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Problem

Verification of Stochastic Systems

 Uncertainties in the system environment, modeling a fault, 

stochastic processors, biological signaling pathways ...

 Modeling uncertainty with a distribution → Stochastic systems

 Models:

 for example, Discrete, Continuous Time Markov Chains

 Property specification:

 “does the system fulfill a request within 1.2 ms with probability at least 

.99”?

 If Ф = “system fulfills request within 1.2 ms”, decide between:

P≥.99 (Ф)  or  P<.99 (Ф)



Equivalently

 A biased coin (Bernoulli random variable):

 Prob (Head) = p Prob (Tail) = 1-p

 p is unknown

 Question: Is p ≥ θ ? (for a fixed 0<θ<1)

 A solution: flip the coin a number of times, collect the 

outcomes, and use:

 Statistical hypothesis testing: returns yes/no

 Statistical estimation: returns “p in (a,b)” (and compare a with θ)



Key idea

 Suppose system behavior w.r.t. a (fixed) property Ф can be 

modeled by a Bernoulli random variable of parameter p:

 System satisfies Ф with (unknown) probability p

 Questions: P≥θ (Ф)? (for a fixed 0<θ<1) 

 Draw a sample of system simulations and use:

 Statistical hypothesis testing: Null vs. Alternative hypothesis

 Statistical estimation: returns “p in (a,b)” (and compare a with θ)

Statistical Model Checking



Motivation

 State Space Exploration infeasible for large systems

 Symbolic MC with OBDDs scales to 10300 states

 Scalability depends on the structure of the system

 Pros: Simulation is feasible for many more systems

 Often easier to simulate a complex system than to build the 

transition relation for it

 Easier to parallelize

 Cons: answers may be wrong

 But error probability can be bounded



 We have developed a new MC algorithm

– Statistical Model Checking Algorithm

– Sequential sampling

– Performs Hypothesis Testing (and Estimation)

– Based on Bayes Theorem
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Bayesian Statistics

Three ingredients

1. Prior probability:

 Models our initial uncertainty/belief about parameters 

(what is Prob(p ≥ θ) ?)

2. Likelihood function:

 Describes the distribution of data (e.g., a sequence of 

heads/tails), given a specific parameter value

3. Bayes Theorem:

 Revises uncertainty upon experimental data - compute 

Prob(p ≥ θ | data) 



Bounded Linear Temporal Logic

 Bounded Linear Temporal Logic (BLTL): Extension of LTL 

with time bounds on temporal operators.

 Let σ = (s0, t0), (s1, t1), . . . be an execution of the model

 along states s0, s1, . . .

 the system stays in state si for time ti

 divergence of time: Σi ti diverges (i.e., non-zeno)

 σi: Execution trace starting at state i.

 V(σ, i, x): Value of the variable x at the state si in σ.

 A model for simulation traces (e.g. Simulink, BioNetGen)



Semantics of BLTL

The semantics of BLTL for a trace σk:

 σk x ~ c  iff  V(σ, k, x) ~ c, where ~ is in {≤,≥,=}

 σk Φ1 v Φ2 iff  σk Φ1 or σk Φ2

 σk ¬Φ iff  σk Φ does not hold

 σk Φ1 Ut Φ2 iff  there exists natural i such that

1) σk+i Φ2 

2) Σj<i tk+j ≤ t

3) for each 0 ≤ j < i, σk+j Φ1

“within time t, Φ2 will be true and Φ1 will hold until then”

 In particular, Ft Φ = true Ut Φ, Gt Φ = ¬Ft ¬Φ



 Simulation traces are finite: is σ╞═ Φ well defined?

 Definition: The time bound of Φ:

 #(x ~ c) = 0

 #(¬Φ) = #(Φ)

 #(Φ1 v Φ2) = max (#(Φ1), #(Φ2))

 #(Φ1 Ut Φ2) = t + max (#(Φ1), #(Φ2))

 Lemma: “Bounded simulations suffice”

Let Ф be a BLTL property, and k≥0. For any two infinite traces ρ, σ

such that ρk and σk “equal up to time #(Ф)” we have

ρk ╞═ Φ iff σk ╞═ Φ

Semantics of BLTL (cont’d)



Sequential Bayesian Statistical MC - I

 Model Checking

 Suppose      satisfies     with (unknown) probability p

 p is given by a random variable U (defined on [0,1]) with density g

 g represents the prior belief that       satisfies    

 Generate independent and identically distributed (iid) 

sample traces.

 xi: the ith sample trace    satisfies    

 xi = 1 iff 

 xi = 0 iff

 Then, xi will be a Bernoulli trial with conditional density 

(likelihood function)

f(xi|u) = uxi(1 − u)1-xi



 a sample of Bernoulli random variables

 Prior probabilities P(H0), P(H1) strictly positive, sum to 1

 Posterior probability (Bayes Theorem [1763])

for P(X) > 0

 Ratio of Posterior Probabilities:

Bayes Factor

Sequential Bayesian Statistical MC - II



Sequential Bayesian Statistical MC - III

 Recall the Bayes factor

 Jeffreys’ [1960s] suggested the Bayes factor as a statistic:

 For fixed sample sizes 

 For example, a Bayes factor greater than 100 “strongly supports” H0

 We introduce a sequential version of Jeffrey’s test

 Fix threshold T ≥ 1 and prior probability.                   

Continue sampling until

 Bayes Factor > T: Accept H0

 Bayes Factor < 1/T: Reject H0



Require: Property P≥θ(Φ), Threshold T ≥ 1, Prior density g

n := 0 {number of traces drawn so far}

s := 0 {number of traces satisfying Φ so far}

repeat

σ := draw a sample trace of the system (iid)

n := n + 1

if  σ Φ then

s := s + 1

endif
B := BayesFactor(n, s, g)

until (B > T  v B < 1/T )

if (B > T ) then

return H0 accepted

else

return H0 rejected

endif

Sequential Bayesian Statistical MC - IV



 The Bayes Factor uses posterior (and prior) probability

 Bayes Factor: Measure of confidence in H0 vs H1

 provided by the data 

 “weighted” by the prior probabilities

 Posterior density (Bayes Theorem) (iid Bernoulli samples)
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Sequential Bayesian Statistical MC - V

Likelihood function



Sequential Bayesian Statistical MC - VI

Definition: Bayes Factor B of sample X and hypotheses H0, H1

 prior g is Beta of parameters α>0, β>0

joint (conditional) density of 

independent samples
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Why Beta priors?

 Defined over [0,1]

 Beta distributions are conjugate to Binomial distributions:

 If prior g is Beta and likelihood function is Binomial 

then posterior is Beta

 Suppose likelihood Binomial(n,x), prior Beta(α,β): posterior

f(u | x1,…,xn) ≈ f(x1|u) ∙ ∙ ∙ f(xn|u) ∙ g(u)

= ux(1 − u)n-x ∙ uα-1(1 − u)β-1

= ux+α -1(1 − u)n-x+β-1

where  x = Σi xi

 Posterior is Beta of parameters x+α and n-x+β
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Proposition

The Bayes factor of  H0:M╞═ P≥θ (Φ)  vs  H1:M╞═ P<θ (Φ)  for 

n Bernoulli samples (with x≤n successes) and prior Beta(α,β)

where F(s,t)(∙) is the Beta distribution function of parameters s,t.

 No need of integration when computing the Bayes factor

Computing the Bayes Factor



Theorem (Termination). The Sequential Bayesian Statistical MC 

algorithm terminates with probability one.

Theorem (Error bounds). When the Bayesian algorithm – using 

threshold T – stops, the following holds:

Prob (“accept H0” | H1)  ≤ 1/T

Prob (“reject H0” | H0)  ≤ 1/T

Note: bounds independent from the prior distribution.

Sequential Bayesian Statistical MC - VII



Fuel Control System - I

The Simulink model:



Fuel Control System - II

 Ratio between air mass flow rate and fuel mass flow rate

 Stoichometric ratio is 14.6

 Senses amount of oxygen in exhaust gas, pressure, 

engine speed and throttle to compute correct fuel rate.

 Single sensor faults are compensated by switching to a higher 

oxygen content mixture.

 Multiple sensor faults force engine shutdown.
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Fuel Control System - III

 Stateflow part of the model has 24 locations 

 grouped in 6 simultaneously active states

 Simulink part of the model is rich

 Several nonlinear equations

 Linear ODE 

 Probabilistic behavior because of random faults

 in the EGO (oxygen), pressure and speed sensors.

 Faults modeled by three independent Poisson processes

 We did not change the speed or throttle inputs.
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Fuel Control System - IV

 We Model Check the formula (Null hypothesis)

M, FaultRate ╞═ P≥θ (¬F100 G1(FuelFlowRate = 0))

for θ = .5, .7, .8, .9, .99

 “It is not the case that within 100 seconds, FuelFlowRate 

is zero for 1 second”

 We use various values of FaultRate for each of the three 

sensors in the model

 We choose Bayes threshold T = 1000, i.e., stop when 

probability of error is < .001

 Uniform, equally likely priors and “informative” priors



Fuel Control System: results

Recall the Null hypothesis:

M, FaultRate ╞═ P≥θ (¬F100 G1(FuelFlowRate = 0))

Priors: uniform, equally likely.

Number of samples and test decision:

• red / blue number: reject / accept null hypothesis

Probability threshold θ

.5 .7 .8 .9 .99

Fault 

rates

[3  7  8] 58 17 10 8 2

[10  8  9] 32 95 394 710 8

[20 10  20] 9 16 24 44 1,626

[30  30  30] 9 16 24 44 239

Longest run: 1h 5’ on a 2.4GHz Pentium 4 computer
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Fuel Control System: results

Probability threshold θ

.5 .7 .8 .9 .99

Fault 

rates

[3  7  8] 55 12 10 8 2

[10  8  9] 28 64 347 255 8

[20 10  20] 8 13 20 39 1,463

[30  30  30] 7 13 18 33 201
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Informative priors: 

convex combinations of Betas

Example: for fault rates [10  8  9] we used

0.01 x beta(1,1) + 0.99 x beta(1000,172.6) 
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Fuel Control System: results

Probability threshold θ

.5 .7 .8 .9 .99

Fault 

rates

[3  7  8] 55 (3) 12 (5) 10 8 2

[10  8  9] 28 (4) 64 (31) 347 (47) 255 (455) 8

[20 10  20] 8 (1) 13 (3) 20 (4) 39 (5) 1,463 (163)

[30  30  30] 7 (2) 13 (3) 18 (6) 33 (11) 201 (38)

Informative priors: convex combinations of Betas

Savings with respect to uniform prior:



CMACS interactions

 Verification of Pancreatic Cancer models:

 James Faeder and Haijun Gong (tomorrow)

 Rule-based models

 Full integration of BLTL trace verifier with BioNetGen

 Can use Statistical Model Checking

 Probabilistic Boolean Network models

 Work in progress

 Atrial fibrillation (Flavio Fenton et al.)



CMACS interactions

 Hybrid Systems:

 Embed BLTL checker in Simulink

 Run-time verification (Klaus Havelund)

 Requirements in automotive (Rance Cleveland)

 Theory: stochastic hybrid systems (Steve Marcus)

 Rare event simulation, nondeterminism

 Model Checking: abstraction (Patrick Cousot)

 Speed-up simulation while preserving temporal logic 

properties



The End

Questions?



Bayesian Interval Estimation - I

 Estimating the (unknown) probability p that “system╞═ Ф”

 Recall: system is modeled as a Bernoulli of parameter p

 Bayes’ Theorem [1763] (for iid Bernoulli samples)

 We thus have the posterior distribution

 So we can use the mean of the posterior to estimate p

 mean is a posterior Bayes estimator for p (it minimizes the risk 

over the parameter space, under a quadratic loss)



 By integrating the posterior we get Bayesian intervals for p

 Fix a coverage ½ < c < 1. Any interval (t0, t1) such that

is called a 100c percent Bayesian Interval Estimate of p

 An optimal interval minimizes t1- t0: difficult in general

 Our approach: 

 fix a half-interval width δ

 Continue sampling until the posterior probability of an interval of 

width 2δ containing the posterior mean exceeds coverage c

Bayesian Interval Estimation - II



 Computing the posterior probability of an interval is easy

 Suppose n Bernoulli samples (with x≤n successes) and 

prior Beta(α,β)

 Again, no numerical integration

Bayesian Interval Estimation - III
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Bayesian Interval Estimation - IV
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prior is beta(α=4,β=5) 

posterior density after 1000 samples and 

900 “successes”  is beta(α=904,β=105)

posterior mean = 0.8959

width 2δ



Require: BLTL property Φ, interval-width δ, coverage c, 

prior beta parameters α,β

n := 0 {number of traces drawn so far}

s := 0 {number of traces satisfying  so far}

repeat

σ := draw a sample trace of the system (iid)

n := n + 1

if  σ Φ then

s := s + 1

endif

mean = (s+α)/(s+α+β)

(t0,t1) = (mean-d, mean+d)
I := PosteriorProbability (t0,t1,n,s,α,β)

until (I > c)

return (t0,t1), mean

Bayesian Interval Estimation - V



 Recall the algorithm outputs the interval (t0,t1)

 Define the null hypothesis

H0: t0 < p < t1

 We can use the previous results for hypothesis testing

Theorem (Error bound). When the Bayesian estimation 

algorithm (using coverage ½< c < 1) stops – we have

Prob (“accept H0” | H1) ≤  (1/c -1)π0/(1-π0)

Prob (“reject H0” | H0)  ≤ (1/c -1)π0/(1-π0)

π0 is the prior probability of H0

Bayesian Interval Estimation - VI
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Fuel Control System results:
Interval estimation

Interval coverage c

.9 .95 .99 .999

Fault 

rates

[3  7  8] .3603 .3559 .3558 .3563

[10  8  9] .8534 .8518 .8528 .8534

[20 10  20] .9764 .9784 .9840 .9779

[30  30  30] .9913 .9933 .9956 .9971

 Bayesian estimation algorithm, uniform prior.

 Want to estimate the probability that 

M, FaultRate ╞═ (¬F100 G1(FuelFlowRate = 0))

 For half-width δ=.01 and several values of coverage c

 Posterior mean: add/subtract δ to get the Bayesian interval
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Interval coverage c

.9 .95 .99 .999

Fault 

rates

[3  7  8] 6,234 8,802 15,205 24,830

[10  8  9] 3,381 4,844 8,331 13,569

[20 10  20] 592 786 1,121 2,583

[30  30  30] 113 148 227 341

Chernoff bound 119,829 147,555 211,933 304,036

 Number of samples 

 Comparison with Chernoff-Hoeffding bound (Bernoulli r.v.’s)

Pr (| X – p | ≥ δ) ≤ exp(-2nδ2)

where X = 1/n Σi Xi , E[Xi]=p

Fuel Control System results:
Interval estimation



Performance of Bayesian Estimation
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BioLab 2.0 

Model Checking Biochemical Stochastic models: M╞═ P≥θ(Φ) ?

Model M

BioNetGen Bayesian Model Checker

BLTL 

formula Φ

BLTL to Monitor 

compiler

Formula 

monitor

M╞═ P≥θ (Φ)

Bayes Test

M╞═ P≥θ (Φ)


