
- 1 -

Verification of linear hybrid systems:
Symbolic representations using

simple interpolants

Christoph Scholl
Albert-Ludwigs-University Freiburg

Thanks to Florian Pigorsch, Stefan Disch, Ernst Althaus,
Werner Damm, Uwe Waldmann, …

- 2 -

Background: LinAIG Based Model Checking

 Given:
 Hybrid system with dynamics restricted to differential inclusions
 Intended application domain: Hybrid systems with a large number of

discrete states
 Safety specification
 Initial states

- 3 -

initial
states

Background: LinAIG Based Model Checking

 Approach:
 Backward model checking from unsafe states
 Symbolic representation of sets of states by LinAIGs

(= AND-Inverter-Graphs with linear constraints)
 Preimage computation until initial states or fixed point reached

unsafe
states

- 4 -

Background: LinAIGs

 Sets of states are represented by
 Arbitrary Boolean combinations of Boolean variables d1,…, dn and linear

constraints over real-valued variables x1,…, xm

 Example: (d1 Æ d2) Æ (x1 + x2 ≥ 0) Ç (- x1 + x2 ≥ 0)

Æ

d1 d2 x1 + x2 ≥ 0 -x1 + x2 ≥ 0

Æ

ÆA
IG

Li
nA

IG

LinAIG: Represented region for d1 = d2 = 0:

 Representations may be optimized by several techniques including
„Redundancy Removal“, „Constraint Minimization“

- 5 -

Parameterized Example: Dam
PHAVer

- 6 -

FOMC with redudancy removal only

- 7 -

FOMC with constraint minimization

- 8 -

Motivation (1)

 Our current state set compaction techniques
 Do not change the computed sets of unsafe states
⇒ exact model checking

 Make use only of already existing linear constraints for state set
representation

 Problem: Sometimes the boundary of the represented region is
really complicated

© http://spaceex.imag.fr

- 9 -

Motivation (2)

 Goal:
 Replace complicated state sets by „smoother“ representations
 Introduce (restricted) over-approximations

 It is important to have the complete picture (i.e. the complete state
set) to be able to judge which over-approximation makes sense.

 As usual:
 If safety can be proved using over-approximations, everything is fine.
 Otherwise: Counterexample-guided abstraction refinement

- 10 -

Method

 Allow the state set to expand into an ²-environment of the current
state set

- 11 -

Craig Interpolation

 A Craig Interpolant for two formulas A and B with A Æ B = 0 is a
formula I with
 A ⇒ I
 I Æ B = 0
 The uninterpreted symbols in I occur both in A and B as well as the free

variables in I occur freely both in A and B

- 12 -

Method

 Allow the state set to expand into an ²-environment of the current
state set

 ⇒ Craig Interpolation with
 Current state set as A
 Negation of (current state set + ²-environment + other „don‘t cares“) as

B
 A Æ B = 0

⇒ Craig interpolant I with A ⇒ I, I Æ B = 0
 Thus we need simple interpolants!

- 13 -

Interpolation example computed by MathSAT

A

B

- 14 -

Interpolation example computed by MathSAT

- 15 -

Another possible solution …

- 16 -

Closer look at interpolation procedure:
Running example

l1 = (−x2 ≤ 0),
l2 = (x1 ≤ 1),
l3 = (−x2 ≤ −5),
l4 = (x1 ≤ 6),
l5 = (−2x1 + x2 ≤ −6),
l6 = (−x1 + 2x2 ≤ 0)

A = (l1 ∧ l2) ∨ (l3 ∧ l4)
= (l1 ∨ l3) ∧ (l1 ∨ l4)

∧(l2 ∨ l3) ∧ (l2 ∨ l4)
B = (l5 ∧ l6)

- 17 -

Proof of unsatisfiability

Theory lemmata

How to construct an
interpolant?
(see McMillan 2005)
 Leaves:

 Remove all atoms
not occuring in B
from A-clauses

 Replace B-
clauses by 1

 Replace theory
lemmata by single
linear constraint,
the „theory
interpolant“

 Internal nodes:
 Replace by OR, if

pivot is not in B
 Replace by AND,

if pivot is in B

- 18 -

Interpolant

How to construct an
interpolant?
(see McMillan 2005)
 Leaves:

 Remove all atoms
not occuring in B
from A-clauses

 Replace B-
clauses by 1

 Replace theory
lemmata by single
linear constraint,
the „theory
interpolant“

 Internal nodes:
 Replace by OR, if

pivot is not in B
 Replace by AND,

if pivot is in B

- 19 -

Interpolant

How to construct an
interpolant?
(see McMillan 2005)
 Leaves:

 Remove all atoms
not occuring in B
from A-clauses

 Replace B-
clauses by 1

 Replace theory
lemmata by single
linear constraint,
the „theory
interpolant“

 Internal nodes:
 Replace by OR, if

pivot is not in B
 Replace by AND,

if pivot is in B

- 20 -

Interpolant

- 21 -

How to compute Theory Interpolants?

 Theory interpolants are computed for each theory lemma, e.g.

 The theory lemma says that is inconsistent.
 A theory interpolant is itself an interpolant of the „A-part“

and the „B-part“ .
 Proof of unsatisfiability for „A-part“ Æ „B-part“:

 Non-negative linear combination leading to contradiction (e.g. 0 ≤ -4)

(¬l1 ∨ ¬l2 ∨ ¬l5)
(l1 ∧ l2 ∧ l5)

(l1 ∧ l2)
l5

−x2 ≤ 0 | · 1
x1 ≤ 1 | · 2

−2x1 + x2 ≤−6 | · 1
0x1 + 0x2 ≤−4

- 22 -

How to compute Theory Interpolants?

 Theory interpolants are computed for each theory lemma, e.g.

 The theory lemma says that is inconsistent.
 A theory interpolant is itself an interpolant of the „A-part“

and the „B-part“ .
 Interpolant It for „A-part“ Æ „B-part“:

 First part of the proof belonging to the „A-part“

(¬l1 ∨ ¬l2 ∨ ¬l5)
(l1 ∧ l2 ∧ l5)

(l1 ∧ l2)
l5

−x2 ≤ 0 | · 1
x1 ≤ 1 | · 2

−2x1 + x2 ≤−6 | · 1
0x1 + 0x2 ≤−4

−x2 ≤ 0 | · 1
x1 ≤ 1 | · 2
2x1 − x2 ≤ 2

2x1 − x2 ≤ 2 | · 1
−2x1 + x2 ≤−6 | · 1
0x1 + 0x2 ≤−4

Theory Interpolant It
Proof that It Æ „B-part“ = 0

- 23 -

Computing Theory Interpolants

 Theory interpolants can be computed by linear programming
(Rybalchenko, Sofronie-Stokkermans 2007):

 Suitable values for may be found by
linear programming.

 The computed interpolant is a linear
constraint with

−x2 ≤ 0 | · λ1
x1 ≤ 1 | · λ2

−2x1 + x2 ≤−6 | · μ1
0x1 + 0x2 ≤−1

λ1,λ2,μ1 ≥ 0

λ2 − 2μ1 = 0
−λ1 + μ1 = 0

λ2 − 6μ1 ≤−1

λ2 = i1
−λ1 = i2

λ2 = δ

i1x1 + i2x2 ≤ δ

- 24 -

Running example

 This method results in exactly the following interpolant with one linear
constraint for each theory lemma:

- 25 -

Running example

 However, there is an interpolant with a single linear constraint:

- 26 -

Shared Interpolants for Several Theory Lemmata

 Just an extension to the RS-2007-method:
−x2 ≤ 0 | · λ1,1

x1 ≤ 1 | · λ1,2
−2x1 + x2 ≤−6 | · μ1,1
0x1 + 0x2 ≤−1

λ1,1,λ1,2,μ1,1 ≥ 0

λ1,2 − 2μ1,1 = 0
−λ1,1 + μ1,1 = 0

λ1,2 − 6μ1,1 ≤−1

λ1,2 = i1
−λ1,1 = i2

λ1,2 = δ

 Shared theory interpolant for two theory lemmata?i1x1 + i2x2 ≤ δ

−x2 ≤−5 | · λ2,1
x1 ≤ 6 | · λ2,2

−x1 + 2x2 ≤ 0 | · μ2,1
0x1 + 0x2 ≤−1

λ2,1,λ2,2,μ2,1 ≥ 0

λ2,2 − μ2,1 = 0
−λ2,1 + 2μ2,1 = 0
−5λ2,1 + 6λ2,2 ≤−1

λ2,2 = i1
−λ2,1 = i2
−5λ2,1 + 6λ2,2 = δ

 … can be computed by linear programming as well.

- 27 -

Shared Interpolants for Several Theory Lemmata

 Unfortunately, first results showed that this does not work!
 The potential to find shared interpolants for several theory lemmata

is not high enough.

 More degrees of freedom are needed to enable a larger number of
shared interpolants …

 1st approach: Relaxing constraints
 Lemma: The RS-2007-method only computes theory interpolants

which touch the A-part of the theory conflict (as long as the theory
conflict is minimized, and both A- and B-part are not empty).

⇒ Relax constraints to remove this restriction

- 28 -

Relaxing constraints

- 29 -

Relaxing constraints

−x2 ≤ 0 | · λ1,1
x1 ≤ 1 | · λ1,2

−2x1 + x2 ≤−6 | · μ1,1
0x1 + 0x2 ≤−1
λ1,1,λ1,2,μ1,1 ≥ 0

λ1,2 − 2μ1,1 = 0
−λ1,1 + μ1,1 = 0

λ1,2 − 6μ1,1 ≤−1

λ1,2 = i1
−λ1,1 = i2

λ1,2 = δ

−x2 ≤−5 | · λ2,1
x1 ≤ 6 | · λ2,2

−x1 + 2x2 ≤ 0 | · μ2,1
0x1 + 0x2 ≤−1

λ2,1,λ2,2,μ2,1 ≥ 0

λ2,2 − μ2,1 = 0
−λ2,1 + 2μ2,1 = 0
−5λ2,1 + 6λ2,2 ≤−1

λ2,2 = i1
−λ2,1 = i2
−5λ2,1 + 6λ2,2 = δ

 Shared interpolant i1x1 + i2x2 ≤ δ

- 30 -

Relaxing constraints

−x2 ≤ 0 | · λ1,1
x1 ≤ 1 | · λ1,2

−2x1 + x2 ≤−6 | · μ1,1
0x1 + 0x2 ≤−1
λ1,1,λ1,2,μ1,1 ≥ 0

λ1,2 − 2μ1,1 = 0
−λ1,1 + μ1,1 = 0

λ1,2 − 6μ1,1 ≤−1

λ1,2 = i1
−λ1,1 = i2

λ1,2 ≤ δ

−x2 ≤−5 | · λ2,1
x1 ≤ 6 | · λ2,2

−x1 + 2x2 ≤ 0 | · μ2,1
0x1 + 0x2 ≤−1

λ2,1,λ2,2,μ2,1 ≥ 0

λ2,2 − μ2,1 = 0
−λ2,1 + 2μ2,1 = 0
−5λ2,1 + 6λ2,2 ≤−1

λ2,2 = i1
−λ2,1 = i2
−5λ2,1 + 6λ2,2 ≤ δ

 Shared interpolant i1x1 + i2x2 ≤ δ

- 31 -

Relaxing constraints

−x2 ≤ 0 | · λ1,1
x1 ≤ 1 | · λ1,2

−2x1 + x2 ≤−6 | · μ1,1
0x1 + 0x2 ≤−1
λ1,1,λ1,2,μ1,1 ≥ 0

λ1,2 − 2μ1,1 = 0
−λ1,1 + μ1,1 = 0

δ − 6μ1,1 ≤−1

λ1,2 = i1
−λ1,1 = i2

λ1,2 ≤ δ

−x2 ≤−5 | · λ2,1
x1 ≤ 6 | · λ2,2

−x1 + 2x2 ≤ 0 | · μ2,1
0x1 + 0x2 ≤−1

λ2,1,λ2,2,μ2,1 ≥ 0

λ2,2 − μ2,1 = 0
−λ2,1 + 2μ2,1 = 0

δ ≤−1

λ2,2 = i1
−λ2,1 = i2
−5λ2,1 + 6λ2,2 ≤ δ

 Shared interpolant i1x1 + i2x2 ≤ δ

- 32 -

Shared Interpolants for Several Theory Lemmata

 Unfortunately, this still does not work for our example:

- 33 -

Shared Interpolants for Several Theory Lemmata

 Unfortunately, this still does not work for our example: 1st theory lemma

Direction of
is fixed!

l7

- 34 -

Shared Interpolants for Several Theory Lemmata

 Unfortunately, this still does not work for our example: 2nd theory lemma

Direction of
is fixed!

l8

- 35 -

Shared Interpolants for Several Theory Lemmata

 Lemma: If a theory conflict is minimized (and neither A-part nor B-
part are empty), then the direction vector of the theory interpolant is
fixed.

 However: Modern SMT solvers minimize theory conflicts in order
to prune the search space as much as possible!

 Idea: Extend theory lemmata by additional inequations in a way that
 the SMT proof is not destroyed,
 or at least: The interpolant computed as before is still an interpolant.

 Note: Of course an inconsistent set of constraints remains
inconsistent, if extended by additional constraints.

- 36 -

Running example

 If is extended to and is
extended to , then is a shared interpolant for both
theory lemmata.

(l1 ∧ l2 ∧ l5) (l1 ∧ l2 ∧ l5 ∧ l6) (l3 ∧ l4 ∧ l6)
(l3 ∧ l4 ∧ l5 ∧ l6) l9

- 37 -

Extending Theory Lemmata, Method 1

 1st method: Push-up operation

(Pigorsch / Scholl, DATE 2013)

(¬a ∨ c) (a ∨ b)

(b ∨ c)

- 38 -

Extending Theory Lemmata, Method 1

 1st method: Push-up operation

(Pigorsch / Scholl, DATE 2013)

(a ∨ b ∨ c)

(a ∨ c) (a ∨ c ∨ e)

(¬b ∨ c) (¬b ∨ c ∨ e)(¬a ∨ c)

(b ∨ c)

 Resolution proof remains valid after push-up of a literal c into
clause n, if
 c is in the intersection of all of its children’s clauses,
 c is not n’s pivot.

 Extend theory lemmata by literals pushed into them …
 After push-up operations, the SMT proof remains valid.

- 39 -

Extending Theory Lemmata, Method 2

 2nd method: Implied literals
 A literal is

 implied for B, iff ,
 implied for A, iff and does not occur in B.A⇒ l

B⇒ l
l

l

 Running example:
 and are implied for .
 and are implied for .
 Theory lemma may be

extended to
 Theory lemma may be

extended to
 This leads to the shared theory interpolant

as depicted.

l1 l4
l5 l6

A
B

(¬l1 ∨ ¬l2 ∨ ¬l5)
(¬l1 ∨ ¬l2 ∨ ¬l4 ∨ ¬l5 ∨ ¬l6)
(¬l3 ∨ ¬l4 ∨ ¬l6)

(¬l1 ∨ ¬l3 ∨ ¬l4 ∨ ¬l5 ∨ ¬l6)

(Scholl, Pigorsch, Disch, Althaus, DATE 2014)

 Lemma: Adding the negation of implied literals to theory lemmata in
an SMT proof and using the interpolation construction according to
[McMillan 2005] leads to a valid interpolant.

- 40 -

Experiments

 > 200 intermediate state sets produced by our hybrid model checker
(representing A).

 ²-bloating of state sets represents .
 Formulas representing and contain up to 7 rational variables, up

to 1,380 inequations, up to 18,915 Boolean variables, and up to
56,721 clauses.

¬B
A B

- 41 -

First Results

This work

- 42 -

First Results

This work

- 43 -

Conclusions and Future Work

 Interpolants based on proofs of unsatisfiability may be simplified to
a great extent by shared interpolants.

 Key to successful simplification: Preprocessing proofs to increase
degrees of freedom in the selection of theory interpolants.

 Existing LP solvers / SMT solvers may be used.

 Generalization to other theories?
 To do: Full integration into model checking procedure with

abstraction refinement.

