On Model Checking Techniques for
Randomized Distributed Systems

Christel Baier
Technische Universitat Dresden

joint work with Nathalie Bertrand
Frank Ciesinski

Marcus GroBer

1/161

Probability elsewhere

e randomized algorithms [RABIN 1960]
breaking symmetry, fingerprints, input sampling, ...

e stochastic control theory [BELLMAN 1957]
operations research

® performance modeling [MARKOV, ERLANG, KOLM., ~ 1900]
emphasis on steady-state and transient measures

e biological systems, resilient systems, security protocols

2/161

Probability elsewhere

e randomized algorithms [RABIN 1960]
breaking symmetry, fingerprints, input sampling, ...
models: discrete-time Markov chains
Markov decision processes

e stochastic control theory [BELLMAN 1957]
operations research
models: Markov decision processes

® performance modeling [MARKOV, ERLANG, KOLM., ~ 1900]
emphasis on steady-state and transient measures
models: continuous-time Markov chains

e biological systems, resilient systems, security protocols

3/161

Model checking [Clarke/Emerson, Queille/Sifakis]

requirements
reactive system (safety, liveness)

abstract specification, e.g.,

model M \ temporal formula ®

model checking
“does M |= ® hold ?"

N

4/161

Probabilistic model checking

probabilistic quantitative
reactive system requirements
probabilistic specification, e.g.,

model M \ temporal formula ®

probabilistic model checking
“does M |= ® hold ?"

v

probability for “bad behaviors” is < 1078
probability for “good behaviors” is 1
expected costs for

5/161

Probabilistic model checking

probabilistic quantitative
reactive system requirements
Markov decision linear temporal formula ¢

process M (path event)

N/

probabilistic model checking

quantitative analysis of M against ®

v

probability for “bad behaviors” is < 1078
probability for “good behaviors” is 1

6/161

O u tI i n e OVERVIEW

e Markov decision processes (MDP) and
quantitative analysis against path events

e partial order reduction for MDP
e partially-oberservable MDP

e conclusions

7/161

Markov decision process (MDP) woro1

operational model with nondeterminism and probabilism

8/161

Markov decision process (MDP) -

operational model with nondeterminism and probabilism

e modeling randomized distributed systems
by interleaving

process 1 process 2
tosses a tosses a
coin coin
process 2 process 1
tosses a tosses a
coin coin

9/161

Markov decision process (MDP) -

operational model with |nondeterminism| and probabilism

e modeling randomized distributed systems
by interleaving

e nondeterminism useful for abstraction, underspec.,
modeling interactions with an unkown environment

process 1 process 2
tosses a tosses a
coin coin
process 2 process 1
tosses a tosses a
coin coin

10/161

Markov decision process (MDP) e

M = (S,Act,P, ...)

11/161

Markov decision process (MDP) e

M = (S,Act,P, ...)

e finite state space S

12 /161

MDP-02-R

Markov decision process (MDP)

M = (S,Act,P, ...)

e finite state space S

e Act finite set of actions
e P:SXActxS—1]0,1]

13/161

MDP-02-R

Markov decision process (MDP)

M = (S,Act,P, ...)

e finite state space S

e Act finite set of actions
e P:SXActxS—1]0,1]

) 3 <:---- nondeterministic choice

% <---- probabilistic choice

14/161

Markov decision process (MDP) e

M = (S, Act,P, ...) Act(s) = set of actions
o that are enabled
e finite state space S in state s

e Act finite set of actions
¢ P:SXActxS—1[0,1]s.t.
Vs€S Va € Act.) P(s,a,s') € {0,1}

s'eS /‘ '\
a ¢ Act(s)| |a € Act(s)

) 3 <:---- nondeterministic choice

----- probabilistic choice

15/161

Markov decision process (MDP) .. -

M = (S, Act, P, s, AP, L, rew, . .)

e finite state space S

e Act finite set of actions
¢ P:SXActxS—1]0,1] s.t.

Vs€S VYa € Act. > P(s,a,s) € {0,1}
s'eS /‘ '\
a ¢ Act(s)| |a € Act(s)

e sy initial state

e AP set of atomic propositions

o labeling L: S — 24

e reward function rew : S X Act - R

16/161

Randomized mutual exclusion protocol

e 2 concurrent processes Py, Pa with 3 phases:

n; noncritical actions of process P;
w; waiting phase of process P;
¢; critical section of process P;

e competition of both processes are waiting

17 /161

Randomized mutual exclusion protocol

e 2 concurrent processes Py, Pa with 3 phases:

n; noncritical actions of process P;
w; waiting phase of process P;
¢; critical section of process P;

e competition of both processes are waiting

e resolved by a randomized arbiter who tosses a coin

18/161

Randomized mutual exclusion protocol

e interleaving of the request operations
e competition if both processes are waiting
e randomized arbiter tosses a coin if both are waiting

19/161

Randomized mutual exclusion protocol

e |interleaving

of the request operations

e competition if both processes are waiting

e randomized arbiter tosses a coin if both are waiting

20/161

Randomized mutual exclusion protocol

interleaving of the request operations

competition

if both processes are waiting

randomized arbiter tosses a coin if both are waiting

21/161

Randomized mutual exclusion protocol

e interleaving of the request operations
e competition if both processes are waiting

e |randomized arbiter| tosses a coin if both are waiting

22/161

Reasoning about probabilities in MDP

e requires resolving the nondeterminism by schedulers

23 /161

Reasoning about probabilities in MDP

e requires resolving the nondeterminism by schedulers

e a scheduler is a function D : §* — Act s.t.
action D(sp...sp) is enabled in state s,

24 /161

Reasoning about probabilities in MDP

requires resolving the nondeterminism by schedulers

[J

e a scheduler is a function D : §* — Act s.t.
action D(sp...sp) is enabled in state s,

e ecach scheduler induces an infinite Markov chain

wi= O

25/161

Reasoning about probabilities in MDP

e requires resolving the nondeterminism by schedulers

e a scheduler is a function D : §* — Act s.t.
action D(sp...sp) is enabled in state s,
e ecach scheduler induces an infinite Markov chain

T

yields a notion of probability measure Pr®
on measurable sets of infinite paths

26 /161

Reasoning about probabilities in MDP

e requires resolving the nondeterminism by schedulers

e a scheduler is a function D : §* — Act s.t.
action D(sp...sp) is enabled in state s,
e ecach scheduler induces an infinite Markov chain

T

yields a notion of probability measure Pr®
on measurable sets of infinite paths

typical task: given a measurable path event E,

* check whether E holds almost surely, i.e.,
PrP(E) =1 for all schedulers D

27 /161

Reasoning about probabilities in MDP ... 0

e requires resolving the nondeterminism by schedulers

e a scheduler is a function D : §* — Act s.t.
action D(sp...sp) is enabled in state s,
e ecach scheduler induces an infinite Markov chain

T

yields a notion of probability measure Pr®
on measurable sets of infinite paths

typical task: given a measurable path event E,
* check whether E holds almost surely

* compute the worst-case probability for E, i.e.,
sup Pr°(E) or inf PrP(E)
D

28 /161

Quantitative analysis of MDP

given: MDP M = (S, Act, P, . ..) with initial state s

w-regular path event E,
e.g., given by an LTL formula

task: compute Pr¥ (s, E) = sup PrP(sy, E)
D

29/161

Quantitative analysis of MDP

given:

task:

method:

MDP M = (S, Act, P, . ..) with initial state s

w-regular path event E,
e.g., given by an LTL formula

compute PrM (so, E) = sup PrP(so, E)
D

compute x; = PrM (s, E) forallse S

via graph analysis and linear program

[Vardi/Wolper'86]
[Courcoubetis/Yannakakis'88]
[Bianco/de Alfaro’95]
[Baier/Kwiatkowska'98]

30/161

probabilistic “bad behaviors”
system

31/161

probabilistic “bad behaviors”
system

l
MDP M

32/161

probabilistic “bad behaviors”

system |
| LTL formula ¢
MDP M)

deterministic
automaton A

33/161

probabilistic “bad behaviors”

system |
| LTL formula ¢
MDP M 1

deterministic
/ automaton A

quantitative analysis
in the product-MDP M x A

Pri(s,¢) = Pri.

max A ((s, initg) acceptance)

* cond. of A

34/161

probabilistic “bad behaviors”

system |
| LTL formula ¢
MDP M 1

deterministic
automaton A
/ maximal probabilility

for reaching an
accepting end
component

quantitative analysis
in the product-MDP M x A

max(s 90) r_'/:‘/t ((5 lnlts) OBCCEC)

35/161

probabilistic “bad behaviors”

system |
| LTL formula ¢
MDP M)

deterministic
automaton A
/ maximal probabilility

for reaching an
accepting end
component

probabilistic reachability analysis
in the product-MDP M x A

linear program

PrM (s,0) = PrMXA((s, inits), QaccEC)

max

36/161

probabilistic “bad behaviors”

system |
| LTL formula ¢
MDP M)

deterministic
/ automaton A

probabilistic reachability analysis polynomial
in the product-MDP M x A in [M| - A

linear program

PrM (s,0) = PrMXA((s, inits), QaccEC)

max

37/161

probabilistic “bad behaviors”

system |
| LTL formula ¢
MDP M l _ 2exp
deterministic
\ automaton A
/
probabilistic reachability analysis polynomial

in the product-MDP M x A | in M| - A

linear program

PrM (s,0) = PrMXA((s, inits), QaccEC)

max

38/161

probabilistic
system

l
MDP M

state
explosion
problem

N

“bad behaviors”

!

LTL formula ¢

}

deterministic
automaton A

probabilistic reachability analysis
in the product-MDP M x A | in |M| - |A]

linear program

Pryt(s, o)

max

PrycA

({s, inits), QaccEC)

polynomial

39/161

Advanced techniques for PMC

symbolic model checking with variants of BDDs

e.g., in PRISM [Kwiatkowska/Norman/Parker]

ProbVerus [Hartonas-Garmhausen, Campos, Clarke]

state aggregation with bisimulation

e.g., in MRMC [Katoen et al]
abstraction-refinement

e.g., in RAPTURE [d'Argenio/Jeannet/Jensen/Larsen]

PASS [Hermanns/Wachter/Zhang]

partial order reduction

e.g., in LiQuor [Baier/Ciesinski/GroBer]

40/161

Advanced techniques for PMC

e symbolic model checking with variants of BDDs

e.g., in PRISM [Kwiatkowska/Norman/Parker]
ProbVerus [Hartonas-Garmhausen, Campos, Clarke]

randomized distributed algorithms,
communication and multimedia protocols,
power management, security, ...

e state aggregation with bisimulation
e.g., in MRMC [Katoen et al|
e abstraction-refinement
e.g., in RAPTURE [d'Argenio/Jeannet/Jensen/Larsen]
PASS [Hermanns/Wachter/Zhang]
e partial order reduction
e.g., in LiQuor [Baier/Ciesinski/GroBer]

41/161

Advanced techniques for PMC

e symbolic model checking with variants of BDDs

e.g., in PRISM [Kwiatkowska/Norman/Parker]
ProbVerus [Hartonas-Garmhausen, Campos, Clarke]

randomized distributed algorithms,
communication and multimedia protocols,
power management, security, ...

e state aggregation with bisimulation
e.g., in MRMC [Katoen et al|
e abstraction-refinement
e.g., in RAPTURE [d'Argenio/Jeannet/Jensen/Larsen]
PASS [Hermanns/Wachter/Zhang]
e |partial order reduction
e.g., in LiQuor [Baier/Ciesinski/GroBer]

42/161

Partial order reduction

POR-02

technique for reducing the state space of concurrent
systems [Godefroid,Peled,Valmari, ca. 1990]

e attempts to analyze a sub-system by identifying
“redundant interleavings”

e explores representatives of paths that agree up to
the order of independent actions

43 /161

Partial order reduction

POR-02

technique for reducing the state space of concurrent
systems [Godefroid,Peled,Valmari, ca. 1990]

e attempts to analyze a sub-system by identifying
“redundant interleavings”

e explores representatives of paths that agree up to
the order of independent actions

eg, x:=x+y || z:=2z+3

action « action 3

has the same effect as «; 3 or (3; o

44 /161

Partial order reduction

technique for reducing the state space of concurrent
systems [Godefroid,Peled,Valmari, ca. 1990]

e attempts to analyze a sub-system by identifying
“redundant interleavings”

e explores representatives of paths that agree up to
the order of independent actions

DFS-based on-the-fly generation of a reduced system
for each expanded state s
e choose an appropriate subset Ample(s) of Act(s)

e expand only the a-successors of s for a € Ample(s)
(but ignore the actions in Act(s) \ Ample(s))

Partial order reduction

concurrent execution
of processes P1, P»
e no communication
e no competition

transition system
for P1||P2 where

Pr=a; By
Py= A ;v

46 /161

Partial order reduction

concurrent execution

of processes P1, P»
e no communication B
e no competition

transition system
for P1||P2 where

Pr=o; By
Pr= A\ u v 5

idea: explore just 1 path as representative for all paths

47/161

Ample-set method [Peled 1993]

given: processes P; of a parallel system P4||. . .||Pa
with transition system T = (S, Act, —,...)

task: on-the-fly generation of a sub-system 7, s.t.

(A1) stutter condition
(A2) dependency condition
(A3) cycle condition

48 /161

Ample-set method [Peled 1993]

given: processes P; of a parallel system P4||. . .||Pa
with transition system T = (S, Act, —,...)

task: on-the-fly generation of a sub-system 7, s.t.
(A1) stutter condition } T~ Ty

(A2) dependency condition by permutations of
(A3) cycle condition independent actions

Each path 7 in 7 is represented by an “equivalent”
path 7, in 7,

49 /161

Ample-set method [Peled 1993]

given: processes P; of a parallel system P4||. . .||Pa
with transition system T = (S, Act, —,...)

task: on-the-fly generation of a sub-system 7, s.t.
(A1) stutter condition } T~ Ty

(A2) dependency condition by permutations of
(A3) cycle condition independent actions

Each path 7 in 7 is represented by an “equivalent”
path 7, in 7,

{

T and 7, satisfy the same stutter-invariant events,
e.g., next-free LTL formulas

50/161

Ample-set method for MDP

given: processes P; of a probabilistic system P4||. . .|| P
with MDP-semantics M = (S, Act, P, . ..)

task: on-the-fly generation of a sub-MDP M, s.t.

M, and M have the same extremal probabilities
for stutter-invariant events

51/161

Ample-set method for MDP

given: processes P; of a probabilistic system P4||. . .|| P
with MDP-semantics M = (S, Act, P, . ..)

task: on-the-fly generation of a sub-MDP M, s.t.

For all schedulers D for M there is a scheduler D, for
M, s.t. for all measurable, stutter-invariant events E:

Pri(E) = Prf,’tr(E)

{

M, and M have the same extremal probabilities
for stutter-invariant events

52/161

Independence of actions

53 /161

Independence of non-probabilistic actions

Actions a and 3 are called independent in a
transition system 7 iff:

whenever s - t and s — u then
(1) ais enabled in u
(2) B is enabled int

(3) ifu—v and t 25 wthen v =w

54 /161

Independence of actions in an MDP

Let M = (S, Act, P,...) be a MDP and «, 3 € Act.

a and 3 are independent in M if for each state s
s.t. a, 3 € Act(s):

(1) if P(s,a,t) > 0 then 3 € Act(t)
(2) if P(s,3,u) > 0 then a € Act(u)
(3)

55 /161

Independence of actions in an MDP

Let M = (S, Act, P,...) be a MDP and «, 3 € Act.

a and 3 are independent in M if for each state s
s.t. a, 3 € Act(s):
(1) if P(s,a,t) > 0 then 3 € Act(t)
(2) if P(s,[3,u) > 0 then a € Act(u)
(3) for all states w:
P(s,af,w) = P(s, Ba, w)
A K,

/ AN
Y P(s,a,t)- P(t,B,w) > P(s,B,u)- P(u,a,w)

tesS uesS

56 /161

Example: ample set method

original system T

a independent from 3 and vy

57/161

Example: ample set method

original system T reduced system 7,
(A1)-(A3) are fulfilled

a independent from 3 and vy

58 /161

Example: ample set method fails for MDP

original MDP M reduced MDP M,
(A1)-(A3) are fulfilled

a independent from 3 and vy

59 /161

Example: ample set method fails for MDP

original MDP M reduced MDP M,

Prna(s, Ogreen) = 1 O “eventually”

60 /161

Example: ample set method fails for MDP

original MDP M reduced MDP M,

61/161

Partial order reduction for MDP

extend Peled's conditions (A1)-(A3) for the ample-sets
(A1) stutter condition
(A2) dependency condition
(A3) cycle condition
(A4) probabilistic condition

If there is a path s B By P % in Mst.
B, ---, 00 a ¢ Ample(s) and « is probabilistic
then |[Ample(s)| = 1.

62/161

Partial order reduction for MDP

extend Peled's conditions (A1)-(A3) for the ample-sets
(A1) stutter condition
(A2) dependency condition
(A3) cycle condition
(A4) probabilistic condition

If there is a path s B By P % in Mst.
B, ---, 00 a ¢ Ample(s) and « is probabilistic
then |[Ample(s)| = 1.

If (A1)-(A4) hold then M and M, have the same
extremal probabilities for all stutter-invariant properties.

63 /161

Probabilistic model checking = ..

probabilistic quantitative
system requirements
Markov decision LTL\o formula ¢

process M \ / (path event)

quantitative analysis
of M against ¢

v

maximal/minimal
probability for ¢

64 /161

Probabilistic model checking, e.g., LiQuor ...

modeling language quantitative
Pi]l- - -||Pn requirements

partial order reduction

reduced LTL\o formula ¢

MDP M, \ / (path event)

quantitative analysis
of M, against ¢

v

maximal/minimal
probability for ¢

65/161

Probabilistic model checking, e.g., LiQuor ...

modeling language quantitative
Pall- - -||Pa requirements
l partial order reduction \L
reduced LTL\o formula ¢

MDP M,

\ / (path event)

quantitative analysis
of M, against ¢

v

maximal /minimal } worst-case
probability for ¢ analysis

66 /161

O u t I i n e OVERVIEW-POMDP

e Markov decision processes (MDP) and
quantitative analysis against path events

e partial order reduction for MDP
e partially-oberservable MDP —

e conclusions

67/161

Monty-Hall problem ronor.01

3 doors
initially closed
) show
candidate * * master

68/161

Monty-Hall problem ronor.01

3 doors
initially closed
) show
candidate * * master

69/161

Monty-Hall problem

3 doors
initially closed
) show
candidate * * master

1. candidate chooses one of the doors

70/161

Monty-Hall problem

no prize 3 doors
P initially closed
. show
candidate * * master

1. candidate chooses one of the doors

2. show master opens a non-chosen, non-winning door

71/161

Monty-Hall problem

no prize 3 doors
P initially closed
. show
candidate * * master

1. candidate chooses one of the doors

2. show master opens a non-chosen, non-winning door

3. candidate has the choice:
e keep the choice or
e switch to the other (still closed) door

72/161

Monty-Hall problem

no prize

100.000
Euro

no prize

candidate * *

POMDP-01

3 doors
initially closed

show
master

candidate chooses one of the doors

show master opens a non-chosen, non-winning door

candidate has the choice:

e keep the choice

or

e switch to the other (still closed) door
4. show master opens all doors

73/161

Monty-Hall problem

no prize

100.000
Euro

no prize

candidate * *

optimal strategy for the candidate:

show
master

MDP-01

3 doors
initially closed

initial choice of the door: arbitrary
revision of the initial choice (switch)

probability for getting the prize:

2
3

74 /161

MDP for the Monty-Hall problem ... o

75/161

MDP for the Monty-Hall problem —

3 doors
initially closed

candidate’s actions show master’s actions
1. choose one door * * 2. opens a non-chosen,
3. keep or switch ? non-winning door

4. opens all doors

76 /161

MDP for the Monty-Hall problem

3 doors
initially closed

candidate’s actions I
1. choose one door * * . -chosen,

3. keep or switch ?

~opens all doors

keep /switch

keep switch

77/161

MDP for the Monty-Hall problem

3 doors
initially closed

candidate’s actions
1. choose one door Prmax(start, Qwon) = 1

3. keep or switch ?

optimal scheduler requires
complete information
on the states

78/161

MDP for the Monty-Hall problem

3 doors
initially closed

candidate’s actions
1. choose one door

3. keep or switch ? cannot be distinguished

by the candidate

[|door1i @org idoor3|]

keep Sswitch Keep switch
lost keep switch won
79/161

MDP for the Monty-Hall problem

3 doors
initially closed

candidate’s actions observation-based strategy:

1. choose one door choose action switch
3. keep or switch ? in state door;

[door;
Switch

SW|tch

switch

80/161

MDP for the Monty-Hall problem

3 doors
initially closed

candidate’s actions observation-based strategy:

1. choose one door choose action switch

3. keep or switch ? in state door;
probability for Qwon:

WIN

[door;
Switch

SW|tch

switch

81/161

Partially-observable Markov decision process ...

A partially-observable MDP (POMDP for short)
is an MDP M = (S, Act, P, . ..) together with
an equivalence relation ~ on S

82/161

Partially-observable Markov decision process

A partially-observable MDP (POMDP for short)
is an MDP M = (S, Act, P, . ..) together with
an equivalence relation ~ on S

T

PPPPPPP 05

if s1 ~ sp then s, cannot be distinguished
from outside (or by the scheduler)

observables: equivalence classes of states

83 /161

Partially-observable Markov decision process ... 05

A partially-observable MDP (POMDP for short)
is an MDP M = (S, Act, P, . ..) together with
an equivalence relation ~ on S

T

if s1 ~ sp then s, cannot be distinguished
from outside (or by the scheduler)

observables: equivalence classes of states

observation-based scheduler:
scheduler D : S* — Act such that for all m, 1 € S*:

D(m) = D(mp) if obs(m) = obs(ma)
where obs(sy sy . ..sp) = [s0] [s1] - - - [S]

84 /161

Extreme cases of POMDP ... "

extreme cases of an POMDP:
o 55~ Iff §=9

o s55~s foralls, s

85/161

Extreme cases of POMDP ... "

extreme cases of an POMDP:

o 55~ Iff §=9 <—\standard MDP\

o s~s foralls, s

86 /161

Probabilistic automata are special POMDP ...

extreme cases of an POMDP:

o 55~ Iff §=9 <—\standard MDP\

e 55~ sy forall s;, sp «—|probabilistic automata

note that for totally non-observable POMDP:

observation-based ~ function ~ infinite word
scheduler ~ D:N— Act =~ over Act

87/161

Undecidability results for POMDP ... N

extreme cases of an POMDP:

o 55~ Iff §=9 <—\standard MDP\

e 55~ sy forall s;, sp «—|probabilistic automata

note that for totally non-observable POMDP:

observation-based ~ function ~ infinite word
scheduler " D:N— Act =~ over Act

undecidability results for PFA carry over to POMDP

maximum probabilistic non-emptiness
reachability problem = problem for

"does Pre® (OF) > p hold ?” PFA

max

1>

88/161

Undecidability results for POMDP

e The model checking problem for POMDP and
quantitative properties is undecidable, e.g.,
probabilistic reachability properties.

89/161

Undecidability results for POMDP

e The model checking problem for POMDP and
quantitative properties is undecidable, e.g.,
probabilistic reachability properties.

e There is no even no approximation algorithm for

reachability objectives.
[Paz'71], [Madani/Hanks/Condon'99], [Giro/d’Argenio’07]

90/161

Undecidability results for POMDP

e The model checking problem for POMDP and
quantitative properties is undecidable, e.g.,
probabilistic reachability properties.

e There is no even no approximation algorithm for
reachability objectives.

e The model checking problem for POMDP and several
qualitative properties is undecidable, e.g.,

repeated reachability with positive probability
“does Probs (OOF) >0 hold ?"

max

0O = “infinitely often”

91/161

Undecidability results for POMDP

e The model checking problem for POMDP and

quantitative properties is undecidable, e.g.,
probabilistic reachability properties.

There is no even no approximation algorithm for
reachability objectives.

The model checking problem for POMDP and several
qualitative properties is undecidable, e.g.,

repeated reachability with positive probability
“does Probs (OOF) >0 hold ?"

max

Many interesting verification problems for distributed
probabilistic multi-agent systems are undecidable.

Undecidability results for POMDP

e The model checking problem for POMDP and
quantitative properties is undecidable, e.g.,
probabilistic reachability properties.

e There is no even no approximation algorithm for
reachability objectives.

e The model checking problem for POMDP and several
qualitative properties is undecidable, e.g.,

repeated reachability with positive probability
“does Probs (OOF) >0 hold ?"

max

.. already holds for totally non-observable POMDP

probabilistic Biichi automata

93 /161

Remind: LTL model checking for MDP

MDP M requirements

LTL formula ¢

!

deterministic

|| automaton A

2exp

i

probabilistic reachability analysis
in the product-MDP M x A

94 /161

PA rather than DA ?

MDP M requirements

LTL formula ¢
1 ?

probabilistic
= automaton A

pd

probabilistic reachability analysis
in the product-MDP M x A

95 /161

PA rather than DA ?

MDP M requirements

LTL formula ¢
1 ?

probabilistic
= automaton A

pd

probabilistic reachability analysis

in the product-MDP M x A
A

impossible, due to undecidability results

96 /161

Decidability results for POMDP ...

97 /161

Decidability results for POMDP ... 15aew

The model checking problem for POMDP and several
qualitative properties is decidable, e.g.,

e invariance with positive probability
"does Pre® (OF) > 0 hold ?”

max

e almost-sure reachability
“does Pro® (OF) =1 hold ?”

max

e almost-sure repeated reachability
“does Pro® (OOF) =1 hold ?”

max

e persistence with positive probability
“does Pro (OCIF) > 0 hold ?”

max

98 /161

Decidability results for POMDP S——

The model checking problem for POMDP and several
qualitative properties is decidable, e.g.,

e invariance with positive probability
"does Pre® (OF) > 0 hold ?”

max

e almost-sure reachability
“does Pro® (OF) =1 hold ?”

max

e almost-sure repeated reachability
“does Pro® (OOF) =1 hold ?”

max

e persistence with positive probability
“does Pro (OCIF) > 0 hold ?”

max

algorithms use a certain powerset construction

99/161

Probabilistic Automata and Verification ovERVIE-CONC

e Markov decision processes (MDP) and
quantitative analysis against path events

e partial order reduction for MDP
e partially-oberservable MDP

e conclusions —

100/161

Conclusion

e worst/best-case analysis of MDP solvable by
* numerical methods for solving linear programs

* known techniques for non-probabilistic systems

graph algorithms, LTL-2-AUT translators, ...
techniques to combat the state explosion problem
(such as partial order reduction)

101/161

Conclusion

e worst/best-case analysis of MDP solvable by
* numerical methods for solving linear programs

* known techniques for non-probabilistic systems

graph algorithms, LTL-2-AUT translators, ...
techniques to combat the state explosion problem
(such as partial order reduction)

but: strongly simplified definition of schedulers

;

assumption “full knowledge of the history” is
inadequate, e.g., for agents of distributed systems

102 /161

Conclusion

e worst/best-case analysis of MDP solvable by
* numerical methods for solving linear programs

* known techniques for non-probabilistic systems

e more realistic model: partially-observable MDP
and multi-agents variants with distributed schedulers

103 /161

Conclusion

e worst/best-case analysis of MDP solvable by
* numerical methods for solving linear programs
* known techniques for non-probabilistic systems
e more realistic model: partially-observable MDP
and multi-agents variants with distributed schedulers
— many algorithms for “finite-horizon properties”
— few decidability results for qualitative properties

— undecidability for quantitative properties and, e.g.,
repeated reachability with positive probability

104 /161

Conclusion

e worst/best-case analysis of MDP solvable by
* numerical methods for solving linear programs

* known techniques for non-probabilistic systems

e more realistic model: partially-observable MDP
and multi-agents variants with distributed schedulers
— many algorithms for “finite-horizon properties”
— few decidability results for qualitative properties

— undecidability for quantitative properties and, e.g.,
T repeated reachability with positive probability

proof via probabilistic language acceptors (PFA/PBA)

Conclusion

e worst/best-case analysis of MDP solvable by
* numerical methods for solving linear programs
* known techniques for non-probabilistic systems

e more realistic model: partially-observable MDP
and multi-agents variants with distributed schedulers

many algorithms for “finite-horizon properties”

— few decidability results for qualitative properties

— undecidability for quantitative properties and, e.g.,
repeated reachability with positive probability

e probabilistic Buchi automata interesting in their own ...

106 /161

Probabilistic Biichi automaton (PBA) v

P = (Q,%L,6,pu,F)
e @ finite state space
e Y alphabet
e 0:QXXXQ— [0,1] st forallge Q, aeXx:

o > 6(q,a,p) €{0,1}
e initial distribution p peQ

e set of final states F C Q

107 /161

Probabilistic Biichi automaton (PBA) v

P = (Q,X%,0,u,F) «—| POMDP where ¥ = Act
and ~ = Q x Q

e @ finite state space

e Y alphabet
e 0:QXXXQ— [0,1]st forallge Q, aeXx:

o > 6(q,a,p) €{0,1}
e initial distribution p peQ

e set of final states F C Q

108 /161

Probabilistic Biichi automaton (PBA) v

P = (Q,X%,0,u,F) «—| POMDP where ¥ = Act
and ~ = Q x Q

e @ finite state space

e Y alphabet
e 0:QXXXQ— [0,1]st forallge Q, aeXx:

o > 6(q,a,p) €{0,1}
e initial distribution p peQ

e set of final states F C Q

For each infinite word x € 2“:

Pr(x) = probability for the accepting runs for x

accepting run: visits F infinitely often

109 /161

Probabilistic Biichi automaton (PBA) v

P = (Q,X%,0,u,F) «—| POMDP where ¥ = Act
and ~ = Q x Q

e @ finite state space

e Y alphabet
e 0:QXXXQ— [0,1]st forallge Q, aeXx:

o > 6(q,a,p) €{0,1}
e initial distribution p peQ

e set of final states F C Q

For each infinite word x € 2“:

Pr(x) = probability for the accepting runs for x

probability measure in the infinite Markov chain
induced by x viewed as a scheduler

110 /161

Accepted language of a PBA PBA-03

P = (Q,%L,6,u,F)
e @ finite state space, X alphabet
e :QXxXxQ—[0,1]st. ...
initial distribution p
set of final states F C Q

three types of accepted language:
L>%(P) = {x € ¥ : Pr(x) > 0} probable semantics
L7Y(P) = {x e X :Pr(x) =1} almost-sure sem.

L>P) = {x € £ : Pr(x) > A} threshold semantics
where 0 < A <1

111/161

Example for PBA PBA-S

112 /161

Example for PBA PBA-S

accepted language:

LOP) = (a+b)ya

113 /161

Example for PBA PBA-S

accepted language:
L(P) = (a+ b)a
LYP) = b

114 /161

Example for PBA PBA-S

accepted language:
2 L(P) = (a+ b)a
()a LYP) = b*a¥

Thus: PBA>? are strictly more expressive than DBA

115 /161

Example for PBA PBA-S

accepted language:
L%P) = (a+ b)*a*
LYP) = b

116 /161

Example for PBA PBA-S

accepted language:
L%P) = (a+ b)*a*
LYP) = b

NBA accepts ((ac)*ab)“

117 /161

Example for PBA PBA-S

accepted language:
L%P) = (a+ b)*a*
LYP) = b

accepted language:

L>9(P) = (ab + ac)*(ab)*

but NBA accepts ((ac)*ab)”

118 /161

Example for PBA PBA-S

accepted language:
L%P) = (a+ b)*a*
LYP) = b

accepted language:
L>9(P) = (ab + ac)*(ab)*
L=Y(P) = (ab)®

but NBA accepts ((ac)*ab)”

119/161

Expressiveness of PBA with probable semantics r:.10

120 /161

Expressiveness of PBA with probable semantics r:.10

PBA>? are strictly more expressive than NBA

121 /161

Expressiveness of PBA with probable semantics r:.10

PBA>? are strictly more expressive than NBA

from NBA to PBA: NBA

NBA deterministic in = PBA>0
Courcoubetis/ limit
Yannakakis

122 /161

Expressiveness of PBA with probable semantics r:.10

PBA>? are strictly more expressive than NBA

from NBA to PBA: NBA

NBA deterministic in = PBA>?

Courcoubetis/ limit
Yannakakis

123 /161

Expressiveness of PBA with probable semantics r:.10

PBA>? are strictly more expressive than NBA

from NBA to PBA: NBA

NBA deterministic in = PBA>?

Courcoubetis/ limit
Yannakakis

deterministic

124 /161

Expressiveness of PBA with probable semantics r:.10

PBA>? are strictly more expressive than NBA

from NBA to PBA: NBA

NBA deterministic in = PBA>?

Courcoubetis/ limit
Yannakakis

Q
1V

deterministic

125/161

PBA>? are strictly more expressive than NBA ...

e from NBA to PBA:
via NBA that are deterministic in limit

e PBA can accept non-w-regular languages

126 /161

PBA>? are strictly more expressive than NBA

e from NBA to PBA:
via NBA that are deterministic in limit

e PBA can accept non-w-regular languages

()
a,5 1 a
2 a, 5

accepted language (probable semantics):

L>(P) = { a*tba*2ba’eb. . . |

127 /161

PBA>? are strictly more expressive than NBA ...

e from NBA to PBA:
via NBA that are deterministic in limit

e PBA can accept non-w-regular languages

()
a,5 1 a
2 a, 5

accepted language (probable semantics):

LO(P) = {a"lba"2ba"3b...| 1‘[(1- 3))>o }

i=1

MI

128 /161

Expressiveness of PBA

129/161

Expressiveness of PBA

4 PBA>?
(" NBA)

130/161

Expressiveness of PBA

/" PBA with thresholds N\
e)

é NBA)

S = %

131/161

Expressiveness of PBA

-

PBA with thresholds

~

(PBA>? \
(" NBA
PBA=!
almost-sure
semantics

NS

%

132/161

Expressiveness of PBA

(a+ b)*a”
AN

-

PBA with thresholds

~

(PBA>? \
N NBA
e
PBA=!
almost-sure
semantics

NS

%

133/161

Expressiveness of PBA

/ PBA with thresholds \

(a+ by |)
™ f

PBA>?
NBA)

/.

PBA=!
almost-sure
E semantics
\\‘ = %
{akbakb. .. : H(l - (%)k') >0}
i=1

134 /161

Expressiveness of PBA

/ PBA with thresholds \

(a+ by |)
™ f

PBA>?
NBA)

/.

PBA=!

almost-sure
E/ semantics
L\ .
\\ ,’ ~—//
{akbakb. .. H(l ()"")>0}

= {ahbakb. .. i;].'o[l(l—(%)"")=0}

135/161

Expressiveness of PBA

/ PBA with thresholds \

(a + b)*a“’\ (PBA>0 \
\f\. NBA)

PBA=!
almost-sure

semantics
S %

emptiness problem: undecidable for PBA>?
decidable for PBA=!

136 /161

Decidability results for POMDP

The model checking problem for POMDP and several
qualitative properties is decidable:

e almost-sure reachability
“does Pro® (OF) =1 hold ?”

max

e invariance with positive probability
“does Pro® (OF) > 0 hold ?”

max

e almost-sure repeated reachability
“does Prob (O0F) =1 hold ?"

max

e persistence with positive probability
"does Pro® (0OOF) > 0 hold ?”

max

algorithms use a certain powerset construction

137 /161

Decidability results for POMDP ...

The model checking problem for POMDP and several
qualitative properties is decidable:

e almost-sure reachability
“does Pro® (OF) =1 hold ?”

max

e invariance with positive probability
“does Pro® (OF) > 0 hold ?”

max

e almost-sure repeated reachability
“does Pro (OO0F) =1 hold ?"

max

e persistence with positive probability
"does Pro® (0OOF) > 0 hold ?”

max

algorithms use a certain powerset construction

138/161

Almost-sure reachability /repeated reachability ...

The almost-sure repeated reachability problem
“does Pros (OOQF) =1 hold ?"

max
is polynomially reducible to the almost-sure reachability
problem “does Pro% (¢F) =1 hold ?"

max

139/161

Almost-sure reachability /repeated reachability ...

The almost-sure repeated reachability problem
“does Pro® (OOF) =1 hold ?”

max
is polynomially reducible to the almost-sure reachability
problem “does Pro% (¢F) =1 hold ?"

max

POMDP M

objective:
repeated reachability (O F

140 /161

Almost-sure reachability /repeated reachability ...

The almost-sure repeated reachability problem
“does Pro® (OOF) =1 hold ?”

max
is polynomially reducible to the almost-sure reachability
problem “does Pro% (¢f) =1 hold ?"

max

POMDP M POMDP M’
objective: objective:
repeated reachability (O F reachability Of

®f

141 /161

Almost-sure reachability /repeated reachability ...

The almost-sure repeated reachability problem
“does Pro® (OOF) =1 hold ?”

max
is polynomially reducible to the almost-sure reachability
problem “does Pro% (¢f) =1 hold ?"

max

1 1
3 2 6 1
3 3
seF seF e f
POMDP M POMDP M’
objective: objective:

repeated reachability QO F reachability Of

142 /161

Almost-sure reachability

powerset construction for almost-sure reachability
“does Pro® (OF) =1 hold ?”

max

143 /161

Almost-sure reachability

powerset construction for almost-sure reachability

“does Pro® (OF) =1 hold ?”

max

POMDP M
with equivalence ~

MDP Pow(M)
fully observable

144 /161

Almost-sure reachability = ... s

powerset construction for almost-sure reachability
“does Pro® (OF) =1 hold ?”

max

POMDP M MDP Pow(M)
with equivalence ~ fully observable

Prox(OF) =1in M iff Prm(OF) =1 in Pow(M)

145 /161

Almost-sure reachability = ... s

powerset construction for almost-sure reachability
“does Pro® (OF) =1 hold ?”

max

POMDP M MDP Pow(M)
with equivalence ~ fully observable

Prox(OF) =1in M iff Prm(OF) =1 in Pow(M)

state s in M+ states (s, R)
where s € R C [s]

[s] = equivalence class of s w.r.t. ~

146 /161

Almost-sure reachability = ... s

powerset construction for almost-sure reachability
“does Pro® (OF) =1 hold ?”

max

POMDP M MDP Pow(M)
with equivalence ~ fully observable

Pr?nbai(OF) =1inM iff Prmax(of) =1 in POW(M)

state s in M+ states (s, R)
where s € R C [s]

fresh goal state f

[s] = equivalence class of s w.r.t. ~

147 /161

Almost-sure reachability

powerset construction for almost-sure reachability
“does Pro® (OF) =1 hold ?”

max

state s in M

action «

148 /161

Almost-sure reachability

powerset construction for almost-sure reachability
“does Pro® (OF) =1 hold ?”

max

state s in M

action «

if Post(s,a)NF =&

149 /161

Almost-sure reachability ronpe-19

powerset construction for almost-sure reachability
“does Pro® (OF) =1 hold ?”

max

state s in M state (s, R) in Pow(M)

action « action «a

if Post(s,a)NF =&
where s € R C [4]

150 /161

Almost-sure reachability ronpe-19

powerset construction for almost-sure reachability
“does Pro® (OF) =1 hold ?”

max
state s in M state (s, R) in Pow(M)
action « action «
t
if Post(s,a)NF =@ state (t, ...)

where s € R C [s] t € Post(s)

151 /161

Almost-sure reachability = ... 19

powerset construction for almost-sure reachability
“does Pro® (OF) =1 hold ?”

max
state s in M state (s, R) in Pow(M)
action a action a
t H
if Post(s,a)NF =& state (t, UN[t])
where s € R C [¢] t € Post(s)

U = Post(R, o)

152 /161

Almost-sure reachability = ... 19

powerset construction for almost-sure reachability
“does Pro® (OF) =1 hold ?”

max
state s in M state (s, R) in Pow(M)
action « % action «
:
if Post(s,a)NF =& state (t, UN[t])

P(s,a,t) = P'({s,R),a, (t, UN[t]))

153 /161

Almost-sure reachability ronpe-19

powerset construction for almost-sure reachability
“does Pro® (OF) =1 hold ?”

max

state s in M

action «

veF

if Post(s,a)NF # &
where s€ R C|[s]
U = Post(R, a)

154 /161

Almost-sure reachability ronpe-19

powerset construction for almost-sure reachability
“does Pro® (OF) =1 hold ?”

max

s~ ¢

action «

veF

if Post(s,a)NF # &

where s, s € R C [s]
U = Post(R, a)

155 /161

Almost-sure reachability = ... 19

powerset construction for almost-sure reachability
“does Pro® (OF) =1 hold ?”

s~s UEF state (s,R)
action «
veF
if Post(s,a)NF # &

where s, s € R C [s]
U = Post(R, a)

156 /161

Almost-sure reachability = ... 19

powerset construction for almost-sure reachability
“does Pro® (OF) =1 hold ?”

max

s~s UEF state (s,R)

action «

veF t

if Post(s,a)NF # & state (t, UN [t])

where s, s € R C [s]
U — POSt(R, O!) where t € U\ F

157 /161

Almost-sure reachability = ... 19

powerset construction for almost-sure reachability
“does Pro® (OF) =1 hold ?”

max

s~s UEF state (s,R)

action a % % N
t¢ F

veF

if Post(s,a)NF # & state (t, U N [t])

where s, s € R C [s]
U — POSt(R, O!) where t S U\ F

158 /161

Almost-sure reachability = ... 19

powerset construction for almost-sure reachability
“does Pro® (OF) =1 hold ?”

s~ § ueF state (s, R)
action
veF
f
if Post(s,a)NF # &
where s, s € R C [s] objective: Of

U = Post(R, a)

159 /161

Almost-sure reachability = ... 19

powerset construction for almost-sure reachability
“does Pro® (OF) =1 hold ?”

max

s~ s UEF state (s,R) .

2K
action o 1
2K

if Post(s,a)NF # & f

Nl =

P'({s, R), o, (£, UN[H])) = 5
where K = |Post(R, a) \ F|

160 / 161

Almost-sure reachability = ... 19

powerset construction for almost-sure reachability
“does Pro® (OF) =1 hold ?”

max

s~ s UEF state (s,R) .

2K
action o 1
2K

1
2
Prob (OF) =1 iff Prpm(0f) =1 f
T T
original fully-observable
POMDP M MDP Pow(M)

161 /161

