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Problem

Verification of Stochastic Systems

Uncertainties in the system environment, modeling a fault,
stochastic processors, biological signaling pathways ...
* Modeling uncertainty with a distribution — Stochastic systems

Models:
» for example, Discrete, Continuous Time Markov Chains

Property specification:

» “does the system fulfill a request within 1.2 ms with probability at least
99”7

If @ = “system fulfills request within 1.2 ms”, decide between:

P g9 (@) Or P_g (D)



Equivalently

= Abiased coin (Bernoulli random variable):
* Prob (Head) =p Prob (Tail) = 1-p

* pis unknown

= Question: Is p 2 6 ? (for a fixed 0<6<1)

= A solution: flip the coin a number of times, collect the
outcomes, and use:

= Statistical hypothesis testing: returns yes/no
= Statistical estimation: returns “p in (a,b)” (and compare a with 6)



Statistical Model Checking

Key Idea

= Suppose system behavior w.r.t. a (fixed) property @ can be
modeled by a Bernoulli random variable of parameter p:

» System satisfies @ with (unknown) probability p

= Questions: Py, (®)? (for a fixed 0<6<1)
= Draw a sample of system simulations and use:
= Statistical hypothesis testing: Null vs. Alternative hypothesis

Hy: M =P>9(¢) Hy: M =P<0(¢)

= Statistical estimation: returns “p in (a,b)” (and compare a with 6)



Motivation

» State Space Exploration infeasible for large systems
= Symbolic MC with OBDDs scales to 1039 states
= Scalablility depends on the structure of the system

= Pros: Simulation is feasible for many more systems

= Often easier to simulate a complex system than to build the
transition relation for it

= Easier to parallelize

= Cons: answers may be wrong

= But error probability can be bounded



Bayesian Statistical Model Checking

= We have developed a new MC algorithm
— Statistical Model Checking Algorithm
— Sequential sampling
— Performs Hypothesis Testing (and Estimation)
— Based on Bayes Theorem

O S. K. Jha, E. M. Clarke, C. J. Langmead, A. Legay, A. Platzer, P. Zuliani.
CMSB 2009.

O P. Zuliani, A. Platzer, E. M. Clarke. HSCC 2010.




Bayesian Statistics

Three ingredients

1. Prior probability:

= Models our Initial uncertainty/belief about parameters
(what is Prob(p = 0) ?)

2. Likelihood function:

= Describes the distribution of data (e.g., a sequence of
heads/tails), given a specific parameter value

3. Bayes Theorem:

* Revises uncertainty upon experimental data - compute
Prob(p = 6 | data)



Bounded Linear Temporal Logic

Bounded Linear Temporal Logic (BLTL): Extension of LTL
with time bounds on temporal operators.

Let 0 = (Sy, tp), (Sys ty), - - . be an execution of the model
= along states s, Sq, - - .
= the system stays in state s; for time t,
= divergence of time: 2, t, diverges (i.e., non-zeno)

o': Execution trace starting at state 1.

V(ao, I, X): Value of the variable x at the state s; in 0.

A model for simulation traces (e.g. Simulink, BioNetGen)



Semantics of BLTL

The semantics of BLTL for a trace o

= gKEX~C iff V(o, k, X) ~c, where ~isin{s,2 =}
= OF P, v P, iff o¥xF®, or cKF P,
= gXF-@ iff o¥F=® does not hold
= o= @, Ut P, iff there exists natural i such that
1) o @,
2) 2t st

3) foreach0<j<i, ov FE @,
“within time t, @, will be true and @, will hold until then”

In particular, Ft @ =true U'®, G' P =-F' -



Semantics of BLTL (cont’d)

= Simulation traces are finite: is o = @ well defined?

= Definition: The time bound of @:

" #x~c)=0
= #(-~D) = #(P)

= #(PyV Dy) = max (#(Py), #(P,))
= #(P, U D,) =t + max (#(D,), #(P,))

= [ emma: “Bounded simulations suffice”

Let @ be a BLTL property, and k=0. For any two infinite traces p, o
such that p*and o* “equal up to time #(®)” we have

ok

— ¢

iff o =@




Sequential Bayesian Statistical MC - |

Model Checking Ho : M = P>o(¢) Hy : M | = P<g(0)

Suppose M satisfies ¢ with (unknown) probability p
* pis given by a random variable U (defined on [0,1]) with density g
= g represents the prior belief that M satisfies ¢

Generate independent and identically distributed (iid)
sample traces.

x;: the it sample trace O satisfies ¢
« x=1iff O3 = @
= x,=0Iff 0; # qb
Then, x; will be a Bernoulli trial with conditional density
(likelihood function)
fOxiu) = ws(1 = u)t




Sequential Bayesian Statistical MC - |l

= X =(x1,...,Zn) a sample of Bernoulli random variables
= Prior probabilities P(H,), P(H,) strictly positive, sum to 1
= Posterior probability (Bayes Theorem [1763])

P(X|Hy)P(Hy)
P(X)

P(Hp|X) =

for P(X) >0

= Ratio of Posterior Probabilities:

P(Ho|X)  P(X|Hy) P(Ho)

P(H,|X)  P(X|H,) P(H)

Bayes Factor




Sequential Bayesian Statistical MC - Il

P(X|Hop)

= Recall the Bayes factor —
y B = px1m)

= Jeffreys’ [1960s] suggested the Bayes factor as a statistic:
» For fixed sample sizes
= For example, a Bayes factor greater than 100 “strongly supports™ H,

= We introduce a sequential version of Jeffrey’s test

= Fix threshold T = 7 and prior probabillity.
Continue sampling until

= Bayes Factor > T: Accept H,
» Bayes Factor < 1/T: Reject H,



Sequential Bayesian Statistical MC - IV

Require: Property P.4(®), Threshold T = 1, Prior density g

n:=0 {number of traces drawn so far}
s:=0 {number of traces satisfying @ so far}
repeat

o .= draw a sample trace of the system (iid)

n:=n+1

if oF @ then

s.=s+1
endif

B .= BayesFactor(n, s, Q)
until (B>T vB<1/T)
If (B>T)then
return H, accepted
else
return H, rejected
endif



Seqguential Bayesian Statistical MC - V

» The Bayes Factor uses posterior (and prior) probability
P(X|Hy) B P(Hy|X) P(H,)

P(X|H,)  P(H,|X) P(H)

= Bayes Factor: Measure of confidence in Hy vs H,
= provided by the data X = (z1,...,%Zy,)

= “weighted” by the prior probabilities Likelihood function

= Posterior density (Bayes Theorem) (iid Bérnoulli samples)

_ f@ ) faa W) g(u)
[EF@y [ ) fzn | 0) - g(v) dv

flu|x1,...,zy)




Sequential Bayesian Statistical MC - VI

Definition: Bayes Factor 5 of sample X and hypotheses H,, H,

joint (conditional) density of
iIndependent samples

B — P(X|Hy) _ 1-my Jo f(ilw)f(enlu)gu) du

P(XTHL) = w0 [7 f(z1|u)-f(zn|u)-g(u) du

= 719 = P(Ho) = [, g(u)du prior g is Beta of parameters a>0, 8>0

g(u) = B(;,g)ua_l(l —u)?!

B(a,B) = [ t* 1 (1 —)P~1 dt



Why Beta priors?

Defined over [0,1]
Beta distributions are conjugate to Binomial distributions:

= |f prior g is Beta and likelihood function is Binomial
then posterior is Beta

Suppose likelihood Binomial(n,x), prior Beta(a,): posterior
fu]xg,...x)  =1(xfu) - - 1(x,|u) - g(u)

— uX(1 —_ u)n-X . uG-l(’l —_ u)B-l

= yxta 1(1 — u)n-x+B-1
where X =2, X,

Posterior is Beta of parameters x+a and n-x+[3
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Computing the Bayes Factor

Proposition

The Bayes factor of Hy:M =Py (®P) vS HEM =P_,(P) for
n Bernoulli samples (with x<n successes) and prior Beta(a,;8)

1 — 0 ( 1 )
B = : — 1
7o Flotan—a+t) (0)

where F ,(+) Is the Beta distribution function of parameters s, t.

* No need of integration when computing the Bayes factor



Sequential Bayesian Statistical MC - VI

Theorem (Termination). The Sequential Bayesian Statistical MC
algorithm terminates with probability one.

Theorem (Error bounds). When the Bayesian algorithm — using
threshold T — stops, the following holds:

Prob ("accept H," | H;) < 1/T
Prob (“reject H," | Hy) = 1/T

Note: bounds independent from the prior distribution.



Fuel Control System - |

The Simulink model:
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Fuel Control System - |l

= Ratio between air mass flow rate and fuel mass flow rate
= Stoichometric ratio is 14.6

= Senses amount of oxygen in exhaust gas, pressure,
engine speed and throttle to compute correct fuel rate.

» Single sensor faults are compensated by switching to a higher
oxygen content mixture.

= Multiple sensor faults force engine shutdown.



Fuel Control System - Il

» Stateflow part of the model has 24 locations
» grouped in 6 simultaneously active states

= Simulink part of the model is rich

= Several nonlinear equations
= Linear ODE

= Probabilistic behavior because of random faults

* in the EGO (oxygen), pressure and speed sensors.
» Faults modeled by three independent Poisson processes
= We did not change the speed or throttle inputs.



Fuel Control System - IV

We Model Check the formula (Null hypothesis)
M, FaultRate = P.,(-F%° G(FuelFlowRate = 0))
for6=.5,.7,.8,.9, .99

“It is not the case that within 100 seconds, FuelFlowRate
is zero for 1 second”

We use various values of FaultRate for each of the three
sensors in the model

We choose Bayes threshold T = 1000, i.e., stop when
probability of error is < .001

Uniform, equally likely priors and “informative” priors



Fuel Control System: results

Recall the Null hypothesis:
M, FaultRate = P.,(-F%° G(FuelFlowRate = 0))

Priors: uniform, equally likely.
Number of samples and test decision:
* red/ blue number: reject / accept null hypothesis

Probability threshold 6

5 7 8 9 .99

[3 7 8] 58 17 10 8 2

Fault  [10 8 9] 32 95 394 710 8
rates | [20 10 20] 9 16 24 44 1,626
[30 30 30] 9 16 24 44 239

Longest run: 1h 5’ on a 2.4GHz Pentium 4 computer




Informative priors:

Fuel Control System: results

convex combinations of Betas

Example: for fault rates [10 8 9] we used
0.01 x beta(1,1) + 0.99 x beta(1000,172.6)

Fault
rates

[3 7 8]
[10 8 9]
[20 10 20]
[30 30 30]
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Fuel Control System: results

Informative priors: convex combinations of Betas

Savings with respect to uniform prior:

Probability threshold 6

5 7 8 9 .99
378 55(3) 12(5) 10 8
cault  [10 8 9] 28(4) 64(31) 347 (47) 255 (455) 8

rates [20 10 20] 8(1) 13(3) 20(4)  39(5) 1,463 (163)
[30 30 30] 7(2) 13(3) 18(6)  33(11) 201 (38)



CMACS Interactions

» Verification of Pancreatic Cancer models:
» James Faeder and Haijun Gong (tomorrow)
» Rule-based models
* Full integration of BLTL trace verifier with BioNetGen
= Can use Statistical Model Checking
* Probabilistic Boolean Network models

= Work in progress

= Atrial fibrillation (Flavio Fenton et al.)



CMACS Interactions

* Hybrid Systems:
» Embed BLTL checker in Simulink
* Run-time verification (Klaus Havelund)
* Requirements in automotive (Rance Cleveland)
* Theory: stochastic hybrid systems (Steve Marcus)

= Rare event simulation, nondeterminism

* Model Checking: abstraction (Patrick Cousot)

= Speed-up simulation while preserving temporal logic
properties



Questions?



Bayesian Interval Estimation - |

Estimating the (unknown) probability p that “system = @”

Recall: system is modeled as a Bernoulli of parameter p

Bayes’ Theorem [1763] (for iild Bernoulli samples)

[y |w)--- fan | u)g(u)
f() (1 [v) -+ f(@n | v)g(v) dv

flu|xy,...,2n) =

We thus have the posterior distribution

So we can use the mean of the posterior to estimate p

" mean is a posterior Bayes estimator for p (it minimizes the risk
over the parameter space, under a quadratic loss)



Bayesian Interval Estimation - Il

By integrating the posterior we get Bayesian intervals for p
Fix a coverage %2 < c < 1. Any interval (t,, t;) such that
t1
flu|zy,...,z,) du = c
to
IS called a 100c percent Bayesian Interval Estimate of p
An optimal interval minimizes t,- t,: difficult in general

Our approach:
= fix a half-interval width &

= Continue sampling until the posterior probability of an interval of
width 20 containing the posterior mean exceeds coverage c



Bayesian Interval Estimation - Il

= Computing the posterior probability of an interval is easy

= Suppose n Bernoulli samples (with x<n successes) and
prior Beta(a,f3)

t1
P(to <p < ti|z1,...,z,) :/ flulzy,... zn) du
to

— ‘F(ac—I—oz,n—x—l—ﬁ) (tl) o F@"‘Oﬁn_w—'—ﬁ) (t()) ‘

= Again, no numerical integration



Bayesian Interval Estimation - IV
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Bayesian Interval Estimation - V

Reqguire: BLTL property @, interval-width &, coverage c,
prior beta parameters a,B

n:=0 {number of traces drawn so far}
s:=0 {number of traces satisfying so far}
repeat

o .= draw a sample trace of the system (iid)

n:=n+1

if oF @ then

s=s+1
endif

mean = (s+a)/(s+o+p)

(te,t) = (mean-d, mean+d)

I := PosteriorProbability (t,,t;,n,s,a,B)
until (I > c)
return (t,,t;), mean



Bayesian Interval Estimation - VI

» Recall the algorithm outputs the interval (t,,t,)
= Define the null hypothesis
Hy o <p<t
= We can use the previous results for hypothesis testing

Theorem (Error bound). When the Bayesian estimation
algorithm (using coverage Y2< ¢ < 1) stops — we have

Prob (“accept H,” | Hy) = (1/c -1)1/(1-171,)
Prob (“reject H,” | Hy) < (1/c -1)1r,/(1-11,)

1,4 IS the prior probability of H,



Fuel Control System results:

Interval estimation

Bayesian estimation algorithm, uniform prior.

Want to estimate the probability that

M, FaultRate

— (-F1% G1(FuelFlowRate = 0))

For half-width 6=.01 and several values of coverage c

Posterior mean: add/subtract d to get the Bayesian interval

Fault
rates

[3 7 8]
[10 8 9]
[20 10 20]
[30 30 30]

Interval coverage c

9 95 99 999
.3603 3559 3558 .3563
.8534 .8518 .8528 .8534
9764 9784 .9840 9779
9913 9933 9956 9971



Fuel Control System results:
Interval estimation

= Number of samples
= Comparison with Chernoff-Hoeffding bound (Bernoulli r.v.’s)
Pr(| X—p|20)<exp(-2nd?)
where X =1/n 2, X, E[Xi]=p

Interval coverage c

9 95 .99 1999

[3 7 8] 6,234 8,802 15,205 24,830

Eault  [10 8 9] 3,381 4,844 8,331 13,569
rates [20 10 20] 592 786 1,121 2,583
[30 30 30] 113 148 227 341

Chernoff bound 119,829 147,555 211,933 304,036



Number of Samples Needed

Performance of Bayesian Estimation
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BioLab 2.0

Model Checking Biochemical Stochastic models: M = P.4(®) ?

BioNetGen Bayesian Model Checker

ME=P (@)Y

MEEP.o (0 R

Model M }_ Bayes Test

b1

Formula

monitor | . BLTL to Monitor C— BLTL
compiler formula @




