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Develop new methods for reasoning about 
stochastic processes by adapting and 
combining methods from Machine Learning
and Formal Verification

Machine Learning addresses uncertainty

Verification addresses complexity and scalability

Application Domains:

Computational Biology

Embedded Systems



Personalized Medicine

Developing patient-specific treatment plans
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Primary Tasks:

(1) Determine where the 

patient is now 

(approximately)

(2) Characterize the patient’s 

trajectory (approximately)

(3) Select interventions based 

on (1) and (2)



Physicians routinely use simple (non-
dynamic) models in these tasks

We believe that dynamic models will be 
more useful
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Dynamic models of disease processes

(Stochastic) ODEs/PDEs

Graphical models



Let X = {x1,…, xn} be a set of random variables

Each Xi can be continuous or discrete

A probabilistic graphical model (PGM) is a 
factored encoding of P(X)
M = (G, ª, £)

G = (V,E) is a graph over the random variables

Vi corresponds to xi

Edges reveal conditional independencies

ª is a set of functions over V and E

£ is a vector of parameters



This models P(Sprinkler, Rain, Grass Wet)

V = {Sprinkler, Rain, Grass Wet}

ª = { P(rain), P( Sprinkler | Rain),                             

P(Grass Wet | Sprinkler, Rain) }

£ = The elements in the 3 tables 



This models P(Sprinkler, Rain, Grass Wet)

V = {Sprinkler, Rain, Grass Wet}

ª = { P(rain), P( Sprinkler | Rain),                             

P(Grass Wet | Sprinkler, Rain) }

£ = The elements in the 3 tables 

What is the probability that it is raining, given that the grass is wet? 



Models distributions over time series P(X0:t)

Time can be continuous or discrete
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Traditional Tasks

Inference

Computing P( A0:t+± | B0:t; M)

A Å B = , A [ B = X

Learning

Computing argmaxµ P( D ; M)

D is a set of observations over  Y0:t µ X0:t

Structure Learning

Computing argmaxG,µ P( D ; M)

I.e., simultaneously learning graph topology 
and parameters



We introduced the following generalizations:

Inference over temporal logic formulas*

Computing P( Á1 | Á
2
; M)

Learning over temporal logic formulas*

Computing argmaxµ P(Á ; M)

Structure Learning over temporal logic formulas*

Computing argmaxG,µ P( Á ; M)

*Formulas are in bounded LTL



We introduced the following generalizations:

Inference over temporal logic formulas*

Computing P( Á1 | Á
2
; M)

Learning over temporal logic formulas*

Computing argmaxµ P(Á ; M)

Structure Learning over temporal logic formulas*

Computing argmaxG,µ P( Á ; M)

These generalizations provide a more expressive 

framework for using graphical models



These generalizations are also relevant to our 
three tasks 

Eg., Á := :“Organ Failure” Ut “Health”
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Inference over temporal logic formulas [L09]

Also: new sampling algorithms for rare events

Dynamics Distribution Time Inference

Linear Gaussian Discrete Exact

Non-linear Gaussian Discrete Accurate to 2nd order

Non-linear Non-Gaussian Discrete Approximate

Non-linear Multinomial Discrete Exact



Control policy synthesis and structure 
learning for synchronous or asynchronous 
Boolean networks [LJ08,LJ09]

Relies on symbolic model checking
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Learning over temporal logic formulas [L08] 

* Uses bit-vector decision procedures

Parameter Synthesis [DCL09,JL10]

* Uses abstraction-refinement

Distribution Time Learning

Multinomial Discrete Approximate*

Continuous Discrete Approximate

Distribution Time Learning

Continuous Continuous Approximate

Multinomial Discrete Approximate*



Cell-cycle model
Á := Ft “Cyclin bound = 0”



Fibroblast growth receptor pathway model
Á := Ft (A>0 & B = 0)

2D synthesis

Note: our method has been used to synthesize up to 6 parameters, simultaneously



Medical

Sepsis

Pancreatitis

Chronic Myeloid Leukemia

Biological

Embryogenesis

Signaling Pathways

Spatial Models

Markov Random Fields



Jim Faeder
Our algorithm for parameter 
synthesis for stochastic systems was 
developed with BioNetGen in mind

Bud Mishra
Applications to GOALIE

Atrial Fibrillation 
Markov Random Fields

Rance Cleaveland
Our rare event sampling procedure 
might be relevant to Reactis© 


