Navigating the Subway Map of the Cell

Jim Faeder

Department of Computational Biology University of Pittsburgh School of Medicine

CMACS-NSF Meeting March 4-5, 2010

faeder@pitt.edu
http://ccbb.pitt.edu/faeder

Department of Computational Biology

How Cells Process Information

http://en.wikipedia.org/wiki/Cell_signaling

Architecture of a signaling network

Yarden & Sliwkowski, Nature Rev. Mol. Cell Biol. 02: 127-137 (2001).

Mutation of Ras Can Produce a Tumor Cell

Normal

Transformed

Ras mutations in cancer

Ras

>20% human tumors carry Ras point mutations.

>90% in *pancreatic* cancer.

The Biology of Cancer (© Garland Science 2007)

Modularity of Signaling Proteins

Figure 6.10a The Biology of Cancer (© Garland Science 2007)

Modularity produces complex wiring

Complexity of Receptor Complexes

Modeling cell signaling

AIM: Model the biochemical machinery by which cells process information (and respond to it).

Syk activation model

Key variables

- ligand properties
- protein expression levels
- multiple Lyn-FceRI interactions
- transphosphorylation

Mol. Immunol.,2002 J. Immunol., 2003

BIONETGEN Language

IgE(a,a)
FceRI(a,b~U~P,g2~U~P)
Lyn(U,SH2)
Syk(tSH2,lY~U~P,aY~U~P)

Rule-based modeling protocol

BIONETGEN Editor - BINGE

BNG Editor		
<u>File Edit Format View Run H</u> elp		
Save Save All Find Replace Contact Map Influence Map Check Run Par Scan		
D\PNICModelc\CimpleEyample\SimpleEyampleEytended bngl		
D. (BNOMODELS (SIMpleExampleCompleExampleExcended.brig)		
SimpleExampleExtended.bngl 🖾 egfr_simple.bngl		
19 kp3 0.5	*	
20 km3 4.505		
21 kp4 1.5e6/(NA*V)		
22 km4 0.05		
23 kp5 1.0e7/(NA*V) # binding of Grb2 to Sos1		
24 km5 0.06		
25 kdeg 0.01	E	
26 end parameters	1.2.1.1	
27	1	
28 + begin molecule types		
36 - begin seed species		
20 C-k3/CH3 CH3) CPR30		
33 0102(3H2,3H3) 01020		
41 \$Trach 0	÷.	
4	P.	
	1	
Console		
Propagation took 1.10e-01 CPU seconds	*	
Final network file written to D:\BNGModels\SimpleExample\SimpleExampleExtended_ssa_end.net		
Program times: 0.17 CPU s 0.00 clock s	1.20	
Edge species became populated 0 times.		

Yao Sun and Liz Marai, U. Pitt Computer Science

BIONETGEN Editor - BINGE

BNG Editor		
<u>File E</u> dit F <u>o</u> rmat <u>V</u> iew <u>Run</u> <u>H</u> elp		
Save Save All Find Replace Contact Man Influence Man Check Run Par Scan		
D:\BNGModels\SimpleExample\SimpleExampleExtended.bngl		
SimpleExampleExtended.bngl 🖾 egfr_simple.bngl		
19 kp3 0.5	*	
20 km3 4.505		
21 kp4 1.5e6/(NA*V)		
22 km4 0.05		
23 kp5 1.0e7/(NA*V) # binding of Grb2 to Sos1		
24 km5 0.06		
25 kdeg 0.01	E	
26 end parameters		
28 / begin molecule types	1000	
20 + begin molecule types		
36 - begin seed species		
37 EGF(R) EGF0		
38 EGFR(L,CR1,Y1068~U) EGFR0		
39 Grb2(SH2,SH3) GRB20		
40 Sos1(PxxP) SOS10		
41 STrash 0	*	
· · · · · · · · · · · · · · · · · · ·	P.	
Console		
Propagation took 1 10e-01 CPU seconds		
Final network file written to D:\BNGModels\SimpleExample\SimpleExampleExtended ssa end.net		
Program times: 0.17 CPU s 0.00 clock s		
Edge species became populated 0 times.		
	*	

BIONETGEN Editor - BINGE

Limits of the network generation approach

Extending model to include
 Lyn regulation results in
 >20,000 species.

Kohn's Wiring Diagram for the Cell

Figure 6B: The p53-Mdm2 and DNA repair regulatory network (version 2p - May 19, 1999)

Kohn, Molecular Biology of the Cell 1999

NFSIM

"Network-Free" Stochastic Simulator

- Generalization of rulebased kinetic Monte Carlo method of Yang et al.
- Particle-based method avoids combinatorial explosion
- Gillespie-based simulations capture stochastic effects

Reaction Rules

Sneddon, Faeder, and Emonet, in preparation.

Integration with BIONETGEN

Subway Map of Cell Signaling

Rule-based Model of EGFR Signaling

Preliminary Model: 20 molecules / 532 rules / 496 parameters

Matt Creamer and Rich Posner

Stats

Model

- 20 Molecule Types
 - 4 Receptors
 - 3 Ligands
- 536 Parameters
- 547 Reaction Rules

Simulation

1500 sim sec

- ~10-18 million events
- ~ 1060 real sec
- ~ 6e-5 CPU seconds/event
- (On a 2.4 GHz Intel Core2Duo on iMac with 4 GB RAM)

Visual Annotation of the Model

Model Validation

John Sekar

Model Validation

John Sekar

The Path Ahead

- Continue to build and analyze models of key pathways
- Systematic investigation of models using
 - Statistical and Bayesian Model Checking
 - Global parameter sensitivity analysis
 - Parameter estimation and synthesis
- Integration of pathway models
- Model reduction
 - Coarse-graining of detailed models (bottom up)
 - Comparison / Mapping to logical models (top down)

The Path Ahead

- Continue to build and analyze models of key pathways
- Systematic investigation of models using
 - Statistical and Bayesian Model Checking
 - Global parameter sensitivity analysis
 - Parameter estimation and synthesis
- Integration of pathway models
- Model reduction
 - Coarse-graining of detailed models (bottom up)
 - Comparison / Mapping to logical models (top down)

Can Abstract Interpretation provide powerful new approaches to this problem? *Danos, Feret and colleagues*

Boolean networks

- The state of an element in the signaling network can be described by a Boolean variable, expressing that it is:
 - Active or present (on or 'I')
 - Inactive or absent (off or '0')
- Boolean functions:
 - Represent interactions between elements
 - The state of an element is calculated from states of other elements
- Practical advantages
 - No parameters facilitates model development
 - Easy to understand facilitates collaboration

Model development protocol

Biological network

Proteins: p_1 , p_2 , p_3 Protein states: x_1 , x_2 , x_3

 $x_1(t+1) = x_2(t) \text{ or } x_3(t)$ $x_2(t+1) = \text{not } x_1(t) \text{ and } x_3(t)$ $x_3(t+1) = x_1(t) \text{ and not } x_3(t)$

• $x_1x_2x_3$ – state vector

Boolean network	Logic circuit network	State transition table		
		state	x ₁ (t)x ₂ (t)x ₃ (t)	x ₁ (t+1)x ₂ (t+1)x ₃ (t+1)
$x_1(t+1) = x_2(t) \text{ or } x_3(t)$		S ₁	000	000
	x ₁	S ₂	001	110
		S ₃	010	100
		s ₄	011	110
		S ₅	100	001
		s ₆	101	100
	x ₂	S ₇	110	101
$x_2(t+1) = not x_1(t) and x_3(t)$ $x_2(t+1) = x_1(t) and not x_2(t)$		S ₈	111	100

- A sequence of connected states forms a trajectory of the system
- The number of states and the number of trajectories in the state space are **finite**
- All initial states of a trajectory will eventually reach a steady state or a state cycle

Synchronous vs. asynchronous updates

Regulatory graph for mammalian cell cycle network

Source: Faure et al., Bioinformatics, 2006.

Logical rules

Product	Logical rules leading to an activity of the product	Justification/References
CycD	CycD	CycD is an input, considered as constant.
Rb	$(\overrightarrow{CycD} \land \overrightarrow{CycE} \land \overrightarrow{CycA} \land \overrightarrow{CycB}) \\ \lor (p27 \land \overrightarrow{CycD} \land \overrightarrow{CycB})$	Rb is expressed in the absence of the cyclins, which inhibit it by phosphorylation (Novak and Tyson, 2004; Taya, 1997); it can be expressed in the presence of CycE or CycA if their inhibitory activity is blocked by p27 (Coqueret, 2003).
E2F	$(\overline{Rb} \land \overline{CycA} \land \overline{CycB}) \lor (p27 \land \overline{Rb} \land \overline{CycB})$	E2F is active in the absence of Rb, that blocks E2F self-transcriptional activation (Helin, 1998), and in the absence of CycA and CycB, that inhibit E2F (Novak and Tyson, 2004); CycA may be present, if its inhibitory activity is blocked by p27 (Coqueret, 2003).
CycE	$(E2F \wedge \overline{Rb})$	CycE activity requires the presence of E2f and the absence of Rb (Helin, 1998).
CycA	$(E2F \land \overline{Rb} \land \overline{Cdc20} \land \overline{(Cdh1 \land Ubc)}) \\ \lor (CycA \land \overline{Rb} \land \overline{Cdc20} \land \overline{(Cdh1 \land Ubc)})$	The transcription of CycA is activated by E2F in the absence of Rb, which blocks this activation (Helin, 1998), in the absence of Cdc20, as well as of the pair formed by Cdh1 and UbcH10, which both lead to the degradation of CycA (Harper <i>et al.</i> , 2002; Rape and Kirschner, 2004); CycA is stable in the absence of its inhibitors Rb, Cdc20, and of the pair Cdh1 and UbcH10.
p27	$(\overline{CycD} \land \overline{CycE} \land \overline{CycA} \land \overline{CycB}) \\ \lor (p27 \land (\overline{CycE} \land \overline{CycA}) \land \overline{CycB} \land \overline{CycD})$	p27 is active in the absence of the cyclins; when p27 is already present, it blocks the action of CycE or CycA (but not both of them) by sequestration (Coqueret, 2003).
Cdc20	CycB	CycB indirectly activates Cdc20 (Harper et al., 2002).
Cdh1	$(CycA1 \land CycB) \lor (Cdc20) \lor (p27 \land CycB)$	The activity of Cdh1 requires the absence of CycB and CycA, which inhibit it by phosphorylation (Harper <i>et al.</i> , 2002); Cdc20 further activates Cdh1. (Novak and Tyson, 2004); p27 allows the presence of CycA, by blocking its activity.
UbcH10	$(Cdh1) \lor (Cdh1 \land Ubc$	UbcH10 is active in the absence of Cdh1; this UbcH10 activity can be maintained in the
	$\land (Cdc20 \lor CycA \lor CycB))$	presence of Cdh1 when at least one of its other targets is present (CycA, Cdc20, or CycB) (Rape and Kirschner, 2004).
CycB	$(\overline{Cdc20} \wedge \overline{Cdh1})$	CycB is active in the absence of both Cdc20 and Cdh1, which target CycB for destruction (Harper et al., 2002).

Source: Faure et al., Bioinformatics, 2006.

Updating approaches

synchronous

asynchronous

mixed

Source: Faure et al., Bioinformatics, 2006.

Vision

- Logical models of subway map components
- Begin with cell cycle models and link with other regulatory pathways connected to receptor signaling
- Basis for both simulation and formal analysis
- Complement to reaction network models being developed with TGEN collaborators

Collaborators

\$\$ NSF-Expeditions in Computing

\$\$ NSF-EMT

<u>Yale</u> Thierry Emonet Michael Sneddon

FaederLab

Natasa Miskov-Zivanov John Sekar Leonard Harris Justin Hogg Jintao Liu

> <u>TGen</u> Rich Posner Matthew Creamer Josh Colvin Daniel Von Hoff

CMU

Ed Clarke Haijun Gong Paolo Zuliani Anvesh Komuravelli Chris Langmead Sumit Jha

> <u>Lehmann</u> Nancy Griffeths

http://bionetgen.org

Thank You!

Photo by John Sekar