
© Copyright 2010 Rockwell Collins, Inc.
All rights reserved.

Hybrid Control Systems Verification

Steve Miller, Darren Cofer
March 4, 2009

© Copyright 2010 Rockwell Collins, Inc.
All rights reserved.

2

What kind of hybrid systems are we interested in?

• Product of model-based design

– built using Simulink/Stateflow
or similar MBD environment

• Combines discrete and continuous dynamics

– state machines, switches, logic

– linear/non-linear functions and operators

• Often include floating-point types

• Executes in discrete-time

Specific subset of the standard

control theoretic definition of HS

if anys sensor is invalid, or is identified
 with a persistent error, it will be removed

 from the averaging scheme.

If only two sensors are valid, and they miscompare

at least one sensor is valid and
 doesn't have a proven error

10

numValid

9

twoValidMisc

8

pairValid

7

persError

6

persMisc

5

rawError

4

rawMisc

3

filtDiffs

2

OutputValid

1

OutputSignal

vectorAnd6

vectorAnd5

vectorAnd4

vectorAnd3

vectorAnd2

vectorAnd1

1

2

3

Mux

v312

1

2

3

Mux

v231

Signal

Valid

persistenceThld

rawMisc

persistentMisc

timeMagnitude

+

+

+

sum

1

2

3

Mux

s231

or1

or

not4

not3

not2

not1

In

ICV

IC

tau

Out

lagFilter

sensData

sensDataVld

outputData

filterOutputData

Dmx

1

2

3

deMux7

Dmx

1

2

3

deMux6

Dmx

1

2

3

deMux5

Dmx

1

2

3

deMux4

Dmx

1

2

3

deMux3

Dmx

1

2

3

deMux2

Dmx

1

2

3

deMux1

and

1/z

Unit Delay2

1/z

Unit Delay1

1/z

Unit Delay

Switch1

Saturation
Product

1

2

3

Mux

Mux2

1

2

3

Mux

Mux1

Ground

>=

GreaterOrEqual

Convert

Data Type Conversion 1

Constant

5

persistenceThld

4

magThld

3

lagTau

2

Valids

1

InSignals

2

persistentMisc

1

rawMisc

vectorAnd

In

Lim

Lim

varLim

|u|

abs

1/z

Unit Delay

Switch2

Switch1

<=

Relational
Operator

Ground2

Ground1

-1

GoodStep

2
Gain2

Ts

Gain1

1

BadStep

3

persistenceThld

2

Valid

1

Signal

© Copyright 2010 Rockwell Collins, Inc.
All rights reserved.

3

Research Challenges We Are Looking for Help With

• Floating point types

• Non-linear arithmetic

• Extracting controller requirements

• Combined methods and tools approaches

• Model checking of asynchronous systems

• Trusted verification tools

© Copyright 2010 Rockwell Collins, Inc.
All rights reserved.

4

Research Challenges: Floating-Point Types

• Most Industrial Models Contain Floating-Point Types
– Double is the default type for MATLAB Simulink

– Engineers can use floating-point for simulation and
implementation

– Inability to handle floating-point math is becoming a significant
barrier to the acceptance of model checking in industry

• Theorem Proving of Models with Floating-Point Types
– Great work done at Intel, AMD on correctness of FP

implementations

– Focused on bit-level accuracy & small models

– We are not so concerned with bit-accuracy
• Prefer to sacrifice completeness rather than soundness

– Scalability of theorem proving is a major concern for us
• We have much larger models to verify, e.g.

Effector Blender: 166 subsystems, 2100+ basic blocks, matrix
multiplications, etc.

• Model Checking of Models with Floating-Point Types
– Bit-level integer solvers are impressive and improving:

works well for fixed-point numbers

– IEEE 754 provides a clear standard for floating-point math

– Decision procedures for floating-point types should be possible

– Probably technically difficult

Ed Clarke:

Decision

procedures for real

arithmetic that

handle floating

point arithmetic

© Copyright 2010 Rockwell Collins, Inc.
All rights reserved.

5

Research Challenges: Non-Linear Arithmetic

• Non-linear Arithmetic is Common in Industrial Models

– Usually appear in conjunction with floating-point types

– We can translate floating point to real numbers for some problems

• May hide errors caused by floating point approximations

• Still useful for debugging rather than proof

• Some Uses of Real Numbers Are Appropriate

– Modeling the real world

– Aircraft trajectories, plant models, etc

• Transcendental Functions

– Trigonometric functions are common in navigation

– Need an efficient way to deal with the most common functions
sin, arcsin, cos, arcos, tan, arctan, etc.

• Progress is Being Made

– Recent work on non-linear decision procedures for reals [Tiwari]

Ed Clarke:

Decision

procedures for real

arithmetic that

handles floating

point arithmetic

© Copyright 2010 Rockwell Collins, Inc.
All rights reserved.

6

Research Challenges: Extracting Controller Requirements

• Determining Requirements for Controllers
– System requirements are often stated as

properties of the combined controller and plant
model

– The plant model is usually larger than controller
model, preventing effective analysis

– Unclear what are the true requirements for the
controller model itself

• Possible Directions
– Can useful requirements for the controller be

automatically derived from the controller/plant
model?

– Is there an automated way to produce a
conservative abstraction of the plant model?

– Can we use properties proven in the control
domain to simplify analysis of the controller?

Rance Cleveland,

Patrick Cousot,

Bruce Krogh:

• Conservatively

approximating plant

models.

• Plant discretization for

discrete analysis.

• Abstracting the plant for

open-loop static analysis of

the controller.

• Reactivity properties of the

closed discrete/continuous

loop.

• Assume-guarantee

strategies for

plant/controller

decomposition.

• Extracting requirements

from controller models

using machine-learning on

test data.

© Copyright 2010 Rockwell Collins, Inc.
All rights reserved.

7

Research Challenges: Combined Approaches

• Abstract Interpretation tools [Cousot – ASTREE]
are very impressive for well-formedness
properties

– Can Abstract Interpretation be integrated with model
checking?

– E.g., as decision procedures for SMT?

• How do we leverage multiple tools?

– Can theorem proving and model-checking be combined to
make the formal verification of complex models tractable?

• Can we use integer/fixed-point model checking
results to make claims about a floating-point
implementation?

– Replace floating point types in model F with integer/fixed
point types to produce model I

– Under what conditions does a proof about model I tell us
something useful about model F?

Ed Clarke,

Patrick Cousot,

Scott Smolka:

• Combining model

checking and

abstract

interpretation

• Temporal

properties and

specifications

• Abstraction-

refinement

alternatives to

counter-example

guided

abstraction

refinement

© Copyright 2010 Rockwell Collins, Inc.
All rights reserved.

8

Research Challenges: Model Checking of Asynchronous Systems

• Many Industrial Systems are Asynchronous

– Components execute synchronously on their own clock

– System consists of components that communicate via buses

– Clocks of the components are not synchronous

– Many systems are quasi-synchronous

• Nodes have same periods (or multiple of same period)

• Offset, drift, or jitter may vary between nodes

• No node can step more than two times before any other node steps
once

• What is the Right Computational Model

– Attach clocks to each node?

– Model synchrony, asynchrony, and quasi-synchrony by
constraining the clocks?

• What are the Right Verification Engines

– SMV and NuSMV work well for synchronous models

– SPIN works well for some asynchronous models

– Can we choose or tune a model checker based on the type
and degree of asynchrony?

Patrick Cousot:

• Extension of

Astree for parallel

programs running

on ARINC 653

• Abstract

interpretation for

verification of

quasi-

synchronous

parallel execution

of synchronous

programs

© Copyright 2010 Rockwell Collins, Inc.
All rights reserved.

9

Research Challenges: Trusted Verification Tools

• Need Supported Tools
– Open source is fine

– Tool is distinct (separate install) from other tools

– Doesn’t become a part of our products

– Our evaluation period may last for years

– Need to be able to license for commercial use

• DO-178B/C Qualification
– Major selling point for civil avionics developers

– Not that hard for verification tools
• Need tool operational requirements

• Need set of tests that show tool satisfies its requirements

– We know how to do this!

• More Formal Paths to Trusted Tools
– Proof checker

– Redundant tools

– Formally verified tools

New topic not

discussed in

our earlier

teleconference.

© Copyright 2010 Rockwell Collins, Inc.
All rights reserved.

10

Background Slides

© Copyright 2010 Rockwell Collins, Inc.
All rights reserved.

11

Outline

• What kind of hybrid systems are we interested in?

• What are we trying to do?

• What can we do now?

• What are the limitations?

• What have we tried?

© Copyright 2010 Rockwell Collins, Inc.
All rights reserved.

12

What are we trying to do?

• Detailed model of controller

– Should correspond closely to implementation

– Verify model correctness with respect to
requirements

• Simple model of plant/environment

– Provide constraints on input values

– Limit complexity of analysis

• Verification of software requirements

– vs. closed-loop behavior of system

A
B

S
T

R
A

C
T

C
O

N
C

R
E

T
E

4

input_sel

3

totalizer_cnt

2

persistence_cnt

1

failure_report

pc

trigger

input_a

input_b

input_c

DST_index

input_sel

triplex_input_selector

input_a

input_b

input_c

trip_lev el

persist_lim

MS

f ailreport

pc

tc

triplex_input_monitor

trip_level

trip_level1

persist_lim

persistence limit

[DSTi]

[C]

[B]

[status_c]

[status_b]

[status_a]

[A]

[trigger]

[DSTi]
[MS]

[MS]

[DSTi]
[A]

[prev_sel]

[prev_sel]

[DSTi]

[trigger]

[trigger]

[status_c]

[status_b]

[status_a]

[A]

[A]

Index

Vector

[C]

[B]

[C]

[B]

[C]

[B]

f ailure_report

dst_index

Failure_Processing

mon_f ailure_report

status_a

status_b

status_c

prev _sel

input_a

input_b

input_c

f ailure_report

Failure_Isolation

Extract Bits

[0 3]

Extract Bits

DOC

Text

double

DST

Data Store

Read

8

dst_index

7

status_c

6

status_b

5

status_a

4

input_c

3

input_b

2

input_a

1

sync

persist_lim

totalizer_cnt<tc>

trip_lev el

persistence_cnt<pc>

sy nc<>

f ailreport

STATE Transition(char *str) {
int NEXT_SYMBOL;
for(; *str && state != INVALID; str++) {

NEXT_SYMBOL = *str;
switch(state) {
case START:

if(isdigit(NEXT_SYMBOL)) {
state = INT;

controller

modelin
p

u
ts

This…

controller

model

constraints

…or this

controller

model

plant

Not this

http://images.google.com/imgres?imgurl=http://blog.crispierry.com/binary.gif&imgrefurl=http://techtips.chanduonline.com/2006/08/20/optimizing-bittorrent-transfer-rate/&h=296&w=331&sz=9&hl=en&start=14&tbnid=_3D-PHkt8EKJIM:&tbnh=106&tbnw=119&prev=/images%3Fq%3Dbinary%26svnum%3D10%26hl%3Den%26rls%3DGGLJ,GGLJ:2006-49,GGLJ:en
http://images.google.com/imgres?imgurl=http://www.leroy.k12.ny.us/facultywebs/robinson/images/math.gif&imgrefurl=http://www.leroy.k12.ny.us/facultywebs/robinson/firstpage.htm&h=361&w=396&sz=9&hl=en&start=9&tbnid=mYiF1O_jQ1yx4M:&tbnh=113&tbnw=124&prev=/images%3Fq%3Dmath%26ndsp%3D20%26svnum%3D10%26hl%3Den%26rls%3DGGLJ,GGLJ:2006-49,GGLJ:en%26sa%3DN
http://www.rockwellcollins.com/ecat/gs/graphics/ipc new.jpg

© Copyright 2010 Rockwell Collins, Inc.
All rights reserved.

13

SCADE

Lustre

Safe State

Machines

Simulink
Simulink

Gateway

StateFlow

Reactis

Simulink

Gateway

Design

Verifier

Rockwell Collins/U of Minnesota

MathWorks

SRI International

Reactive Systems

Esterel Technologies

Model Checkers:

NuSMV, Prover,

BAT, Kind, SAL

Theorem Provers:

ACL2, PVS

Programming

Languages:

SPARK (Ada), C

What can we do now?

Automatic

translation

Design feedback

Gryphon

translation

framework

• Supports a wide
variety of back end
tools and languages

• Straightforward to
add new tools (e.g.
Prover support: 4
days effort

• Apply “the right tool
for the job”

© Copyright 2010 Rockwell Collins, Inc.
All rights reserved.

14

What are the limitations?

• This approach works well for certain classes of systems…

– Very well for discrete types (Booleans, enumerated types)

– Can handle a restricted number of integers

– Real numbers with linear operations

• …and scales to very large models

– 16,117 Simulink blocks, 4,295 subsystems, 1.5 1037 reachable states

• But we don’t have a general strategy to handle “numerically
intensive” hybrid systems

– Analyzing non-linear operations

• Most industrial models have non-linear operations

• Most model checkers do not natively support non-linear arithmetic over reals

• Theorem provers require skilled users and are labor intensive

– Floating-Point math

• Floats ≠ Reals (run-time errors)

• Floating point arithmetic is notoriously difficult to analyze

– Scaling the analysis

• Much more difficult to scale model checkers on numeric models

© Copyright 2010 Rockwell Collins, Inc.
All rights reserved.

15

What have we tried?

• Predicate abstraction

– Suitable for models with a handful of non-linear constraints

– Add model invariants to exclude spurious counterexamples

– Offline “counterexample-driven refinement”

• Model linearization

– Arbitrary non-linear calculations are difficult

– Need to use piecewise approximation

– Requires significant amount of analysis

– Approximation leads to incompleteness & unsoundness

• Fixed-point representation of data

– Fixed point numbers can be represented as integers

• same cost as linear integer operations
(e.g., 2 divide-by-constants, 1 MOD-by-constant, 2 multiplications-by-variable)

– Model checkers allow non-linear operations on bit-level integers

– Pros

• Can analyze models “as is” without changes

• Gets around non-linear limitations of decision procedures

• Can achieve soundness using intervals

– Cons

• Need bounds for all vars, scalability limits, incomplete (intervals diverge)

© Copyright 2010 Rockwell Collins, Inc.
All rights reserved.

16

Summary

• Our wish list:

– We want to analyze large, non-linear numeric models

– Bit-level accuracy is often not a concern

• We would rather sacrifice completeness than soundness

• But, for now, any rigorous analytic tool would be helpful

– Approximations (such as interval arithmetic) will probably be
necessary

– Can we have “adjustable” accuracy?

• Higher accuracy likely means lower performance

– Work on notations and methodologies for control system
requirements

• What we can provide:

– Some example problems

– Feedback on proposed tools and algorithms

– Ability to translate Simulink/Stateflow models into a variety of back-
end notations.

– Experience applying model checkers and theorem provers on
industrial-sized problems

