On Model Checking Techniques for Randomized Distributed Systems

Christel Baier Technische Universität Dresden

joint work with Nathalie Bertrand Frank Ciesinski Marcus Größer • randomized algorithms [RABIN 1960] breaking symmetry, fingerprints, input sampling, ...

• stochastic control theory [Bellman 1957] operations research

• performance modeling [Markov, Erlang, Kolm., ~ 1900] emphasis on steady-state and transient measures

biological systems, resilient systems, security protocols

- randomized algorithms [RABIN 1960]
 breaking symmetry, fingerprints, input sampling, ...
 models: discrete-time Markov chains
 Markov decision processes
- stochastic control theory [Bellman 1957]
 operations research
 models: Markov decision processes
- performance modeling [Markov, Erlang, Kolm., ~ 1900]
 emphasis on steady-state and transient measures
 models: continuous-time Markov chains
- biological systems, resilient systems, security protocols

OVERVIEW

- Markov decision processes (MDP) and quantitative analysis against path events
- partial order reduction for MDP
- partially-oberservable MDP
- conclusions

Markov decision process (MDP)

MDP-01

operational model with nondeterminism and probabilism

operational model with nondeterminism and probabilism

 modeling randomized distributed systems by interleaving

process 1 tosses a coin process 2 tosses a coin $\frac{1}{2}$

process 2 tosses a coin

process 1 tosses a coin

operational model with nondeterminism and probabilism

- modeling randomized distributed systems by interleaving
- nondeterminism useful for abstraction, underspec., modeling interactions with an unkown environment

process 2 tosses a coin

process 1 tosses a coin

$$\mathcal{M} = (S, Act, P, \ldots)$$

$$\mathcal{M} = (S, Act, P, \ldots)$$

• finite state space **S**

$$\mathcal{M} = (S, Act, P, \ldots)$$

- finite state space **S**
- Act finite set of actions
- $P: S \times Act \times S \rightarrow [0,1]$

$$\mathcal{M} = (S, Act, P, \ldots)$$

- finite state space 5
- Act finite set of actions
- $P: S \times Act \times S \rightarrow [0,1]$

MDP-02-R

in state s

that are enabled

Act(s) = set of actions

$$\mathcal{M} = (S, Act, P, \ldots)$$

- finite state space **S**
- Act finite set of actions
- $P: S \times Act \times S \rightarrow [0,1]$ s.t.

$$\forall s \in S \ \forall \alpha \in Act. \ \sum_{s' \in S} P(s, \alpha, s') \in \{0, 1\}$$

$$\alpha \notin Act(s) \quad \alpha \in Act(s)$$

 $_{\mathrm{MDP-}02\text{-R}}$

$$\mathcal{M} = (S, Act, P, s_0, AP, L, rew, \ldots)$$

- finite state space **S**
- Act finite set of actions
- $P: S \times Act \times S \rightarrow [0,1]$ s.t.

$$\forall s \in S \ \forall \alpha \in Act. \ \sum_{s' \in S} P(s, \alpha, s') \in \{0, 1\}$$

$$\alpha \notin Act(s) \quad \alpha \in Act(s)$$

- so initial state
- AP set of atomic propositions
- labeling $L: S \to 2^{AP}$
- reward function rew : S × Act → ℝ

Randomized mutual exclusion protocol

- 2 concurrent processes \mathcal{P}_1 , \mathcal{P}_2 with 3 phases:
 - n_i noncritical actions of process \mathcal{P}_i
 - w_i waiting phase of process \mathcal{P}_i
 - c_i critical section of process \mathcal{P}_i
- competition of both processes are waiting

MDP-05

Randomized mutual exclusion protocol

- 2 concurrent processes \mathcal{P}_1 , \mathcal{P}_2 with 3 phases:
 - n_i noncritical actions of process \mathcal{P}_i
 - w_i waiting phase of process \mathcal{P}_i
 - c_i critical section of process \mathcal{P}_i
- competition of both processes are waiting
- resolved by a randomized arbiter who tosses a coin

- interleaving of the request operations
- competition if both processes are waiting
- randomized arbiter tosses a coin if both are waiting

- interleaving of the request operations
- competition if both processes are waiting
- randomized arbiter tosses a coin if both are waiting

- interleaving of the request operations
- competition if both processes are waiting
- randomized arbiter tosses a coin if both are waiting

- interleaving of the request operations
- competition if both processes are waiting
- randomized arbiter tosses a coin if both are waiting

requires resolving the nondeterminism by schedulers

Reasoning about probabilities in MDP

- requires resolving the nondeterminism by schedulers
- a scheduler is a function $D: S^* \longrightarrow Act$ s.t. action $D(s_0 \dots s_n)$ is enabled in state s_n

- requires resolving the nondeterminism by schedulers
- a scheduler is a function $D: S^* \longrightarrow Act$ s.t. action $D(s_0 \dots s_n)$ is enabled in state s_n
- each scheduler induces an infinite Markov chain

Reasoning about probabilities in MDP

- requires resolving the nondeterminism by schedulers
- a scheduler is a function $D: S^* \longrightarrow Act$ s.t. action $D(s_0 \dots s_n)$ is enabled in state s_n
- each scheduler induces an infinite Markov chain

yields a notion of probability measure Pr^{D} on measurable sets of infinite paths

- requires resolving the nondeterminism by schedulers
- a scheduler is a function D: S* → Act s.t. action D(s₀...s_n) is enabled in state s_n
- each scheduler induces an infinite Markov chain

yields a notion of probability measure Pr^{D} on measurable sets of infinite paths

typical task: given a measurable path event *E*,

* check whether **E** holds almost surely, i.e.,

$$Pr^{D}(E) = 1$$
 for all schedulers D

- requires resolving the nondeterminism by schedulers
- a scheduler is a function $D: S^* \longrightarrow Act$ s.t. action $D(s_0 \dots s_n)$ is enabled in state s_n
- each scheduler induces an infinite Markov chain

yields a notion of probability measure Pr^{D} on measurable sets of infinite paths

typical task: given a measurable path event *E*,

- check whether *E* holds almost surely
- * compute the worst-case probability for E, i.e., sup $Pr^{D}(E)$ or inf $Pr^{D}(E)$

given: MDP $\mathcal{M} = (S, Act, P, ...)$ with initial state s_0

 ω -regular path event E, e.g., given by an LTL formula

task: compute $Pr_{max}^{\mathcal{M}}(s_0, E) = \sup_{D} Pr^{D}(s_0, E)$

given: MDP $\mathcal{M} = (S, Act, P, ...)$ with initial state s_0

 ω -regular path event E,

e.g., given by an LTL formula

task: compute $Pr_{max}^{\mathcal{M}}(s_0, E) = \sup_{D} Pr^{D}(s_0, E)$

method: compute $x_s = \Pr_{max}^{\mathcal{M}}(s, E)$ for all $s \in S$ via graph analysis and linear program

[Vardi/Wolper'86] [Courcoubetis/Yannakakis'88] [Bianco/de Alfaro'95] [Baier/Kwiatkowska'98]

probabilistic system

"bad behaviors"

"bad behaviors"

$$Pr_{max}^{\mathcal{M}}(s,\varphi) = Pr_{max}^{\mathcal{M}\times\mathcal{A}}(\langle s, init_s \rangle, \text{ acceptance } cond. of \mathcal{A})$$

- symbolic model checking with variants of BDDs
 e.g., in PRISM [Kwiatkowska/Norman/Parker]
 ProbVerus [Hartonas-Garmhausen, Campos, Clarke]
- state aggregation with bisimulation
 e.g., in MRMC [Katoen et al]
- abstraction-refinement
 - e.g., in RAPTURE [d'Argenio/Jeannet/Jensen/Larsen]
 PASS [Hermanns/Wachter/Zhang]
- partial order reduction
 - e.g., in LiQuor [Baier/Ciesinski/Größer]

symbolic model checking with variants of BDDs
 e.g., in PRISM [Kwiatkowska/Norman/Parker]
 ProbVerus [Hartonas-Garmhausen, Campos, Clarke]

randomized distributed algorithms, communication and multimedia protocols, power management, security, ...

- state aggregation with bisimulation
 e.g., in MRMC [Katoen et al]
- abstraction-refinement
 e.g., in RAPTURE [d'Argenio/Jeannet/Jensen/Larsen]
 PASS [Hermanns/Wachter/Zhang]
- partial order reduction
 e.g., in LiQuor [Baier/Ciesinski/Größer]

symbolic model checking with variants of BDDs
 e.g., in PRISM [Kwiatkowska/Norman/Parker]
 ProbVerus [Hartonas-Garmhausen, Campos, Clarke]

randomized distributed algorithms, communication and multimedia protocols, power management, security, ...

- state aggregation with bisimulation
 - e.g., in MRMC [Katoen et al]
- abstraction-refinement
 - e.g., in RAPTURE [d'Argenio/Jeannet/Jensen/Larsen]
 PASS [Hermanns/Wachter/Zhang]
- partial order reduction
 e.g., in LiQuor [Baier/Ciesinski/Größer]

technique for reducing the state space of concurrent systems [Godefroid, Peled, Valmari, ca. 1990]

- attempts to analyze a sub-system by identifying "redundant interleavings"
- explores representatives of paths that agree up to the order of independent actions

technique for reducing the state space of concurrent systems [Godefroid, Peled, Valmari, ca. 1990]

- attempts to analyze a sub-system by identifying "redundant interleavings"
- explores representatives of paths that agree up to the order of independent actions

e.g.,
$$\underline{x := x+y}$$
 $\parallel \underline{z := z+3}$ action α action β has the same effect as α ; β or β ; α

technique for reducing the state space of concurrent systems [Godefroid,Peled,Valmari, ca. 1990]

- attempts to analyze a sub-system by identifying "redundant interleavings"
- explores representatives of paths that agree up to the order of independent actions

DFS-based on-the-fly generation of a reduced system for each expanded state **s**

- choose an appropriate subset Ample(s) of Act(s)
- expand only the α -successors of s for $\alpha \in Ample(s)$ (but ignore the actions in $Act(s) \setminus Ample(s)$)

concurrent execution of processes \mathcal{P}_1 , \mathcal{P}_2

- no communication
- no competition

transition system for $\mathcal{P}_1 \| \mathcal{P}_2$ where

$$\mathcal{P}_1 = \alpha; \beta; \gamma$$

$$\mathcal{P}_2 = \lambda; \mu; \nu$$

concurrent execution of processes \mathcal{P}_1 , \mathcal{P}_2

- no communication
- no competition

transition system for $\mathcal{P}_1 \| \mathcal{P}_2$ where

$$\mathcal{P}_1 = \alpha; \beta; \gamma$$

$$\mathcal{P}_2 = \lambda; \mu; \nu$$

idea: explore just 1 path as representative for all paths

given: processes \mathcal{P}_i of a parallel system $\mathcal{P}_1 \| \dots \| \mathcal{P}_n$

with transition system $T = (S, Act, \rightarrow, ...)$

task: on-the-fly generation of a sub-system T_r s.t.

(A1) stutter condition ...

(A2) dependency condition ...

(A3) cycle condition ...

given: processes \mathcal{P}_i of a parallel system $\mathcal{P}_1 \| \dots \| \mathcal{P}_n$

with transition system $T = (S, Act, \rightarrow, ...)$

task: on-the-fly generation of a sub-system T_r s.t.

(A1) stutter condition (A2) dependency condition (A3) cycle condition (A3) $\pi \rightsquigarrow \pi_r$ by permutations of independent actions

Each path π in T is represented by an "equivalent" path π_r in \mathcal{T}_r

given: processes \mathcal{P}_i of a parallel system $\mathcal{P}_1 \| \dots \| \mathcal{P}_n$

with transition system $T = (S, Act, \rightarrow, ...)$

task: on-the-fly generation of a sub-system T_r s.t.

(A1) stutter condition (A2) dependency condition $\pi \rightsquigarrow \pi_r$ by permutations of independent actions

Each path π in T is represented by an "equivalent" path π_r in \mathcal{T}_r

T and T_r satisfy the same stutter-invariant events, e.g., next-free LTL formulas

given: processes \mathcal{P}_i of a probabilistic system $\mathcal{P}_1 \| \dots \| \mathcal{P}_n$

with MDP-semantics $\mathcal{M} = (S, Act, P, ...)$

task: on-the-fly generation of a sub-MDP \mathcal{M}_r s.t.

 \mathcal{M}_r and \mathcal{M} have the same extremal probabilities for stutter-invariant events

given: processes \mathcal{P}_i of a probabilistic system $\mathcal{P}_1 \| \dots \| \mathcal{P}_n$

with MDP-semantics $\mathcal{M} = (S, Act, P, ...)$

task: on-the-fly generation of a sub-MDP \mathcal{M}_r s.t.

For all schedulers D for M there is a scheduler D_r for M_r s.t. for all measurable, stutter-invariant events E:

$$\Pr_{\mathcal{M}}^{\mathcal{D}}(E) = \Pr_{\mathcal{M}_r}^{\mathcal{D}_r}(E)$$

 \mathcal{M}_r and \mathcal{M} have the same extremal probabilities for stutter-invariant events

Independence of non-probabilistic actions

Actions α and β are called independent in a transition system T iff:

whenever $s \xrightarrow{\alpha} t$ and $s \xrightarrow{\beta} u$ then

- (1) α is enabled in \boldsymbol{u}
- (2) β is enabled in t
- (3) if $\mathbf{u} \xrightarrow{\alpha} \mathbf{v}$ and $\mathbf{t} \xrightarrow{\beta} \mathbf{w}$ then $\mathbf{v} = \mathbf{w}$

Let $\mathcal{M} = (S, Act, P, ...)$ be a MDP and $\alpha, \beta \in Act$.

```
\alpha and \beta are independent in \mathcal{M} if for each state s s.t. \alpha, \beta \in Act(s):
```

- (1) if $P(s, \alpha, t) > 0$ then $\beta \in Act(t)$
- (2) if $P(s, \beta, u) > 0$ then $\alpha \in Act(u)$
- $(3) \ldots$

Let $\mathcal{M} = (S, Act, P, ...)$ be a MDP and $\alpha, \beta \in Act$.

 α and β are independent in \mathcal{M} if for each state s s.t. $\alpha, \beta \in Act(s)$:

- (1) if $P(s, \alpha, t) > 0$ then $\beta \in Act(t)$
- (2) if $P(s, \beta, u) > 0$ then $\alpha \in Act(u)$
- (3) for all states \mathbf{w} :

$$P(s, \alpha\beta, w) = P(s, \beta\alpha, w)$$

$$\sum_{t \in S} P(s, \alpha, t) \cdot P(t, \beta, w) \qquad \sum_{u \in S} P(s, \beta, u) \cdot P(u, \alpha, w)$$

original system ${m T}$

 α independent from β and γ

original system ${m T}$

 α independent from β and γ

reduced system T_r (A1)-(A3) are fulfilled

original MDP M

reduced MDP \mathcal{M}_r (A1)-(A3) are fulfilled

lpha independent from eta and γ

reduced MDP \mathcal{M}_r

 $Pr_{max}^{\mathcal{M}}(s, \lozenge green) = 1$

"eventually"

original MDP M

reduced MDP \mathcal{M}_r

$$\Pr_{\max}^{\mathcal{M}}(s, \lozenge green) = 1 > \frac{1}{2} = \Pr_{\max}^{\mathcal{M}_r}(s, \lozenge green)$$

extend Peled's conditions (A1)-(A3) for the ample-sets

- (A1) stutter condition ...
- (A2) dependency condition ...
- (A3) cycle condition ...
- (A4) probabilistic condition

If there is a path $s \xrightarrow{\beta_1} \xrightarrow{\beta_2} \dots \xrightarrow{\beta_n} \xrightarrow{\alpha}$ in \mathcal{M} s.t. $\beta_1, \dots, \beta_n, \alpha \notin Ample(s)$ and α is probabilistic then |Ample(s)| = 1.

POR-09

extend Peled's conditions (A1)-(A3) for the ample-sets

If there is a path
$$s \xrightarrow{\beta_1} \xrightarrow{\beta_2} \dots \xrightarrow{\beta_n} \xrightarrow{\alpha}$$
 in \mathcal{M} s.t. $\beta_1, \dots, \beta_n, \alpha \notin Ample(s)$ and α is probabilistic then $|Ample(s)| = 1$.

If (A1)-(A4) hold then \mathcal{M} and \mathcal{M}_r have the same extremal probabilities for all stutter-invariant properties.

Probabilistic model checking

Probabilistic model checking, e.g., LiQuor

 Markov decision processes (MDP) and quantitative analysis against path events

- partial order reduction for MDP
- partially-oberservable MDP

conclusions

3 doors initially closed

candidate

show master

3 doors initially closed

candidate

show master

1. candidate chooses one of the doors

- 1. candidate chooses one of the doors
- 2. show master opens a non-chosen, non-winning door

3 doors initially closed

candidate

show master

- 1. candidate chooses one of the doors
- 2. show master opens a non-chosen, non-winning door
- 3. candidate has the choice:
 - keep the choice or
 - switch to the other (still closed) door

no prize 100.000 Euro

no prize

or doors
initially closed 3 doors

candidate

- 1. candidate chooses one of the doors
- 2. show master opens a non-chosen, non-winning door
- candidate has the choice:
 - keep the choice or
 - switch to the other (still closed) door
- 4. show master opens all doors

no prize 100.000 Euro

no prize 3 doors initially closed **3** doors

candidate

optimal strategy for the candidate:

initial choice of the door: arbitrary revision of the initial choice (switch)

probability for getting the prize: $\frac{2}{3}$

MDP for the Monty-Hall problem

POMDP-02

3 doors initially closed

candidate's actions

- 1. choose one door
- 3. keep or switch ?

show master's actions

- 2. opens a non-chosen, non-winning door
- 4. opens all doors

Partially-observable Markov decision process

A partially-observable MDP (POMDP for short) is an MDP $\mathcal{M} = (S, Act, P, ...)$ together with an equivalence relation \sim on S

Partially-observable Markov decision process

A partially-observable MDP (POMDP for short) is an MDP $\mathcal{M} = (S, Act, P, ...)$ together with an equivalence relation \sim on S

if $s_1 \sim s_2$ then s_1, s_2 cannot be distinguished from outside (or by the scheduler)

observables: equivalence classes of states

A partially-observable MDP (POMDP for short) is an MDP $\mathcal{M} = (S, Act, P, ...)$ together with an equivalence relation \sim on S

if $s_1 \sim s_2$ then s_1, s_2 cannot be distinguished from outside (or by the scheduler)

observables: equivalence classes of states

observation-based scheduler:

scheduler $D: S^* \to Act$ such that for all $\pi_1, \pi_2 \in S^*$:

$$D(\pi_1) = D(\pi_2)$$
 if $obs(\pi_1) = obs(\pi_2)$

where
$$obs(s_0 s_1 ... s_n) = [s_0][s_1]...[s_n]$$

- $s_1 \sim s_2$ iff $s_1 = s_2$
- $s_1 \sim s_2$ for all s_1 , s_2

- $s_1 \sim s_2$ iff $s_1 = s_2$ \longleftrightarrow standard MDP
- $s_1 \sim s_2$ for all s_1 , s_2

- $s_1 \sim s_2$ iff $s_1 = s_2 \leftarrow$ standard MDP
- $s_1 \sim s_2$ for all s_1 , $s_2 \leftarrow probabilistic automata$

note that for totally non-observable POMDP:

```
observation-based \widehat{=} function \widehat{D}: \mathbb{N} \to Act \widehat{=} infinite word over Act
```

- $s_1 \sim s_2$ iff $s_1 = s_2$ \longleftrightarrow standard MDP
- $s_1 \sim s_2$ for all s_1 , $s_2 \leftarrow probabilistic automata$

note that for totally non-observable POMDP:

observation-based scheduler
$$\widehat{D}: \mathbb{N} \to Act$$
 $\widehat{D}: \widehat{N} \to Act$ $\widehat{D}: \widehat{N} \to Act$

undecidability results for PFA carry over to POMDP

maximum probabilistic non-emptiness reachability problem
$$\stackrel{\text{conomine}}{=}$$
 problem for "does $\Pr_{\max}^{obs}(\lozenge F) > p$ hold?"

Undecidability results for POMDP

 The model checking problem for POMDP and quantitative properties is undecidable, e.g., probabilistic reachability properties.

Undecidability results for POMDP

- The model checking problem for POMDP and quantitative properties is undecidable, e.g., probabilistic reachability properties.
- There is no even no approximation algorithm for reachability objectives.

[Paz'71], [Madani/Hanks/Condon'99], [Giro/d'Argenio'07]

- The model checking problem for POMDP and quantitative properties is undecidable, e.g., probabilistic reachability properties.
- There is no even no approximation algorithm for reachability objectives.
- The model checking problem for POMDP and several qualitative properties is undecidable, e.g.,

repeated reachability with positive probability "does $\Pr_{\max}^{obs}(\Box \Diamond F) > 0$ hold ?"

 $\Box \Diamond \widehat{=}$ "infinitely often"

Undecidability results for POMDP

- The model checking problem for POMDP and quantitative properties is undecidable, e.g., probabilistic reachability properties.
- There is no even no approximation algorithm for reachability objectives.
- The model checking problem for POMDP and several qualitative properties is undecidable, e.g.,

repeated reachability with positive probability "does $\Pr_{\max}^{obs}(\Box \Diamond F) > 0$ hold ?"

Many interesting verification problems for distributed probabilistic multi-agent systems are undecidable.

- The model checking problem for POMDP and quantitative properties is undecidable, e.g., probabilistic reachability properties.
- There is no even no approximation algorithm for reachability objectives.
- The model checking problem for POMDP and several qualitative properties is undecidable, e.g.,

repeated reachability with positive probability "does $\Pr_{\max}^{obs}(\Box \Diamond F) > 0$ hold ?"

... already holds for totally non-observable POMDP probabilistic Büchi automata

Decidability results for POMDP

Decidability results for POMDP

The model checking problem for POMDP and several qualitative properties is decidable, e.g.,

- invariance with positive probability "does $Pr_{max}^{obs}(\Box F) > 0$ hold ?"
- almost-sure reachability "does $\Pr_{max}^{obs}(\lozenge F) = 1$ hold ?"
- almost-sure repeated reachability "does $\Pr_{max}^{obs}(\Box \Diamond F) = 1$ hold ?"
- persistence with positive probability "does $\Pr^{obs}_{max}(\lozenge \Box F) > 0$ hold ?"

The model checking problem for POMDP and several qualitative properties is decidable, e.g.,

- invariance with positive probability "does $\Pr_{max}^{obs}(\Box F) > 0$ hold ?"
- almost-sure reachability "does $\Pr_{max}^{obs}(\lozenge F) = 1$ hold ?"
- almost-sure repeated reachability "does $\Pr_{\max}^{obs}(\Box \Diamond F) = 1$ hold ?"
- persistence with positive probability "does $\Pr_{\max}^{obs}(\lozenge \Box F) > 0$ hold ?"

algorithms use a certain powerset construction

- Markov decision processes (MDP) and quantitative analysis against path events
- partial order reduction for MDP
- partially-oberservable MDP
- conclusions

- worst/best-case analysis of MDP solvable by
 - numerical methods for solving linear programs

graph algorithms, LTL-2-AUT translators, ... techniques to combat the state explosion problem (such as partial order reduction)

- worst/best-case analysis of MDP solvable by
 - numerical methods for solving linear programs
 - * known techniques for non-probabilistic systems

graph algorithms, LTL-2-AUT translators, ... techniques to combat the state explosion problem (such as partial order reduction)

but: strongly simplified definition of schedulers

assumption "full knowledge of the history" is inadequate, e.g., for agents of distributed systems

- worst/best-case analysis of MDP solvable by
 - numerical methods for solving linear programs
 - * known techniques for non-probabilistic systems
- more realistic model: partially-observable MDP and multi-agents variants with distributed schedulers

- worst/best-case analysis of MDP solvable by
 - * numerical methods for solving linear programs
 - * known techniques for non-probabilistic systems
- more realistic model: partially-observable MDP and multi-agents variants with distributed schedulers
 - many algorithms for "finite-horizon properties"
 - few decidability results for qualitative properties
 - undecidability for quantitative properties and, e.g.,
 repeated reachability with positive probability

- worst/best-case analysis of MDP solvable by
 - * numerical methods for solving linear programs
 - * known techniques for non-probabilistic systems
- more realistic model: partially-observable MDP and multi-agents variants with distributed schedulers
 - many algorithms for "finite-horizon properties"
 - few decidability results for qualitative properties
 - undecidability for quantitative properties and, e.g.,
 repeated reachability with positive probability

proof via probabilistic language acceptors (PFA/PBA)

- worst/best-case analysis of MDP solvable by
 - * numerical methods for solving linear programs
 - * known techniques for non-probabilistic systems
- more realistic model: partially-observable MDP and multi-agents variants with distributed schedulers
 - many algorithms for "finite-horizon properties"
 - few decidability results for qualitative properties
 - undecidability for quantitative properties and, e.g., repeated reachability with positive probability
- probabilistic Büchi automata interesting in their own ...

$$\mathcal{P} = (Q, \Sigma, \delta, \mu, F)$$

- **Q** finite state space
- Σ alphabet
- $\delta: Q \times \Sigma \times Q \rightarrow [0,1]$ s.t. for all $q \in Q$, $a \in \Sigma$:

$$\sum_{\boldsymbol{\rho}\in\boldsymbol{Q}}\delta(\boldsymbol{q},\boldsymbol{a},\boldsymbol{p})\in\{0,1\}$$

- initial distribution μ
- set of final states $F \subseteq Q$

$$\mathcal{P} = (Q, \Sigma, \delta, \mu, F) \leftarrow F$$

POMDP where $\Sigma = Act$ and $\sim \stackrel{\frown}{=} Q \times Q$

- Q finite state space
- Σ alphabet
- $\delta: Q \times \Sigma \times Q \rightarrow [0,1]$ s.t. for all $q \in Q$, $a \in \Sigma$:

$$\sum_{\boldsymbol{\rho}\in\boldsymbol{Q}}\delta(\boldsymbol{q},\boldsymbol{a},\boldsymbol{p})\in\{0,1\}$$

- initial distribution μ
- set of final states $F \subseteq Q$

$$\mathcal{P} = (Q, \Sigma, \delta, \mu, F)$$
 \leftarrow POMDP where $\Sigma = Act$ and $\sim \stackrel{\frown}{=} Q \times Q$

- Σ alphabet
- $\delta: \mathbb{Q} \times \Sigma \times \mathbb{Q} \to [0,1]$ s.t. for all $q \in \mathbb{Q}$, $a \in \Sigma$:

• initial distribution
$$\mu$$
 $\sum\limits_{m{p}\inm{Q}}\delta(m{q},m{a},m{p})\in\{0,1\}$

- set of final states $F \subseteq Q$

For each infinite word $x \in \Sigma^{\omega}$:

$$Pr(x)$$
 = probability for the accepting runs for x

accepting run: visits F infinitely often

 $\sum \delta(q, a, p) \in \{0, 1\}$

$$\mathcal{P} = (Q, \Sigma, \delta, \mu, F)$$
 \leftarrow POMDP where $\Sigma = Act$ and $\sim \widehat{=} Q \times Q$

- Σ alphabet
- $\delta: \mathbb{Q} \times \Sigma \times \mathbb{Q} \to [0,1]$ s.t. for all $q \in \mathbb{Q}$, $a \in \Sigma$:
- initial distribution μ $p \in Q$
- set of final states $F \subseteq Q$

For each infinite word $x \in \Sigma^{\omega}$:

Pr(x) = probability for the accepting runs for x

probability measure in the infinite Markov chain induced by **x** viewed as a scheduler

$$\mathcal{P} = (Q, \Sigma, \delta, \mu, F)$$

- Q finite state space, Σ alphabet
- $\delta: \mathbb{Q} \times \Sigma \times \mathbb{Q} \rightarrow [0,1]$ s.t. ...
- initial distribution μ
- set of final states $F \subseteq Q$

three types of accepted language:

$$\mathcal{L}^{>0}(\mathcal{P}) = \left\{ x \in \Sigma^{\omega} : \Pr(x) > 0 \right\} \quad \text{probable semantics}$$

$$\mathcal{L}^{=1}(\mathcal{P}) = \left\{ x \in \Sigma^{\omega} : \Pr(x) = 1 \right\} \quad \text{almost-sure sem.}$$

$$\mathcal{L}^{>\lambda}(\mathcal{P}) = \left\{ x \in \Sigma^{\omega} : \Pr(x) > \lambda \right\}$$

threshold semantics where $0 < \lambda < 1$

$$\mathcal{L}^{>0}(\mathcal{P}) = (a+b)^*a^{\omega}$$

$$\mathcal{L}^{>0}(\mathcal{P}) = (a+b)^* a^{\omega}$$

$$\mathcal{L}^{=1}(\mathcal{P}) = b^* a^{\omega}$$

$$\mathcal{L}^{>0}(\mathcal{P}) = (a+b)^* a^{\omega}$$

$$\mathcal{L}^{=1}(\mathcal{P}) = b^* a^{\omega}$$

$$\mathcal{L}^{>0}(\mathcal{P}) = (a+b)^* a^{\omega}$$

$$\mathcal{L}^{=1}(\mathcal{P}) = b^* a^{\omega}$$

$$\mathcal{L}^{>0}(\mathcal{P}) = (a+b)^* a^{\omega}$$

$$\mathcal{L}^{=1}(\mathcal{P}) = b^* a^{\omega}$$

Thus: PBA^{>0} are strictly more expressive than DBA

NBA accepts $((ac)^*ab)^\omega$

$$\mathcal{L}^{>0}(\mathcal{P}) = (a+b)^* a^{\omega}$$

$$\mathcal{L}^{=1}(\mathcal{P}) = b^* a^{\omega}$$

Thus: PBA>0 are strictly more expressive than DBA

accepted language:

$$\mathcal{L}^{>0}(\mathcal{P}) = (ab + ac)^*(ab)^{\omega}$$

but **NBA** accepts $((ac)^*ab)^\omega$

$$\mathcal{L}^{>0}(\mathcal{P}) = (a+b)^* a^{\omega}$$

$$\mathcal{L}^{=1}(\mathcal{P}) = b^* a^{\omega}$$

Thus: PBA>0 are strictly more expressive than DBA

accepted language:

$$\mathcal{L}^{>0}(\mathcal{P}) = (ab + ac)^*(ab)^{\omega}$$
 $\mathcal{L}^{=1}(\mathcal{P}) = (ab)^{\omega}$

but **NBA** accepts $((ac)^*ab)^\omega$

Expressiveness of PBA with probable semantics $_{\scriptscriptstyle PBA-10}$

PBA^{>0} are strictly more expressive than NBA

from NBA to PBA:

NBA

Courcoubetis/
Yannakakis

NBA

deterministic in \(\circ\) PBA>0

limit

- from NBA to PBA:
 via NBA that are deterministic in limit
- PBA can accept non- ω -regular languages

- from NBA to PBA:
 via NBA that are deterministic in limit
- PBA can accept non- ω -regular languages

accepted language (probable semantics):

$$\mathcal{L}^{>0}(\mathcal{P}) = \left\{ a^{k_1}ba^{k_2}ba^{k_3}b... \mid ... \right\}$$

- from NBA to PBA:
 via NBA that are deterministic in limit
- PBA can accept non- ω -regular languages

accepted language (probable semantics):

$$\mathcal{L}^{>0}(\mathcal{P}) = \left\{ a^{k_1} b a^{k_2} b a^{k_3} b \dots \mid \prod_{i=1}^{\infty} \left(1 - \left(\frac{1}{2} \right)^{k_i} \right) > 0 \right\}$$

emptiness problem: undecidable for PBA^{>0}
decidable for PBA⁼¹

The model checking problem for POMDP and several qualitative properties is decidable:

- almost-sure reachability "does $\Pr_{max}^{obs}(\lozenge F) = 1$ hold ?"
- invariance with positive probability "does $\Pr_{max}^{obs}(\Box F) > 0$ hold ?"
- almost-sure repeated reachability "does $\Pr_{max}^{obs}(\Box \Diamond F) = 1$ hold ?"
- persistence with positive probability "does $\Pr_{\max}^{obs}(\lozenge \Box F) > 0$ hold ?"

algorithms use a certain powerset construction

The model checking problem for POMDP and several qualitative properties is decidable:

- almost-sure reachability "does $\Pr_{\max}^{obs}(\lozenge F) = 1$ hold ?"
- invariance with positive probability "does $\Pr_{max}^{obs}(\Box F) > 0$ hold ?"
- almost-sure repeated reachability "does $\Pr_{\max}^{obs}(\Box \Diamond F) = 1$ hold ?"
- persistence with positive probability "does $\Pr_{\max}^{obs}(\lozenge \Box F) > 0$ hold ?"

algorithms use a certain powerset construction

Almost-sure reachability/repeated reachability

The almost-sure repeated reachability problem

"does
$$\Pr_{\max}^{obs}(\Box \Diamond F) = 1$$
 hold?"

is polynomially reducible to the almost-sure reachability problem "does $\Pr_{max}^{obs}(\lozenge F) = 1$ hold?"

Almost-sure reachability/repeated reachability

The almost-sure repeated reachability problem

"does
$$\Pr_{\max}^{obs}(\Box \Diamond F) = 1$$
 hold?"

is polynomially reducible to the almost-sure reachability problem "does $Pr_{max}^{obs}(\lozenge F) = 1$ hold?"

POMDP *M*

objective:

repeated reachability $\Box \Diamond F$

The almost-sure repeated reachability problem

"does
$$Pr_{max}^{obs}(\Box \Diamond F) = 1$$
 hold?"

is polynomially reducible to the almost-sure reachability problem "does $\Pr_{max}^{obs}(\lozenge f) = 1$ hold?"

• f

POMDP M

objective:

repeated reachability $\Box \Diamond F$

POMDP **M'** objective:

reachability $\Diamond f$

Almost-sure reachability/repeated reachability

The almost-sure repeated reachability problem

"does
$$\Pr_{\max}^{obs}(\Box \Diamond F) = 1$$
 hold?"

is polynomially reducible to the almost-sure reachability problem "does $\Pr_{\max}^{obs}(\lozenge f) = 1$ hold?"

POMDP \mathcal{M} objective: repeated reachability $\square \lozenge F$

POMDP **M'**objective:
reachability **◊f**

Almost-sure reachability

powerset construction for almost-sure reachability "does $\Pr_{\max}^{obs}(\lozenge F) = 1$ hold ?"

powerset construction for almost-sure reachability "does $\Pr_{max}^{obs}(\lozenge F) = 1$ hold?"

$$\mathsf{Pr}^{obs}_{\mathsf{max}}(\lozenge F) = 1 \text{ in } \mathcal{M} \quad \mathsf{iff} \quad \mathsf{Pr}_{\mathsf{max}}(\lozenge F') = 1 \text{ in } Pow(\mathcal{M})$$

POMDP
$$\mathcal{M}$$
 with equivalence \sim \longrightarrow \longrightarrow MDP $Pow(\mathcal{M})$ fully observable

$$\Pr_{\mathsf{max}}^{\mathit{obs}}(\lozenge F) = \mathbf{1} \text{ in } \mathcal{M} \quad \text{iff} \quad \Pr_{\mathsf{max}}(\lozenge F') = \mathbf{1} \text{ in } \mathit{Pow}(\mathcal{M})$$

$$\mathsf{state} \ \mathbf{s} \ \mathsf{in} \ \mathcal{M} \quad \mapsto \quad \mathsf{states} \ \langle \mathbf{s}, R \rangle$$

$$\mathsf{where} \ \mathbf{s} \in R \subseteq [\mathbf{s}]$$

[s] = equivalence class of s w.r.t. \sim

$$\Pr_{\mathsf{max}}^{\mathit{obs}}(\lozenge F) = \mathbf{1} \text{ in } \mathcal{M} \quad \text{iff} \quad \Pr_{\mathsf{max}}(\lozenge f) = \mathbf{1} \quad \text{in } \mathit{Pow}(\mathcal{M})$$
 state s in $\mathcal{M} \mapsto \operatorname{states} \langle s, R \rangle$ where $s \in R \subseteq [s]$ fresh goal state f

[s] = equivalence class of s w.r.t. \sim

if
$$Post(s, \alpha) \cap F = \emptyset$$

state s in M

state $\langle s, R \rangle$ in $Pow(\mathcal{M})$

action lpha

if
$$Post(s, \alpha) \cap F = \emptyset$$

where $s \in R \subseteq [s]$

if
$$Post(s, \alpha) \cap F = \emptyset$$

where $s \in R \subseteq [s]$

if
$$Post(s, \alpha) \cap F = \emptyset$$

where $s \in R \subseteq [s]$
 $U = Post(R, \alpha)$

state s in M

if
$$Post(s, \alpha) \cap F = \emptyset$$

state $\langle s, R \rangle$ in $Pow(\mathcal{M})$

action lpha

state $\langle t, U \cap [t] \rangle$

$$P(s, \alpha, t) = P'(\langle s, R \rangle, \alpha, \langle t, U \cap [t] \rangle)$$

if
$$Post(s, \alpha) \cap F \neq \emptyset$$

where
$$s \in R \subseteq [s]$$

$$U = Post(R, \alpha)$$

if
$$Post(s, \alpha) \cap F \neq \emptyset$$

where $s', s \in R \subseteq [s]$
 $U = Post(R, \alpha)$

if
$$Post(s, \alpha) \cap F \neq \emptyset$$

where $s', s \in R \subseteq [s]$
 $U = Post(R, \alpha)$

if
$$Post(s, \alpha) \cap F \neq \emptyset$$

where s' , $s \in R \subseteq [s]$
 $U = Post(R, \alpha)$

where
$$t \in U \setminus F$$

if
$$Post(s, \alpha) \cap F \neq \emptyset$$

where s' , $s \in R \subseteq [s]$
 $U = Post(R, \alpha)$

where
$$t \in U \setminus F$$

if
$$Post(s, \alpha) \cap F \neq \emptyset$$

where $s', s \in R \subseteq [s]$
 $U = Post(R, \alpha)$

objective: **\$**

$$P'(\langle s, R \rangle, \alpha, \langle t, U \cap [t] \rangle) = \frac{1}{2K}$$

where $K = |Post(R, \alpha) \setminus F|$

