

Workshops on Computational Modeling of Complex Systems

Nancy Griffeth March 4, 2010

Macs Workshop Objectives

- Disseminate project work among promising students
- Encourage enthusiasm for research and modeling complex systems
- Find good prospects for REU and graduate programs
- Encourage under-represented minorities to enter STEM fields
- Encourage inter-disciplinary work
- Develop course materials

Macs Additional Workshop Benefits

- Collaboration in preparing workshop
- Dissemination of CMACS research
 - At Lehman
 - At other CUNY institutions (Hunter and Brooklyn)
- Preparation of students
 - For grad school and for research in related areas
 - To use the methods and tools developed under CMACS
- Feedback on tools

- Workshop series (2010-2014)
- 2010 Workshop on Modeling Signaling Pathways in the Cell
 - Syllabus
 - Students
 - Student Work
 - Outcomes
- Planned 2011 Workshop

Macs Workshop Series

- Three weeks (most of January) each year
- Rotate challenge problems:

Challenge Problem		Year
1.	Signaling Pathways in Pancreatic Cancer	Winter 2010 Faeder, Langmead
2.	Fibrillation Onset in Cardiac Tissue	Winter 2011 Fenton, Gilmour, Grosu, Smolka
3.	Distributed Automotive Control	Winter 2012
4.	Aerospace Control Software	Winter 2013

Signaling Pathways in the Cell

- Motivated by pancreatic cancer challenge problem
- Materials and exercises by Jim Faeder, Chris Langmead, and Nancy Griffeth
- Final student presentations showed impressive development of skills
- Final student evaluations showed delight with workshop

Macs Workshop Syllabus – Week 1

Introduction

- The life cycle of a cell
- Mac OS X and Unix
- The role of signaling in the cell's life cycle
- Modeling biochemical systems
- Chemical kinetics
- Student exercise: Toy model

http://www.lehman.edu/academics/cmacs

Macs Workshop Syllabus – Week 2

- Using modeling
 - Visiting lecture by Jim Faeder: Using Modeling to Bridge Scales in Biology
 - Wiring Diagrams
 - Student Exercise: Modeling the signaling at the G2 checkpoint in frog cells

Macs Workshop Syllabus – Week 3

- Model checking and final exercises
 - Temporal Logic
 - Visiting Lecture by Chris Langmead: Model Checking
 - Student exercise: Modeling the EGFR signaling pathway
 - Final lecture by Bud Mishra Modeling and Cancer

MACS Student population

- 15 out of 25 applicants selected
 - 6 from Lehman College
 - 4 from Brooklyn College
 - 4 from Queens College
 - I from Stony Brook
- Under-represented minorities
 - 2 African-American
 - 6 women
 - 2 Hispanic

MACS Student population

- Majors
 - 7 mathematics
 - 3 computer science
 - 5 biological or chemical sciences
- Group Approach
 - Five groups of three for each exercise
 - One Bio, one CS, one Math
 - Re-arranged groups once

General Objectives

Best things about workshop...

- "Working in groups to model was the most effective and fun way to spend time."
- "Working with others helped bring different perspectives and interpretations to questions and data."
- "Most interesting was model checking as a method to verify the models."
- "I really liked the speeches from the speakers that were invited to the workshop."

Macs Best things about workshop...

- "It was amazing how people with different expertise backgrounds were able to come together and apply their knowledge and contribute in some way."
- "I liked how we examined the ways different scientific fields interact. I liked seeing how computer programming can aid in 'hard' science research."
- "Integrating multiple disciplines and methodologies and working in groups to build and analyze biological systems."

Macs Best things about workshop...

- "Miss Griffeth is a very knowledgeable person and the right person to conduct a workshop like this."
- "Everything on this workshop was great"

MACS Suggested improvements

- "Less time on cell biology at the outset and more time for modeling."
- "I would have the students work on their own models much sooner as that seemed to generate the most interest"
- "I would spend more time on reinforcing biological terms since there were many students who are majoring on other areas."

Macs Suggested improvements

- "I would have put more emphasis on modeling the real biological models and tried to get through the basic biology and toy models faster."
- "If there was more emphasis on understanding the biological concepts maybe it would have been easier to build the models and use the computer programs."

Macs Other outcomes

- Lehman advisory committee
 - New CS/Bio courses
 - Bioinformatics minor
- Potential Lehman collaborator (Stephen Redenti)
- Planned courses at Lehman
- New Bioinformatics minor for CS and Biology majors

CMACS Other outcomes

- Relationships with other CUNY colleges
 - Talks at other CUNY colleges
 - To develop: CUNY-wide advisory committee
- Dissemination of CMACS ideas and tools to the grad assistants
- Several workshop attendees applying to REU programs

CMACS Planned 2011 Workshop

Challenge problem: Atrial Fibrillation

 Collaborators: Flavio Fenton, Robert Gilmour, Radu Grosu, Scott Smolka

MACS Lessons learned from 2010

- Have a grad student from the project available for the first week
- Develop the material over the summer
 More time to test and improve tools
- Add material on forming and testing hypotheses
- Break into groups by major subject for specialized tutorials
- Teaming exercises

Macs Personal Research Interests

- Model Discovery (in computer networking)
- Modeling and model-checking biological systems (Faeder, Clarke, Redenti)
- Using Abstract Interpretation to Support Model Discovery (Cousot)