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Research GGoals

& Develop new methods for reasoning about

stochastic processes by adapting and
combining methods from Machine Learning

and Formal Verification
& Machine Learning addresses uncertainty
¢ Verification addresses complexity and scalability

& Application Domains:
¢ Computational Biology
¢ Embedded Systems



Context & Motivation

¢ Personalized Medicine
& Developing patient-specific treatment plans

Disease Phase Space

Intensive Care Unit




Context & Motivation

& Personalized Medicine
& Developing patient-specific treatment plans

Disease Phase Space

Primary Tasks:

(1) Determine where the
patient iIs now
(approximately)

(2) Characterize the patient’s
trajectory (approximately)

(3) Select interventions based
on (1) and (2)

- Current state




Context & Motivation

& Physicians routinely use simple (non-
dynamic) models in these tasks

& We believe that dynamic models will be
more useful

Primary Tasks:

(1) Determine where the
patient iIs now
(approximately)

(2) Characterize the patient’s
trajectory (approximately)

(3) Select interventions based
on (1) and (2)
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Context and Motivation

& Dynamic models of disease processes
& (Stochastic) ODEs/PDEs
¢ Graphical models



Graphical Models

¢ Let X = {X,,..., X} be a set of random variables
¢ Each X, can be continuous or discrete

& A probabillistic graphical model (PGM) is a
factored encoding of P(X)
s M=(G,VY, 0)

¢ G =(V,E) Is a graph over the random variables
& V, corresponds to x;
& Edges reveal conditional independencies

& Yis a set of functions over V and E

& O Is a vector of parameters



SPRIMKLER

& This models P(Sprinkler, Rain, Grass Wet)
¢ V ={Sprinkler, Rain, Grass Wet}
¢ ¥ ={P(rain), P( Sprinkler | Rain),
P(Grass Wet | Sprinkler, Rain) }
& O =The elements In the 3 tables
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What Is the probabillity that it is raining, given that the grass is wet?

P(G=T,R=T)

P(R=T|G=T)=—"F=""0

(0.99 x 0.01 x 0.2 = 0.00198777) 4+ (0.8 x 0.99 x 0.2 = 0.15847¢7)
0.00198 7+ + 0.2887 15 + 0.1584 757 + 0




PGMs for Stochastic Processes

¢ Models distributions over time series P(X,.)
& Time can be continuous or discrete




PGMs for Stochastic Processes

& Traditional Tasks
& Inference
¢ Computing P(Ag.i+s | Bo.s M)
¢ AnB=Y, AuB=X
& Learning
& Computing argmax, P( D ; M)
¢ D is a set of observations over Y. C Xg
& Structure Learning
¢ Computing argmaxg, P( D ; M)
¢ |.e., simultaneously learning graph topology
and parameters



PGMs for Stochastic Processes

& We introduced the following generalizations:
& Inference over temporal logic formulas*
¢ Computing P( o, | & ; M)
& Learning over temporal logic formulas*
& Computing argmax, P(o ; M)
& Structure Learning over temporal logic formulas*
¢ Computing argmax , P( ¢ ; M)

*Formulas are in bounded LTL



PGMs for Stochastic Processes

& We introduced the following generalizations:
& Inference over temporal logic formulas*
¢ Computing P( o, | & ; M)
& Learning over temporal logic formulas*
& Computing argmax, P(o ; M)
& Structure Learning over temporal logic formulas*
¢ Computing argmax , P( ¢ ; M)

These generalizations provide a more expressive
framework for using graphical models



In Context

& These generalizations are also relevant to our
three tasks

¢ Eg., ¢ := ="0Organ Failure” Ut "Health”

Primary Tasks:

(1) Determine where the
patient is now
(approximately)

(2) Characterize the patient’s
trajectory (approximately)

(3) Select interventions based
on (1) and (2)

“Current state



New Algonthms (1)
& Inference over temporal logic formulas [L09]

Linear Gaussian Discrete Exact

Non-linear Gaussian Discrete Accurate to 2" order

Non-linear Non-Gaussian  Discrete Approximate

Non-linear Multinomial Discrete Exact

& Also: new sampling algorithms for rare events



New Algonthms (2)

& Control policy synthesis and structure
learning for synchronous or asynchronous
Boolean networks [LJ08,LJ09]

: Relies on symbolic model checking
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New Algornthms (3)

& Learning over temporal logic formulas [LO8]

Multinomial Discrete Approximate*

Continuous Discrete Approximate

& Uses bit-vector decision procedures
& Parameter Synthesis [DCL09,JL10]

Continuous Continuous Approximate

Multinomial Discrete Approximate*

®  Uses abstraction-refinement



Example: Parameter Estimation

& Cell-cycle model
¢ &= Ft“Cyclin bound = 0”

Parameter Search for Cell Cycle
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Example: Synthesis

& Fibroblast growth receptor pathway model
¢ ¢:=F (A>0&B=0)
& 2D synthesis
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FGF-FGFR Dissociation Kinetic Parameter

Note: our method has been used to synthesize up to 6 parameters, simultaneously



Applications and Extensions

& Medical
& Sepsis
¢ Pancreatitis
¢ Chronic Myeloid Leukemia
& Biological
¢ Embryogenesis
& Signaling Pathways
& Spatial Models
¢ Markov Random Fields

L




Potential Collaborations

& Jim Faeder

& Our algorithm for parameter
synthesis for stochastic systems was
developed with BioNetGen in mind

¢ Bud Mishra
& Applications to GOALIE

& Atrial Fibrillation
& Markov Random Fields

& Rance Cleaveland

& Our rare event sampling procedure
might be relevant to Reactis©
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