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continuous evolution along differential equations + discrete change
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Example (“Solving” differential equations)
1 . . .
xi(t) = — (xlwgcos tw — Vow €os tw sin ¥ + vow cos tw cos tpsind — vy osin tw
wo

+ xpwosin tw — vow cos ¥ cos tosin tw — vowV 1 — sin 92 sin tw
—+ vow cos ¥ cos tw sin tg + vow sin ¥ sin twsin tg) .
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Example (“Solving” differential equations)

Vt>0 — (xlwg CoS tw — Vow €os twsin ¥ + vow cos tw cos tpsin 1 — vypsin tw
we

+ xpwosin tw — vow cos ¥ cos tosin tw — vowV 1 — sin 92 sin tw
4+ vow cos ¥ cos tw sin tp + vow sin ¥ sin twsin tg) ...
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X constant/nilpotent systems v nonlinear systems
X otherwise “no” solutions

v' sound

X approximation errors
x sound ...7



© Approximation in Model Checking
@ Bounded Flow Approximation
@ Continuous Image Computation
@ Probabilistic Model Checking
@ Differential Invariants



AMC(B reachable from / in H):
Q@ A := approx(H) uniformly
© blur by uniform approximation error +e
© check(B reachable from [ in A+ ¢)
© B not reachable = H safe
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AMC(B reachable from / in H):
@ A := approx(H) uniformly
© blur by uniform approximation error +¢
© check(B reachable from [ in A+ ¢)
© B not reachable = H safe

check and blur can be implemented for
e | and B semialgebraic
@ A with polynomial flows over R

@ +Piecewise definitions

@ +Rational extensions (e.g. multivariate rational splines)




AMC(B reachable from / in H):
Q" A := approx(H) uniformly
© blur by uniform approximation error +¢
© check(B reachable from [ in A+ ¢)
© B not reachable = H safe

approx exists for all uniform errors € > 0 when

@ using polynomials to build A
@ Flows ¢ € C(D,R") of H
@ D C R x R" compact closure of an open set




e Flows ¢ € C}(D,R")
@ Bounds b := max,cp ||¢'(x)||

= approx computable, hence image computation decidable




Numerical
R-Turing Machine

X1 v X3




Numerical
R-Turing Machine




@ arbitrarily effective flow p € C k (D CR",R™); D, B effective

@ tolerate error € > 0 in decisions




@ arbitrarily effective flow p € C k (D CR",R™); D, B effective

@ tolerate error € > 0 in decisions

@ ¢ smooth polynomial function with Q-coefficients













@ P(|¢|loc > b) = 0asb—

@ ¢ evaluated on finite subset X = {x;} of open or compact D
= P(decision correct) — 1 as ||d(, X)|lcoc — 0
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X constant/nilpotent systems v nonlinear systems
X otherwise “no” solutions

v' sound

X approximation errors
x sound ...7



v nonlinear systems, e.g., curved flight
v/ automatic verification
v sound

L1 n
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“Property that remains true in the direction of the dynamics”
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“Property that remains true in the direction of the dynamics”
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“Property that remains true in the direction of the dynamics”
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“Property that remains true in the direction of the dynamics” l
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@ How to find diff. invariants?
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@ How to find diff. invariants?
.\ o How do diff. invariants fit
together?
o Find all at once? 10000-dim
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“Property that remains true in the direction of the dynamics”

@ How to find diff. invariants?

@ . @ How do diff. invariants fit
> - S

. ~< together?

|::| @ Find local diff. invariants?

€. s @ How to put local differential

@ Temaar invariants together?
@ How do discrete transitions fit?




“Property that remains true in the direction of the dynamics”

How to find diff. invariants?

How do diff. invariants fit
together?

Find local diff. invariants?

How to put local differential
invariants together?

How do discrete transitions fit?

What does “fit" really mean?




@ CMACS Context

© Approximation in Model Checking
@ Bounded Flow Approximation
@ Continuous Image Computation
@ Probabilistic Model Checking
@ Differential Invariants

© Compositional Verification of Hybrid Systems
@ Compositionality in Verification
@ Discrete Induction
@ Differential Induction

o Computing Differential Invariants by Combining Local Fixedpoints
@ Local Fixedpoints lteration
@ Global Fixedpoints & Fixedpoint Loop Combinations

@ Collision Avoidance Maneuvers in Air Traffic Control
© Summary & Plans



© Compositional Verification of Hybrid Systems
@ Compositionality in Verification
@ Discrete Induction
@ Differential Induction
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o Computing Differential Invariants by Combining Local Fixedpoints
@ Local Fixedpoints lteration
@ Global Fixedpoints & Fixedpoint Loop Combinations



2 2 2
p
>
) -
y2
(X2
)
}/1
(X
CUd
é
/\
d
!
)(2
/\
d
w
i
/\
d




_vlI2 2 —_vlI2 2
Gl I Gy T G = P

Ox1 Oxo 2 = 9xg

X{=d1/\d1 —wd2/\Xé=d2/\d2—wd1 }=(x1—y1)2+(X2—y2)22p

N




Ollx=yl® ./ ollx=yl* ./ 6I|x yII op® 1
axlx+ yi + X2x—i— yza—xl ..

x| =di Ndj = —wd2/\X2 dr A d} —wdl E (x1 —y1)2+(xz—y2)2 >p

8||X yII2

N




8||X yll2

3||X yl? 3||X y||2 3||X Y|| p°
d+ o e + d+ ezza—xldl

Xl—d1/\d1——wd2/\x2—d2/\d2—wd1 }=(x1—y1)2+(X2—y2)22p

N




2(x1 —y1)(di —e1) + 200 — y2)(d> — &) >0

Oy g 1 O g ODAP g, 4 OB, > 0 g
=N d = —wdy A = A & =ad F(a -y’ (e 72l 5 p

N




2(x1 —y1)(di —e1) + 200 — y2)(d> — &) >0

8||X yll2 3I|X |2 6‘||X yII2 6||X y|| op?
di + e + dr + &> Pd ...

d1 A dl —wdh A\ X2 d2 A d2 = wdl E(x1 — y1)2 + (x — y2)2 > p?

Y N
e Nl
e
d— . )

di= —wh Nej = —wer Ax,=d ANd,=wdi..|Ed — e = —w(x — y)




2(x1 —y1)(di —e1) + 200 — y2)(d> — &) >0
2 2 2 —_vll2
BIIX yll di + 3||Xy1y|| e + 3||X }/II dy + 6||>(<9y2y|| e > gﬁfdl---
x| = d1/\d1 —wdy A X = d2/\d2 =wdi E(a—n)+e—yn)?*>p

N

F differential invariant of X’ =0 A H = S,
then
X=0ANHES iff X=0ANHAFES

di= —wh Nej = —wer Ax,=d ANd,=wdi..|Ed — e = —w(x — y)



2(x1 = y1)(~wlxe — y2)) + 202 — y2)w(x1 —y1) >0
2( y1)(d1 — €1) + 2(X2 — y2)(d2 — ) >0
BIIX yllzd i 8I|Xylyllze 4 6‘||X y||2d I allx yII e > g_r;fdl N
— N d] = s 1 = ®A%—wﬁkﬁﬁ—nV+W—wV2p

N

F differential invariant of X' =0 A H = S,
then
X=0ANHES iff X=0ANHAFES

di= —whNej = —wer Ax,=d ANd,=wdi..|Ed — e = —w(x — y)




[Clarke'79]



















@ Collision Avoidance Maneuvers in Air Traffic Control
















































© Summary & Plans
~ AndréPlatzer (CMU)  Verification of Nonlinear Models and Compositional Models | CMACS'10 17 / 20
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@ Combining image computation and differential invariants
@ Widening for differential invariant fixed points
@ Research infrastructure

@ Automotive



@ Verification Aspects

e Nonlinear models
e Compositional
e Beyond reachability

@ Challenge Problems

e Flight domain
e Automotive control
e Atrial fibrillation

@ Current and envisioned collaborations
e Ed Clarke (image computation, MC)

e Patrick Cousot (fixed points, widening, Al)

e Bruce Krogh (compositionality)

e Radu Grosu, Flavio Fenton, ... (wave-front curvatures and collisions in
AFib)

e Paolo Zuliani, Steve Marcus, ... (see statistical model checking talk
later today)

o ...
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