Graphical Models for Stochastic Verification and Synthesis

Christopher James Langmead Department of Computer Science & Lane Center for Computational Biology Carnegie Mellon University

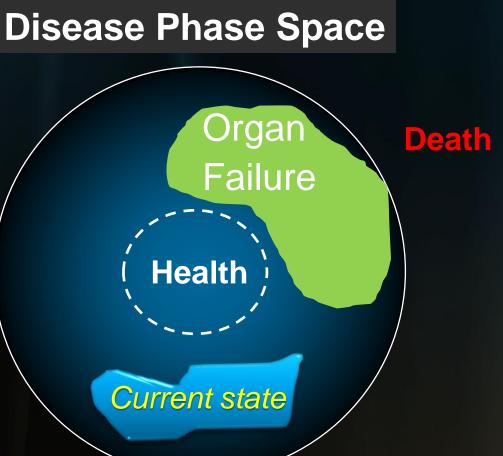
Research Goals

 Develop new methods for reasoning about stochastic processes by adapting and combining methods from Machine Learning and Formal Verification

- Machine Learning addresses uncertainty
- Verification addresses complexity and scalability
- Application Domains:
 - Computational Biology
 - Embedded Systems

Context & Motivation Personalized Medicine Developing patient-specific treatment plans

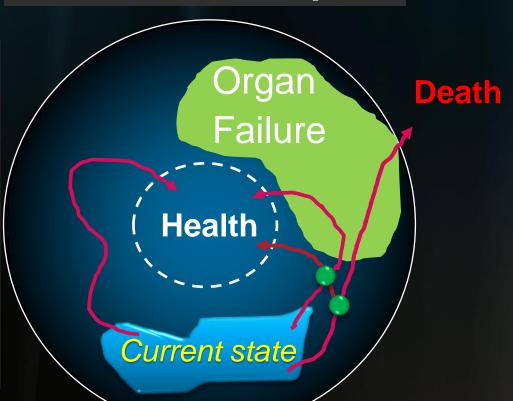
Intensive Care Unit



Context & Motivation Personalized Medicine Developing patient-specific treatment plans

Disease Phase Space

Primary Tasks:
(1) Determine where the patient is now (approximately)
(2) Characterize the patient's trajectory (approximately)
(3) Select interventions based on (1) and (2)

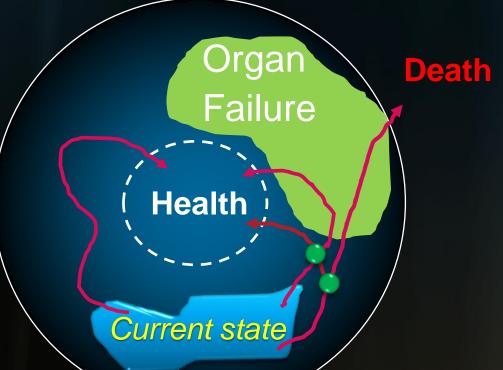


Context & Motivation

Physicians routinely use simple (nondynamic) models in these tasks

We believe that dynamic models will be more useful

Primary Tasks:
(1) Determine where the patient is now (approximately)
(2) Characterize the patient's trajectory (approximately)
(3) Select interventions based on (1) and (2)



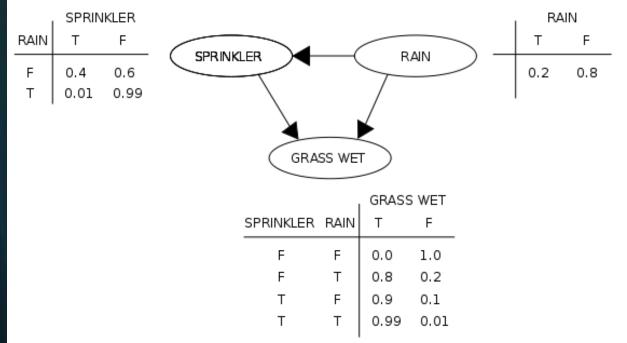
Context and Motivation

Dynamic models of disease processes
 (Stochastic) ODEs/PDEs
 Graphical models

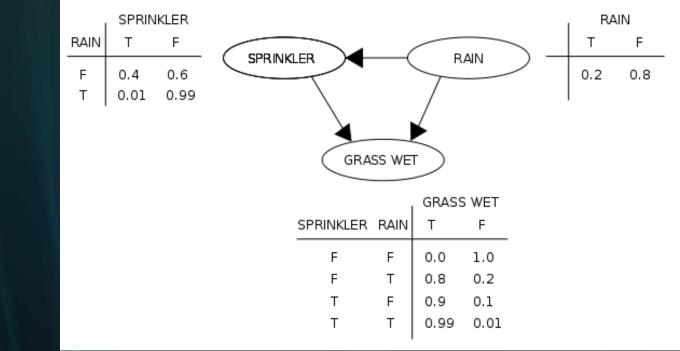
Graphical Models

- Let X = {x₁,..., x_n} be a set of random variables
 Each X_i can be continuous or discrete
- A probabilistic graphical model (PGM) is a factored encoding of P(X)
 - $\mathcal{M} = (\mathsf{G}, \Psi, \Theta)$
 - G = (V,E) is a graph over the random variables
 - V_i corresponds to x_i
 - Edges reveal conditional independencies
 - Ψ is a set of functions over V and E
 - Θ is a vector of parameters

Example



 This models P(Sprinkler, Rain, Grass Wet)
 V = {Sprinkler, Rain, Grass Wet}
 Ψ = { P(rain), P(Sprinkler | Rain), P(Grass Wet | Sprinkler, Rain) }
 Θ = The elements in the 3 tables



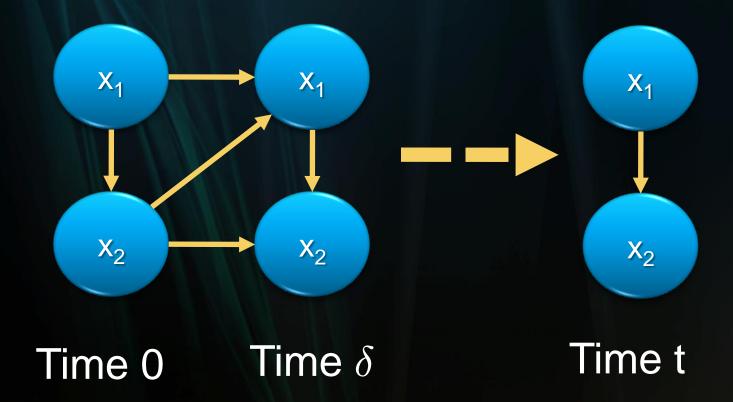
What is the probability that it is raining, given that the grass is wet?

Example

$$\mathbf{P}(R = T \mid G = T) = \frac{\mathbf{P}(G = T, R = T)}{\mathbf{P}(G = T)} = \frac{\sum_{S \in \{T, F\}} \mathbf{P}(G = T, S, R = T)}{\sum_{S, R \in \{T, F\}} \mathbf{P}(G = T, S, R)}$$

 $\frac{(0.99 \times 0.01 \times 0.2 = 0.00198_{TTT}) + (0.8 \times 0.99 \times 0.2 = 0.1584_{TFT})}{0.00198_{TTT} + 0.288_{TTF} + 0.1584_{TFT} + 0_{TFF}} \approx 35.77\%.$

Models distributions over time series P(X_{0:t})
 Time can be continuous or discrete



- Traditional Tasks
 - Inference
 - Computing P($A_{0:t+\delta} | B_{0:t}; \mathcal{M}$)
 - $A \cap B = \emptyset, A \cup B = X$
 - Learning
 - Computing $\operatorname{argmax}_{\theta} \mathsf{P}(\mathcal{D}; \mathcal{M})$
 - \mathcal{D} is a set of observations over $\mathbf{Y}_{0:t} \subseteq \mathbf{X}_{0:t}$
 - Structure Learning
 - Computing $\operatorname{argmax}_{G,\theta} \mathsf{P}(\mathcal{D};\mathcal{M})$
 - I.e., simultaneously learning graph topology and parameters

We introduced the following generalizations:

- Inference over temporal logic formulas*
 - Computing P($\phi_1 | \phi_2; \mathcal{M}$)
- Learning over temporal logic formulas*
 - Computing $\operatorname{argmax}_{\theta} \mathsf{P}(\phi ; \mathcal{M})$
- Structure Learning over temporal logic formulas*
 Computing argmax_{G,θ} P(φ; M)

*Formulas are in bounded LTL

We introduced the following generalizations:

- Inference over temporal logic formulas*
 - Computing P($\phi_1 | \phi_2; \mathcal{M}$)
- Learning over temporal logic formulas*
 - Computing $\operatorname{argmax}_{\theta} \mathsf{P}(\phi ; \mathcal{M})$
- Structure Learning over temporal logic formulas*
 Computing argmax_{G,θ} P(φ; M)

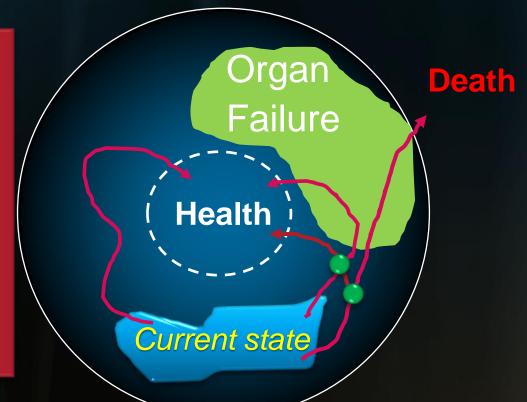
These generalizations provide a more expressive framework for using graphical models

In Context

These generalizations are also relevant to our three tasks

• Eg., $\phi := \neg$ "Organ Failure" U^t "Health"

Primary Tasks:
(1) Determine where the patient is now (approximately)
(2) Characterize the patient's trajectory (approximately)
(3) Select interventions based on (1) and (2)



New Algorithms (1)

Inference over temporal logic formulas [L09]

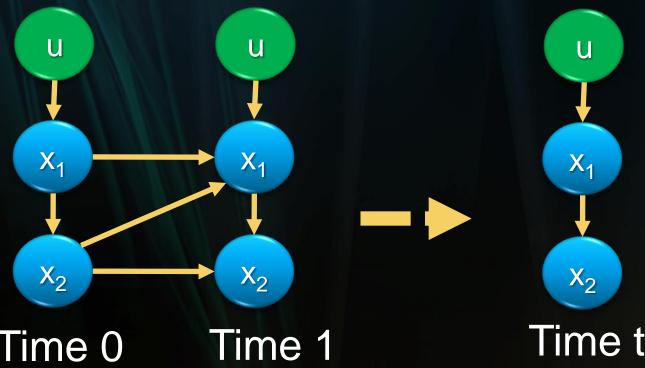
Dynamics	Distribution	Time	Inference
Linear	Gaussian	Discrete	Exact
Non-linear	Gaussian	Discrete	Accurate to 2 nd order
Non-linear	Non-Gaussian	Discrete	Approximate
Non-linear	Multinomial	Discrete	Exact

Also: new sampling algorithms for rare events

New Algorithms (2)

 Control policy synthesis and structure learning for synchronous or asynchronous Boolean networks [LJ08,LJ09]

Relies on symbolic model checking



New Algorithms (3)

Learning over temporal logic formulas [L08]

Distribution	Time	Learning
Multinomial	Discrete	Approximate*
Continuous	Discrete	Approximate

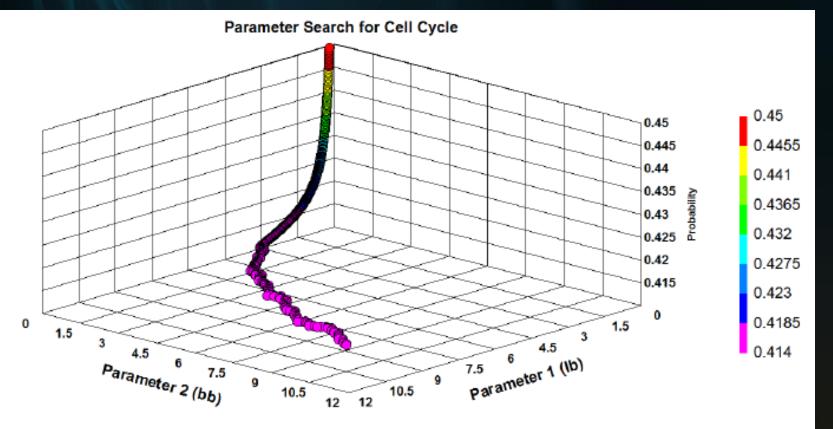
* Uses bit-vector decision procedures Parameter Synthesis [DCL09,JL10]

Distribution	Time	Learning
Continuous	Continuous	Approximate
Multinomial	Discrete	Approximate*

* Uses abstraction-refinement

Example: Parameter Estimation

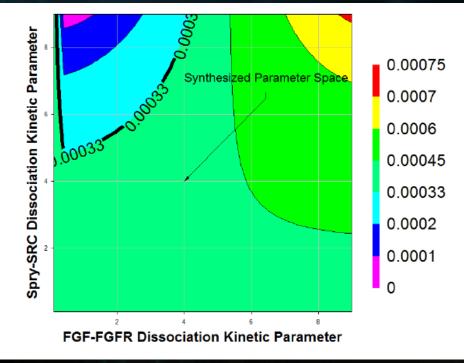
Cell-cycle model φ := F^t "Cyclin bound = 0"



Example: Synthesis

Fibroblast growth receptor pathway model φ := F^t (A>0 & B = 0)

2D synthesis



Note: our method has been used to synthesize up to 6 parameters, simultaneously

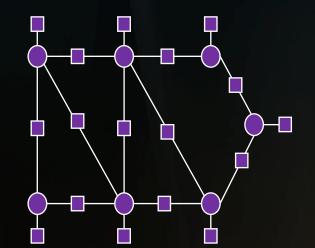
Applications and Extensions

Medical

- Sepsis
- Pancreatitis
- Chronic Myeloid Leukemia

Biological

- Embryogenesis
- Signaling Pathways
- Spatial Models
 - Markov Random Fields



Potential Collaborations

Jim Faeder

- Our algorithm for parameter synthesis for stochastic systems was developed with BioNetGen in mind
- Bud Mishra
 - Applications to GOALIE
- Atrial Fibrillation
 - Markov Random Fields
- Rance Cleaveland
 - Our rare event sampling procedure might be relevant to Reactis[©]

