy coverage criteria (e.g. branch coverage) to ensure “thoroughness”
 – Use IBV to double-check proposed relationships
Pilot Study: Production Body-Electronic Application

• Artifacts
 – Simulink model (ca. 75 blocks)
 – Requirements formulated as state machine
 – Requirements correspond to 42 invariants defining transition relation

• Goal: Compare our approach, random testing [Raz]
 – Completeness (% of 42 detected?)
 – Accuracy (% false positives?)
Pilot Study: Tool Chain

- Automated test-generation tool: Reactis
- Machine-learning tool: Magnum Opus
- Additional tooling
 - Test-format conversions
 - Automated generation of monitor models, instrumentation
Experimental Design

• Repeat five times
 1. Generate coverage tests (Reactis)
 2. Create invariants (Magnum Opus)
 3. Use IBV to double-check invariants (Reactis)
 4. Combine original, IBV tests, rerun 2, 3

• Repeat five times
 1. Generate random tests (Reactis)
 2. Create invariants (Magnum Opus)
 3. Use IBV to double-check invariants (Reactis)
 4. Create second set of random tests, combine with first
 5. Repeat 3
Experimental Results

- Hypothesis: coverage-testing yields better invariants than random testing
- Coverage results:
 - 95% of inferred invariants true
 - 97% of requirements inferred
 - Two missing requirements detected
- Random results:
 - 55% of inferred invariants true
 - 40% of requirements inferred
- Hypothesis confirmed
Conclusions

• Coverage-testing yields better requirements
• IBV double-checks generated invariants effectively
• Future directions
 – Extraction of temporally complex requirements
 – Visualization of generated requirements
 – Analysis of “near-invariants”
Related Work

- Specification mining [Larus et al. / Biermann et al. / Su et al. / Necula et al. / …]
- DAIKON [Ernst et al.]
- IODINE [Hangal et al.]
- Invariants + BMC [Cheng et al.]
CMACS Collaboration: Computational Genomics

- Single-nucleotide polymorphisms (SNPs)
 - Locations in genetic code whose variations induce genetic traits
- Goal: develop model for predicting which SNPs cause which traits
 - Models are linear
 - Model development means discovering linear coefficients
- Problem: 100,000s of SNPs!
- Approach:
 - Use latest machine-learning techniques to speed up learning of coefficients
 - Combine with statistical tests to detect, eliminate “non-contributive” SNPs
- Collaborators: Tongtong Wu (UMD SPH), Sam Huang (UMD CS)
CMACS Collaboration: Stochastic Hybrid Control

- Hybrid-system modeling used in traditional control
 - Deterministic plant models (continuous)
 - Discrete controllers

- In real-world, plant behavior not fully predictable

- Goal: theory for modeling, analyzing stochastic hybrid systems
 - Basic modeling
 - Compositionality
 - Simulation
 - Reachability

- Collaborators: Steve Marcus, Rance Cleaveland
Thank You!

Rance Cleaveland
University of Maryland

rance@cs.umd.edu

301-405-8572

www.cs.umd.edu/~rance

©2010 Fraunhofer USA Inc.