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Background: LINAIG Based Model Checking

= Given:
» Hybrid system with dynamics restricted to differential inclusions

» Intended application domain: Hybrid systems with a large number of
discrete states

» Safety specification
» [nitial states
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Background: LInAIG Based Model Checking

= Approach:
» Backward model checking from unsafe states

» Symbolic representation of sets of states by LinAIGs
(= AND-Inverter-Graphs with linear constraints)

= Preimage computation until initial states or fixed point reached

unsafe
states

initial
states



Background: LInAIGs

= Sets of states are represented by

= Arbitrary Boolean combinations of Boolean variables d,,..., d,and linear
constraints over real-valued variables x4,..., X,

= Example: (dyAdy) A X +X,>0)V (-X%X +X%X, >0)
LinAIG: Represented region for d, = d, =0:
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» Representations may be optimized by several techniques including
,Redundancy Removal, ,,Constraint Minimization*



Parameterized Example: Dam
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FOMC with redudancy removal only
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FOMC with constraint minimization
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Motivation (1)

= Qur current state set compaction techniques

» Do not change the computed sets of unsafe states
=- exact model checking

= Make use only of already existing linear constraints for state set
representation

= Problem: Sometimes the boundary of the represented region is
really complicated
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Motivation (2)

Goal:
= Replace complicated state sets by ,smoother” representations
» Introduce (restricted) over-approximations

It is iImportant to have the complete picture (i.e. the complete state
set) to be able to judge which over-approximation makes sense.

As usual:
» |f safety can be proved using over-approximations, everything is fine.
» QOtherwise: Counterexample-guided abstraction refinement



Method

Allow the state set to expand into an e-environment of the current
state set

[
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Craig Interpolation

= A Craig Interpolant for two formulas Aand B with AAB=01Is a
formula | with
= A=
= |[AB=0
» The uninterpreted symbols in | occur both in A and B as well as the free
variables in | occur freely both in A and B
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Method

= Allow the state set to expand into an e-environment of the current
state set

» = Craig Interpolation with

= Current state set as A

» Negation of (current state set + e-environment + other ,don‘t cares) as
B

= AAB=0
= Craig interpolant I with A =1, I AB=0
» Thus we need simple interpolants! S 12-



Interpolation example computed by MathSAT
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Interpolation example computed by MathSAT
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Another possible solution ...
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Closer look at interpolation procedure:

Running example

(l1 ANl2) V (I3 N ly)
(I Vi) A (11 Vi)
Al VIs) A (l2 V1)
(Is N lg)
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Proof of unsatisfiability

Theory lemmata
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How to construct an
interpolant?
(see McMillan 2005)
= |eaves:

= Remove all atoms
not occuring in B
from A-clauses
Replace B-
clauses by 1
Replace theory
lemmata by single
linear constraint,
the ,theory
iInterpolant”
Internal nodes:
Replace by OR, if
pivot is not in B
Replace by AND,
iIf pivotisin B
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Interpolant

How to construct an
interpolant?
(see McMillan 2005)
= |eaves:
= Remove all atoms

201 — w9 <2 T all a
//// not occuring in B
from A-clauses
A < T 222 < ! = Replace B-

\\ M clauses by 1

= Replace theory

V 7\ i
,/ //\ / lemmata by single

V V L V linear constraint,
\ / \ / the ,theory
\/ \/ Interpolant
\ / = [nternal nodes:

= Replace by OR, if

pivot is not in B
= Replace by AND,
if pivotisin B
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Interpolant

233‘1—35‘2§2

I —2932 S —4

How to construct an
interpolant?

(see McMillan 2005)
= |eaves:

Remove all atoms
not occuring in B
from A-clauses
Replace B-
clauses by 1
Replace theory
lemmata by single
linear constraint,
the ,theory
iInterpolant”

= |nternal nodes:

Replace by OR, if
pivot is not in B
Replace by AND,
iIf pivotisin B
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Interpolant
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How to compute Theory Interpolants?

= Theory interpolants are computed for each theory lemma, e.g.
(=l V =l Vv =ls)
= The theory lemma says that (I; A l; Al5) is inconsistent.

= A theory interpolant is itself an interpolant of the ,A-part(l; A l5)
and the ,B-part” [5.
= Proof of unsatisfiability for ,A-part* A ,B-part®
= Non-negative linear combination leading to contradiction (e.g. 0 < -4)

—I9 S 0
I S 1
—25131 + X9 S —6
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How to compute Theory Interpolants?

= Theory interpolants are computed for each theory lemma, e.g.
(=l V =l Vv =ls)
= The theory lemma says that (I; A l; Al5) is inconsistent.

= Atheory interpolant is itself an interpolant of the ,A-part*(l; A l3)
and the ,B-part” [5.

= [nterpolant I, for ,A-part‘ A ,B-part*:
= First part of the proof belonging to the , A-part®

—ro < 0] 1 —29 <01
21 < 1|2 1 <1/-2 201 — x2< 2|1
—2$1+ ZE2§—6‘1 2561— ZIS‘Q§2 —2331—|— $2§—6‘1
0.5131—’— 0$2§—4 O£61—|—0332§—4

Theory Interpolant I,
Proof that I, A ,B-part*=0
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Computing Theory Interpolants

» Theory interpolants can be computed by linear programming
(Rybalchenko, Sofronie-Stokkermans 2007):

—x9< 0 = Suitable values for may be found by
1 < 1 linear programming.
11+ x5 < —6 " The computed interpolant is a linear
constraint with
A1, A, 1 2> 0

A2 =2 = 0

— A1 + pur= 0

Ay —6pr < —1

)\2 = 1

—)\1 19

A2 = 9
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Running example

» This method results in exactly the following interpolant with one linear
constraint for each theory lemma:
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Running example

However, there is an interpolant with a single linear constraint:
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Shared Interpolants for Several Theory Lemmata

= Just an extension to the RS-2007-method:

—2o< 0] A, —2xo <=5 Aoy
x1 < 1A X1 < 6o
—2x1+ 22 <=6 [ —x1+ 222 < 0 pog
Oxq + Oxo < —1 Oxq + Ozo < —1
M1,A12, 41,1 >0 A2.1,A2.2, 2.1 > 0
Ma2—2pu11= 0 Aoo2— p21= 0
—A11 + = 0 —A2.1 +2p21= 0
A12 —6p1 < —1 —9A2,1 + 622 <-1
A1,2 = A2,2 =
—A11 = —A2.1 =
A1,2 = —dA2,1 +6A22 =

= Shared theory interpolant 7,2 + 1525 < 0 for two theory lemmata?

= ... can be computed by linear programming as well.
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Shared Interpolants for Several Theory Lemmata

= Unfortunately, first results showed that this does not work!

= The potential to find shared interpolants for several theory lemmata
IS not high enough.

= More degrees of freedom are needed to enable a larger number of
shared interpolants ...

= 1st approach: Relaxing constraints

» Lemma: The RS-2007-method only computes theory interpolants
which touch the A-part of the theory conflict (as long as the theory
conflict is minimized, and both A- and B-part are not empty).

= Relax constraints to remove this restriction
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Relaxing constraints
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Relaxing constraints

—2o< 0] A,

T < 1A

—2x1+ 22 < =61
Oxz1 + Oxo < —1

M1,A12, 41,1 >0
A2 —2m1= 0
—A1,1 + pu1= 0
A2 =61 <—1
A1,2 = 1
—A1,1 = 1
)\1,2 = 9

—2xo <=5 Aoy

1 < 6] oo

—x1+ 222 < 0 po;
0561 —+ OZCQ § —1

A2.1,A2.2, 21 > 0

Aoo2— p21= 0

—A2.1 +2p21= 0
—5>\2,1 + 6)\2,2 < —1
A2.2 = 11

—A2.1 19
—5)\2,1 + 6)\2,2 = 9

= Shared interpolant 7,7, + 525 < 0
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Relaxing constraints

—2o< 0] A,

T < 1A

—2x1+ 22 < =61
Oxz1 + Oxo < —1

M1,A12, 41,1 >0
Ma2—2u11= 0
—A11 + p11= 0
A2 —6pu11 < -1
A1,2 = 1
—A1,1 = 19
A1,2 < 0

—2xo <=5 Aoy

1 < 6] oo

—x1+ 222 < 0 po;
0561 —+ OZCQ S —1

A2.1,A2.2, 21 >0

Aoo— p21= 0

—A2.1 +2u21= 0
—5)\2,1 + 6)\2,2 < —1
A2.2 = 1

—A2.1 = 1
—dA2,1 +6A22 < 90

= Shared interpolant 7,7, + 525 < 0
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Relaxing constraints

—2o< 0] A,

T < 1A

—2x1+ 22 < =61
Oxz1 + Oxo < —1

A1, A1,2, 41,1 = 0
Mao2—2pu11= 0
—A11 + pr1= 0
0 — 61 < —1
>\1,2 = U
—A1,1 = 1
A1,2 < 9

—2xo <=5 Aoy

1 < 6] oo

—x1+ 222 < 0 po;
0561 —+ OZCQ S —1

A2.1,A2.2, 21 > 0

Aoo2— p21= 0

—A2.1 +2u21= 0
) < -1

A2.2 = 1

—A2.1 = 19
—dA2.1 + 629 < 90

= Shared interpolant 7,7, + 525 < 0
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Shared Interpolants for Several Theory Lemmata

» Unfortunately, this still does not work for our example:
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Shared Interpolants for Several Theory Lemmata

» Unfortunately, this still does not work for our example: 1st theory lemma

Direction of [~
is fixed!
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Shared Interpolants for Several Theory Lemmata

» Unfortunately, this still does not work for our example: 2nd theory lemma

Direction of [g
is fixed!

- 34-



Shared Interpolants for Several Theory Lemmata

= Lemma: If a theory conflict is minimized (and neither A-part nor B-
part are empty), then the direction vector of the theory interpolant is
fixed.

= However: Modern SMT solvers minimize theory conflicts in order
to prune the search space as much as possible!

= |dea: Extend theory lemmata by additional inequations in a way that
» the SMT proof is not destroyed,
= or at least: The interpolant computed as before is still an interpolant.

= Note: Of course an inconsistent set of constraints remains
Inconsistent, if extended by additional constraints.
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Running example

= f (ll Algy N l5> Is extended to (ll Aly Nlg N\ l6) and (l3 Aly A lﬁ) IS
extended to (I3 A l4 Al5 A lg), then [ is a shared interpolant for both
theory lemmata.
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Extending Theory Lemmata, Method 1

= 1st method: Push-up operation

(Pigorsch / Scholl, DATE 2013)
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Extending Theory Lemmata, Method 1

1st method: Push-up operation

(mbVe) (maVe) [aVbVe) (mbVeVe)

(ave) (bVe) (aVeVe)

Resolution proof remains valid after push-up of a literal c into
clause n, if

= cisin the intersection of all of its children’s clauses,
= cis notn’s pivot.

Extend theory lemmata by literals pushed into them ...
After push-up operations, the SMT proof remains valid.

(Pigorsch / Scholl, DATE 2013)

- 38 -



Extending Theory Lemmata, Method 2

= 2nd method: Implied literals

= Aliteral lis

= implied for B, iff B = [,

= implied for A, iff A = [ and [ does not occur in B.

= Lemma: Adding the negation of implied literals to theory lemmata in
an SMT proof and using the interpolation construction according to
[McMillan 2005] leads to a valid interpolant.

1
]

[

f:

7

)

B

w
zgfﬁ/

T

Running example:

= [yand [, are implied for A.

= [5and [g are implied for B.

= Theory lemma (—l; V —ly V —l5) may be
extended to (—ly V —lg V =y V —l5 V —lg)

* Theory lemma (—l3 V =ly V =lg) may be
extended to(—ly V —l3 V =y V —l5 V —lg)

» This leads to the shared theory interpolant
as depicted.

(Scholl, Pigorsch, Disch, Althaus, DATE 2014) - 39-



Experiments

= > 200 intermediate state sets produced by our hybrid model checker
(representing A).

» e-bloating of state sets represents —B.

= Formulas representing A and B contain up to 7 rational variables, up

to 1,380 inequations, up to 18,915 Boolean variables, and up to
56,721 clauses.
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First Results
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First Results
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Conclusions and Future Work

» |nterpolants based on proofs of unsatisfiability may be simplified to
a great extent by shared interpolants.

= Key to successful simplification: Preprocessing proofs to increase
degrees of freedom in the selection of theory interpolants.

= Existing LP solvers / SMT solvers may be used.

= Generalization to other theories?

= To do: Full integration into model checking procedure with
abstraction refinement.
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