Verification of Nonlinear Models and Compositional Models

André Platzer

Carnegie Mellon University, Computer Science Department, Pittsburgh, PA

- CMACS Context
- Approximation in Model Checking
 - Bounded Flow Approximation
 - Continuous Image Computation
 - Probabilistic Model Checking
 - Differential Invariants
- Compositional Verification of Hybrid Systems
 - Compositionality in Verification
 - Discrete Induction
 - Differential Induction
- Computing Differential Invariants by Combining Local Fixedpoints
 - Local Fixedpoints Iteration
 - Global Fixedpoints & Fixedpoint Loop Combinations
- 6 Collision Avoidance Maneuvers in Air Traffic Control
- 5 Summary & Plans

R Verification: Nonlinear Models & Compositional Models

Hybrid Systems

continuous evolution along differential equations + discrete change

Hybrid Systems

continuous evolution along differential equations + discrete change

Hybrid Systems

continuous evolution along differential equations + discrete change

Example ("Solving" differential equations)

$$\begin{aligned} x_1(t) &= \frac{1}{\omega\varrho} \big(x_1 \omega\varrho \cos t\omega - v_2\omega \cos t\omega \sin\vartheta + v_2\omega \cos t\omega \cos t\varrho \sin\vartheta - v_1\varrho \sin t\omega \\ &+ x_2\omega\varrho \sin t\omega - v_2\omega \cos\vartheta \cos t\varrho \sin t\omega - v_2\omega\sqrt{1 - \sin\vartheta^2} \sin t\omega \\ &+ v_2\omega \cos\vartheta \cos t\omega \sin t\varrho + v_2\omega \sin\vartheta \sin t\omega \sin t\varrho \big) \dots \end{aligned}$$

Example ("Solving" differential equations)

$$\forall t \geq 0 \qquad \frac{1}{\omega \varrho} (x_1 \omega \varrho \cos t\omega - v_2 \omega \cos t\omega \sin \vartheta + v_2 \omega \cos t\omega \cos t\varrho \sin \vartheta - v_1 \varrho \sin t\omega + x_2 \omega \varrho \sin t\omega - v_2 \omega \cos \vartheta \cos t\varrho \sin t\omega - v_2 \omega \sqrt{1 - \sin \vartheta^2} \sin t\omega + v_2 \omega \cos \vartheta \cos t\omega \sin t\varrho + v_2 \omega \sin \vartheta \sin t\omega \sin t\varrho) \dots$$

Symbolic Verification

- constant/nilpotent systems
- otherwise "no" solutions
- sound

Numerical Verification

- nonlinear systems
- approximation errors
- × sound ...?

- CMACS Context
- 2 Approximation in Model Checking
 - Bounded Flow Approximation
 - Continuous Image Computation
 - Probabilistic Model Checking
 - Differential Invariants
- Compositional Verification of Hybrid Systems
 - Compositionality in Verification
 - Discrete Induction
 - Differential Induction
- Computing Differential Invariants by Combining Local Fixedpoints
 - Local Fixedpoints Iteration
 - Global Fixedpoints & Fixedpoint Loop Combinations
- **6** Collision Avoidance Maneuvers in Air Traffic Control
- Summary & Plans

AMC: Approximation Refinement Model Checking

- \bullet A := approx(H) uniformly
- 2 blur by uniform approximation error $+\epsilon$
- **3** check(B reachable from I in $A + \epsilon$)
- \bigcirc B not reachable \Rightarrow H safe

- **2** blur by uniform approximation error $+\epsilon$
- **3** check(B reachable from I in $A + \epsilon$)
- \bigcirc B not reachable \Rightarrow H safe

AMC: Approximation Refinement Model Checking

- \bullet A := approx(H) uniformly
- 2 blur by uniform approximation error $+\epsilon$
- **3** check(B reachable from I in $A + \epsilon$)
- \bigcirc B not reachable \Rightarrow H safe

- **2** blur by uniform approximation error $+\epsilon$
- **3** check(B reachable from I in $A + \epsilon$)
- B not reachable $\Rightarrow H$ safe

AMC: Approximation Refinement Model Checking

- \bullet A := approx(H) uniformly
- 2 blur by uniform approximation error $+\epsilon$
- **3** check(**B** reachable from **I** in $A + \epsilon$)
- \bigcirc B not reachable \Rightarrow H safe

AMC: Approximation Refinement Model Checking

- \bullet $A := \operatorname{approx}(H)$ uniformly
- 2 blur by uniform approximation error $+\epsilon$
- **3** check(B reachable from I in $A + \epsilon$)
- \bullet B not reachable \Rightarrow H safe

AMC(B reachable from I in H):

- $M = \operatorname{approx}(H)$ uniformly
- 2 blur by uniform approximation error $+\epsilon$
- 3 check(B reachable from I in $A + \epsilon$)
- \bullet B not reachable \Rightarrow H safe

Proposition

check and blur can be implemented for

- I and B semialgebraic
- A with polynomial flows over $\mathbb R$
- +Piecewise definitions
- +Rational extensions (e.g. multivariate rational splines)

AMC: Image Approximation

AMC(B reachable from I in H):

- $M = \operatorname{approx}(H)$ uniformly
- **2** blur by uniform approximation error $+\epsilon$
- **3** check(B reachable from I in $A + \epsilon$)
- \bullet B not reachable \Rightarrow H safe

Proposition

approx exists for all uniform errors $\epsilon > 0$ when

- using polynomials to build A
- Flows $\varphi \in C(D, \mathbb{R}^n)$ of H
- $D \subset \mathbb{R} \times \mathbb{R}^n$ compact closure of an open set

Proposition (Effective Weierstraß approximation)

- Flows $\varphi \in C^1(D,\mathbb{R}^n)$
- Bounds $b := \max_{x \in D} \|\varphi'(x)\|$
- ⇒ approx computable, hence image computation decidable

R Continuous Image Computation

\mathcal{R} Continuous Image Computation

R Continuous Image Computation

Proposition (Image computation undecidable for...)

- arbitrarily effective flow $\varphi \in C^k(D \subseteq \mathbb{R}^n, \mathbb{R}^m)$; D, B effective
- tolerate error $\epsilon > 0$ in decisions

R Continuous Image Computation

Proposition (Image computation undecidable for...)

- arbitrarily effective flow $\varphi \in C^k(D \subseteq \mathbb{R}^n, \mathbb{R}^m)$; D, B effective
- tolerate error $\epsilon > 0$ in decisions
- ullet φ smooth polynomial function with $\mathbb Q$ -coefficients

Proposition

- $P(\|\varphi'\|_{\infty} > b) \to 0$ as $b \to \infty$
- φ evaluated on finite subset $X = \{x_i\}$ of open or compact D
- $P(decision\ correct) \rightarrow 1\ as\ \|d(\cdot,X)\|_{\infty} \rightarrow 0$

Symbolic Verification

- constant/nilpotent systems
- otherwise "no" solutions
- sound

Numerical Verification

- nonlinear systems
- approximation errors
- × sound ...?

How To Get What We Really Need?

- nonlinear systems, e.g., curved flight
- automatic verification
- sound

"Definition" (Differential Invariant)

"Definition" (Differential Invariant)

"Definition" (Differential Invariant)

"Definition" (Differential Invariant)

"Definition" (Differential Invariant)

"Property that remains true in the direction of the dynamics"

How to find diff. invariants?

"Definition" (Differential Invariant)

- How to find diff. invariants?
- How do diff. invariants fit together?

"Definition" (Differential Invariant)

- How to find diff. invariants?
- How do diff. invariants fit together?
- Find all at once? 10000-dim

"Definition" (Differential Invariant)

- How to find diff. invariants?
- How do diff. invariants fit together?
- Find local diff. invariants?

"Definition" (Differential Invariant)

- How to find diff. invariants?
- How do diff. invariants fit together?
- Find local diff. invariants?

"Definition" (Differential Invariant)

- How to find diff. invariants?
- How do diff. invariants fit together?
- Find local diff. invariants?
- How to put local differential invariants together?

"Definition" (Differential Invariant)

- How to find diff. invariants?
- How do diff. invariants fit together?
- Find local diff. invariants?
- How to put local differential invariants together?
- How do discrete transitions fit?

"Definition" (Differential Invariant)

- How to find diff. invariants?
- How do diff. invariants fit together?
- Find local diff. invariants?
- How to put local differential invariants together?
- How do discrete transitions fit?
- What does "fit" really mean?

- CMACS Context
- 2 Approximation in Model Checking
 - Bounded Flow Approximation
 - Continuous Image Computation
 - Probabilistic Model Checking
 - Differential Invariants
- 3 Compositional Verification of Hybrid Systems
 - Compositionality in Verification
 - Discrete Induction
 - Differential Induction
- 4 Computing Differential Invariants by Combining Local Fixedpoints
 - Local Fixedpoints Iteration
 - Global Fixedpoints & Fixedpoint Loop Combinations
- 5 Collision Avoidance Maneuvers in Air Traffic Control
- 5 Summary & Plans

- CMACS Context
- 2 Approximation in Model Checking
 - Bounded Flow Approximation
 - Continuous Image Computation
 - Probabilistic Model Checking
 - Differential Invariants
- 3 Compositional Verification of Hybrid Systems
 - Compositionality in Verification
 - Discrete Induction
 - Differential Induction
- Computing Differential Invariants by Combining Local Fixedpoints
 - Local Fixedpoints Iteration
 - Global Fixedpoints & Fixedpoint Loop Combinations
- 6 Collision Avoidance Maneuvers in Air Traffic Control
- Summary & Plans

R Compositional Verification Basics

Differential Invariants

$$\nabla_{x_1'=f_1(x)\wedge\ldots\wedge x_n'=f_n(x)}F\quad\text{is}\quad \bigwedge_{(b\geq c)\in F}\left(\sum_{i=1}^n\frac{\partial b}{\partial x_i}f_i(x)\,\geq\,\sum_{i=1}^n\frac{\partial c}{\partial x_i}f_i(x)\right)$$

Definition (Differential Invariant F)

$$(F \to S)$$

 $(\nabla_{x'-f(x)})$

$$(\nabla_{x'=f(x)}F)$$

$$x' = f(x) \models S$$

$$x' = f(x)$$

- CMACS Context
- 2 Approximation in Model Checking
 - Bounded Flow Approximation
 - Continuous Image Computation
 - Probabilistic Model Checking
 - Differential Invariants
- Compositional Verification of Hybrid Systems
 - Compositionality in Verification
 - Discrete Induction
 - Differential Induction
- 4 Computing Differential Invariants by Combining Local Fixedpoints
 - Local Fixedpoints Iteration
 - Global Fixedpoints & Fixedpoint Loop Combinations
- 5 Collision Avoidance Maneuvers in Air Traffic Control
- Summary & Plans

$$\overline{x_1' = d_1 \wedge d_1' = -\omega d_2 \wedge x_2' = d_2 \wedge d_2' = \omega d_1 \models (x_1 - y_1)^2 + (x_2 - y_2)^2 \geq p^2}$$

$$\frac{\frac{\partial \|x-y\|^2}{\partial x_1}x_1' + \frac{\partial \|x-y\|^2}{\partial y_1}y_1' + \frac{\partial \|x-y\|^2}{\partial x_2}x_2' + \frac{\partial \|x-y\|^2}{\partial y_2}y_2' \ge \frac{\partial p^2}{\partial x_1}x_1' \dots}{x_1' = d_1 \wedge d_1' = -\omega d_2 \wedge x_2' = d_2 \wedge d_2' = \omega d_1 \models (x_1 - y_1)^2 + (x_2 - y_2)^2 \ge p^2}$$

$$\frac{\frac{\partial \|x-y\|^2}{\partial x_1}x_1' + \frac{\partial \|x-y\|^2}{\partial y_1}y_1' + \frac{\partial \|x-y\|^2}{\partial x_2}x_2' + \frac{\partial \|x-y\|^2}{\partial y_2}y_2' \ge \frac{\partial p^2}{\partial x_1}x_1' \dots}{x_1' = d_1 \wedge d_1' = -\omega d_2 \wedge x_2' = d_2 \wedge d_2' = \omega d_1 \models (x_1 - y_1)^2 + (x_2 - y_2)^2 \ge p^2}$$

$$\frac{\frac{\partial \|x-y\|^2}{\partial x_1} d_1 + \frac{\partial \|x-y\|^2}{\partial y_1} e_1 + \frac{\partial \|x-y\|^2}{\partial x_2} d_2 + \frac{\partial \|x-y\|^2}{\partial y_2} e_2 \ge \frac{\partial p^2}{\partial x_1} d_1 \dots}{x_1' = d_1 \wedge d_1' = -\omega d_2 \wedge x_2' = d_2 \wedge d_2' = \omega d_1 \models (x_1 - y_1)^2 + (x_2 - y_2)^2 \ge p^2}$$

$$\frac{2(x_1 - y_1)(d_1 - e_1) + 2(x_2 - y_2)(d_2 - e_2) \ge 0}{\frac{\partial ||x - y||^2}{\partial x_1}d_1 + \frac{\partial ||x - y||^2}{\partial y_1}e_1 + \frac{\partial ||x - y||^2}{\partial x_2}d_2 + \frac{\partial ||x - y||^2}{\partial y_2}e_2 \ge \frac{\partial p^2}{\partial x_1}d_1 \dots}$$

$$x_1' = d_1 \wedge d_1' = -\omega d_2 \wedge x_2' = d_2 \wedge d_2' = \omega d_1 \models (x_1 - y_1)^2 + (x_2 - y_2)^2 \ge p^2$$

$$\frac{2(x_1 - y_1)(d_1 - e_1) + 2(x_2 - y_2)(d_2 - e_2)}{\frac{\partial ||x - y||^2}{\partial x_1}d_1 + \frac{\partial ||x - y||^2}{\partial y_1}e_1 + \frac{\partial ||x - y||^2}{\partial x_2}d_2 + \frac{\partial ||x - y||^2}{\partial y_2}e_2 \ge \frac{\partial p^2}{\partial x_1}d_1 \dots}
x_1' = d_1 \wedge d_1' = -\omega d_2 \wedge x_2' = d_2 \wedge d_2' = \omega d_1 \models (x_1 - y_1)^2 + (x_2 - y_2)^2 \ge p^2$$

$$d_1' = -\omega d_2 \wedge e_1' = -\omega e_2 \wedge x_2' = d_2 \wedge d_2' = \omega d_1.. \models d_1 - e_1 = -\omega (x_2 - y_2)$$

$$\frac{2(x_1 - y_1)(d_1 - e_1) + 2(x_2 - y_2)(d_2 - e_2) \ge 0}{\frac{\partial ||x - y||^2}{\partial x_1}d_1 + \frac{\partial ||x - y||^2}{\partial y_1}e_1 + \frac{\partial ||x - y||^2}{\partial x_2}d_2 + \frac{\partial ||x - y||^2}{\partial y_2}e_2 \ge \frac{\partial p^2}{\partial x_1}d_1 \dots}$$

$$x_1' = d_1 \wedge d_1' = -\omega d_2 \wedge x_2' = d_2 \wedge d_2' = \omega d_1 \models (x_1 - y_1)^2 + (x_2 - y_2)^2 \ge p^2$$

Proposition (Differential saturation)

F differential invariant of $x' = \theta \land H \models S$, then

$$x' = \theta \land H \models S$$
 iff $x' = \theta \land H \land F \models S$

$$d_1' = -\omega d_2 \wedge e_1' = -\omega e_2 \wedge x_2' = d_2 \wedge d_2' = \omega d_1.. \models d_1 - e_1 = -\omega (x_2 - y_2)$$

$$\begin{aligned} & 2(x_1 - y_1)(-\omega(x_2 - y_2)) + 2(x_2 - y_2)\omega(x_1 - y_1) \ge 0 \\ & 2(x_1 - y_1)(d_1 - e_1) + 2(x_2 - y_2)(d_2 - e_2) \ge 0 \\ & \frac{\partial \|x - y\|^2}{\partial x_1} d_1 + \frac{\partial \|x - y\|^2}{\partial y_1} e_1 + \frac{\partial \|x - y\|^2}{\partial x_2} d_2 + \frac{\partial \|x - y\|^2}{\partial y_2} e_2 \ge \frac{\partial p^2}{\partial x_1} d_1 \dots \\ & x_1' = d_1 \wedge d_1' = -\omega d_2 \wedge x_2' = d_2 \wedge d_2' = \omega d_1 \models (x_1 - y_1)^2 + (x_2 - y_2)^2 \ge p^2 \end{aligned}$$

Proposition (Differential saturation)

F differential invariant of $x' = \theta \land H \models S$, then $x' = \theta \land H \models S$ iff $x' = \theta \land H \land F \models S$

$$x' = \theta \land H \models S$$
 iff $x' = \theta \land H \land F \models S$

$$d_1' = -\omega d_2 \wedge e_1' = -\omega e_2 \wedge x_2' = d_2 \wedge d_2' = \omega d_1.. \models d_1 - e_1 = -\omega (x_2 - y_2)$$

R Differential Invariants as Fixedpoints

[Clarke'79]

R Differential Invariants as Fixedpoints

R Differential Invariants as Fixedpoints

P Differential Invariants as Fixedpoints

P Differential Invariants as Fixedpoints

P Differential Invariants as Fixedpoints

- CMACS Context
- Approximation in Model Checking
 - Bounded Flow Approximation
 - Continuous Image Computation
 - Probabilistic Model Checking
 - Differential Invariants
- Compositional Verification of Hybrid Systems
 - Compositionality in Verification
 - Discrete Induction
 - Differential Induction
 - Computing Differential Invariants by Combining Local Fixedpoints
 - Local Fixedpoints Iteration
 - Global Fixedpoints & Fixedpoint Loop Combinations
- 5 Collision Avoidance Maneuvers in Air Traffic Control
- 5 Summary & Plans

Flyable Roundabout Maneuver: Overview

Flyable Roundabout Maneuver: Entry

Flyable Roundabout Maneuver: Entry

- CMACS Context
- Approximation in Model Checking
 - Bounded Flow Approximation
 - Continuous Image Computation
 - Probabilistic Model Checking
 - Differential Invariants
- Compositional Verification of Hybrid Systems
 - Compositionality in Verification
 - Discrete Induction
 - Differential Induction
- Computing Differential Invariants by Combining Local Fixedpoints
 - Local Fixedpoints Iteration
 - Global Fixedpoints & Fixedpoint Loop Combinations
- Collision Avoidance Maneuvers in Air Traffic Control
- 5 Summary & Plans

R Verification: Nonlinear Models & Compositional Models

- Combining image computation and differential invariants
- Widening for differential invariant fixed points
- Research infrastructure
- Automotive

- Verification Aspects
 - Nonlinear models
 - Compositional
 - Beyond reachability
- Challenge Problems
 - Flight domain
 - Automotive control
 - Atrial fibrillation
- Current and envisioned collaborations
 - Ed Clarke (image computation, MC)
 - Patrick Cousot (fixed points, widening, AI)
 - Bruce Krogh (compositionality)
 - Radu Grosu, Flavio Fenton, ... (wave-front curvatures and collisions in AFib)
 - Paolo Zuliani, Steve Marcus, ... (see statistical model checking talk later today)
 - . . .