On Model Checking Techniques for Randomized Distributed Systems

Christel Baier

Technische Universität Dresden
joint work with Nathalie Bertrand
Frank Ciesinski
Marcus Größer

Probability elsewhere

- randomized algorithms [Rabin 1960]
breaking symmetry, fingerprints, input sampling, ...
- stochastic control theory
[BELLMAN 1957] operations research
- performance modeling [Markov, Erlang, Kolm., ~ 1900] emphasis on steady-state and transient measures
- biological systems, resilient systems, security protocols

Probability elsewhere

- randomized algorithms [Rabin 1960]
breaking symmetry, fingerprints, input sampling, ... models: discrete-time Markov chains

Markov decision processes

- stochastic control theory
[BELLMAN 1957]
operations research
models: Markov decision processes
- performance modeling [Markov, Erlang, Kolm., ~ 1900] emphasis on steady-state and transient measures models: continuous-time Markov chains
- biological systems, resilient systems, security protocols

Model checking

[Clarke/Emerson, Queille/Sifakis]

Probabilistic model checking

probabilistic reactive system

quantitative requirements

probabilistic model checking

$$
\text { "does } \mathcal{M} \vDash \Phi \text { hold ?" }
$$

probability for "bad behaviors" is $<10^{-6}$ probability for "good behaviors" is 1 expected costs for

Probabilistic model checking

Outline

- Markov decision processes (MDP) and quantitative analysis against path events
- partial order reduction for MDP
- partially-oberservable MDP
- conclusions

Markov decision process (MDP)

operational model with nondeterminism and probabilism

Markov decision process (MDP)

operational model with nondeterminism and probabilism

- modeling randomized distributed systems by interleaving
process 1 tosses a coin
process 2 tosses a coin

process 2 tosses a coin
process 1 tosses a coin

Markov decision process (MDP)

operational model with nondeterminism and probabilism

- modeling randomized distributed systems by interleaving
- nondeterminism useful for abstraction, underspec., modeling interactions with an unkown environment
process 1 tosses a coin
process 2 tosses a coin

process 1 tosses a coin

Markov decision process (MDP)

$$
\mathcal{M}=(S, A c t, P, \ldots)
$$

Markov decision process (MDP)

$\mathcal{M}=(S, A c t, P, \ldots)$

- finite state space S

Markov decision process (MDP)

$\mathcal{M}=(S, A c t, P, \ldots)$

- finite state space S
- Act finite set of actions
- $P: S \times A c t \times S \rightarrow[0,1]$

Markov decision process (MDP)

$\mathcal{M}=(S, A c t, P, \ldots)$

- finite state space S
- Act finite set of actions
- $P: S \times A c t \times S \rightarrow[0,1]$

Markov decision process (MDP)

$\mathcal{M}=(S, A c t, P, \ldots)$

- finite state space S
- Act finite set of actions
- $P: S \times A c t \times S \rightarrow[0,1]$ s.t.

$$
\begin{aligned}
\forall s \in S \quad \forall \alpha \in A c t . & \sum_{s^{\prime} \in S} P\left(s, \alpha, s^{\prime}\right) \in\{0,1\} \\
& \alpha \notin \operatorname{Act}(s) \quad \alpha \in \operatorname{Act}(s)
\end{aligned}
$$

Markov decision process (MDP)

$\mathcal{M}=\left(S, A c t, P, s_{0}, A P, L, r e w, \ldots\right)$

- finite state space S
- Act finite set of actions
- $P: S \times A c t \times S \rightarrow[0,1]$ s.t.
$\forall s \in S \quad \forall \alpha \in A c t . \quad \sum_{s^{\prime} \in S} P\left(s, \alpha, s^{\prime}\right) \in\{0,1\}$
$\alpha \notin \operatorname{Act}(s) \quad \alpha \in \operatorname{Act}(s)$
- s_{0} initial state
- AP set of atomic propositions
- labeling $L: S \rightarrow 2^{A P}$
- reward function rew : $S \times A c t \rightarrow \mathbb{R}$

Randomized mutual exclusion protocol

- $\mathbf{2}$ concurrent processes $\mathcal{P}_{\mathbf{1}}, \mathcal{P}_{\mathbf{2}}$ with $\mathbf{3}$ phases:
$\boldsymbol{n}_{\boldsymbol{i}}$ noncritical actions of process $\mathcal{P}_{\boldsymbol{i}}$
$\boldsymbol{w}_{\boldsymbol{i}}$ waiting phase of process $\boldsymbol{\mathcal { P }}_{\boldsymbol{i}}$
$\boldsymbol{c}_{\boldsymbol{i}}$ critical section of process $\mathcal{P}_{\boldsymbol{i}}$
- competition of both processes are waiting

Randomized mutual exclusion protocol

- $\mathbf{2}$ concurrent processes $\mathcal{P}_{\mathbf{1}}, \mathcal{P}_{\mathbf{2}}$ with $\mathbf{3}$ phases:
$\boldsymbol{n}_{\boldsymbol{i}}$ noncritical actions of process $\boldsymbol{\mathcal { P }}_{\boldsymbol{i}}$
$\boldsymbol{w}_{\boldsymbol{i}}$ waiting phase of process $\boldsymbol{\mathcal { P }}_{\boldsymbol{i}}$
$\boldsymbol{c}_{\boldsymbol{i}}$ critical section of process $\boldsymbol{\mathcal { P }}_{\boldsymbol{i}}$
- competition of both processes are waiting
- resolved by a randomized arbiter who tosses a coin

Randomized mutual exclusion protocol

- interleaving of the request operations
- competition if both processes are waiting
- randomized arbiter tosses a coin if both are waiting

Randomized mutual exclusion protocol

- interleaving of the request operations
- competition if both processes are waiting
- randomized arbiter tosses a coin if both are waiting

Randomized mutual exclusion protocol

- interleaving of the request operations
- competition if both processes are waiting
- randomized arbiter tosses a coin if both are waiting

Randomized mutual exclusion protocol

- interleaving of the request operations
- competition if both processes are waiting
- randomized arbiter tosses a coin if both are waiting

Reasoning about probabilities in MDP

- requires resolving the nondeterminism by schedulers

Reasoning about probabilities in MDP

- requires resolving the nondeterminism by schedulers
- a scheduler is a function $D: S^{*} \longrightarrow A c t$ s.t. action $D\left(\boldsymbol{s}_{0} \ldots \boldsymbol{s}_{\boldsymbol{n}}\right)$ is enabled in state $\boldsymbol{s}_{\boldsymbol{n}}$

Reasoning about probabilities in MDP

- requires resolving the nondeterminism by schedulers
- a scheduler is a function $D: S^{*} \longrightarrow A c t$ s.t. action $D\left(\boldsymbol{s}_{0} \ldots \boldsymbol{s}_{\boldsymbol{n}}\right)$ is enabled in state $\boldsymbol{s}_{\boldsymbol{n}}$
- each scheduler induces an infinite Markov chain

Reasoning about probabilities in MDP

- requires resolving the nondeterminism by schedulers
- a scheduler is a function $D: S^{*} \longrightarrow A c t$ s.t. action $D\left(\boldsymbol{s}_{0} \ldots \boldsymbol{s}_{\boldsymbol{n}}\right)$ is enabled in state $\boldsymbol{s}_{\boldsymbol{n}}$
- each scheduler induces an infinite Markov chain \uparrow
yields a notion of probability measure Pr^{D} on measurable sets of infinite paths

Reasoning about probabilities in MDP

- requires resolving the nondeterminism by schedulers
- a scheduler is a function $D: S^{*} \longrightarrow A c t$ s.t. action $D\left(\boldsymbol{s}_{0} \ldots \boldsymbol{s}_{\boldsymbol{n}}\right)$ is enabled in state $\boldsymbol{s}_{\boldsymbol{n}}$
- each scheduler induces an infinite Markov chain \uparrow
yields a notion of probability measure Pr^{D} on measurable sets of infinite paths
typical task: given a measurable path event E, * check whether E holds almost surely, i.e.,
$\operatorname{Pr}^{D}(E)=1$ for all schedulers D

Reasoning about probabilities in MDP

- requires resolving the nondeterminism by schedulers
- a scheduler is a function $D: S^{*} \longrightarrow A c t$ s.t. action $D\left(\boldsymbol{s}_{0} \ldots \boldsymbol{s}_{\boldsymbol{n}}\right)$ is enabled in state $\boldsymbol{s}_{\boldsymbol{n}}$
- each scheduler induces an infinite Markov chain \uparrow
yields a notion of probability measure Pr^{D} on measurable sets of infinite paths
typical task: given a measurable path event E, * check whether E holds almost surely
* compute the worst-case probability for E, i.e.,

$$
\sup _{D} \operatorname{Pr}^{D}(E) \text { or } \inf _{D} \operatorname{Pr}^{D}(E)
$$

Quantitative analysis of MDP

given: $\quad \operatorname{MDP} \mathcal{M}=(S, A c t, P, \ldots)$ with initial state \boldsymbol{s}_{0} ω-regular path event E, e.g., given by an LTL formula
task: compute $\operatorname{Pr}_{\max }^{\mathcal{M}}\left(s_{0}, E\right)=\sup _{D} \operatorname{Pr}^{D}\left(s_{0}, E\right)$

Quantitative analysis of MDP

given: $\quad \operatorname{MDP} \mathcal{M}=(S, A c t, P, \ldots)$ with initial state \boldsymbol{s}_{0} ω-regular path event E, e.g., given by an LTL formula
task: \quad compute $\operatorname{Pr}_{\text {max }}^{\mathcal{M}}\left(s_{0}, E\right)=\sup \operatorname{Pr}^{D}\left(s_{0}, E\right)$
method: compute $x_{s}=\operatorname{Pr}_{\max }^{\mathcal{M}}(s, E)$ for all $s \in S$ via graph analysis and linear program
[Vardi/Wolper'86]
[Courcoubetis/Yannakakis'88]
[Bianco/de Alfaro'95]
[Baier/Kwiatkowska'98]
system

system

probabilistic system

"bad behaviors"

probabilistic system "bad behaviors"

quantitative analysis
in the product-MDP $\mathcal{M} \times \mathcal{A}$

$$
\operatorname{Pr}_{\max }^{\mathcal{M}}(s, \varphi)=\operatorname{Pr}_{\max }^{\mathcal{M} \times \mathcal{A}}\left(\left\langle s, \text { init }_{s}\right\rangle, \begin{array}{l}
\text { acceptance } \\
\text { cond. of } \mathcal{A}
\end{array}\right)
$$

probabilistic system

quantitative analysis in the product-MDP $\mathcal{M} \times \mathcal{A}$
"bad behaviors"

probabilistic system

probabilistic reachability analysis in the product-MDP $\mathcal{M} \times \mathcal{A}$ linear program
$\operatorname{Pr}_{\text {max }}^{\mathcal{M}}(s, \varphi)=\operatorname{Pr}_{\text {max }}^{\mathcal{M} \times \mathcal{A}}\left(\left\langle s\right.\right.$, init $\left.\left.t_{s}\right\rangle, \diamond a c c E C\right)$
probabilistic system

probabilistic reachability analysis in the product-MDP $\mathcal{M} \times \mathcal{A}$ linear program
"bad behaviors"
 polynomial in $|\mathcal{M}| \cdot|\mathcal{A}|$

$$
\operatorname{Pr}_{\text {max }}^{\mathcal{M}}(s, \varphi)=\operatorname{Pr}_{\max }^{\mathcal{M} \times \mathcal{A}}\left(\left\langle s, \text { init }_{s}\right\rangle, \Delta a c c E C\right)
$$

probabilistic system

probabilistic reachability analysis in the product-MDP $\mathcal{M} \times \mathcal{A}$ linear program polynomial in $|\mathcal{M}| \cdot|\mathcal{A}|$

$$
\operatorname{Pr}_{\max }^{\mathcal{M}}(s, \varphi)=\operatorname{Pr}_{\max }^{M} \times \mathcal{A}\left(\left\langle s, \text { init }_{s}\right\rangle, \diamond \operatorname{acc} E C\right)
$$

probabilistic reachability analysis in the product-MDP $\mathcal{M} \times \mathcal{A}$
polynomial
in $|\mathcal{M}| \cdot|\mathcal{A}|$

$$
\operatorname{Pr}_{\max }^{\mathcal{M}}(s, \varphi)=\operatorname{Pr}_{\max }^{\mathcal{M} \times \mathcal{A}}\left(\left\langle s, \text { init }_{s}\right\rangle, \Delta a c c E C\right)
$$

Advanced techniques for PMC

- symbolic model checking with variants of BDDs
e.g., in PRISM [Kwiatkowska/Norman/Parker]

ProbVerus [Hartonas-Garmhausen, Campos, Clarke]

- state aggregation with bisimulation
e.g., in MRMC [Katoen et al]
- abstraction-refinement
e.g., in RAPTURE [d'Argenio/Jeannet/Jensen/Larsen] PASS [Hermanns/Wachter/Zhang]
- partial order reduction
e.g., in LiQuor [Baier/Ciesinski/Größer]

Advanced techniques for PMC

- symbolic model checking with variants of BDDs e.g., in PRISM [Kwiatkowska/Norman/Parker]

ProbVerus [Hartonas-Garmhausen, Campos, Clarke]
randomized distributed algorithms, communication and multimedia protocols, power management, security, ...

- state aggregation with bisimulation
e.g., in MRMC [Katoen et al]
- abstraction-refinement

$$
\begin{gathered}
\text { e.g., in RAPTURE [d'Argenio/Jeannet/Jensen/Larsen] } \\
\text { PASS [Hermanns/Wachter/Zhang] }
\end{gathered}
$$

- partial order reduction
e.g., in LiQuor [Baier/Ciesinski/Größer]

Advanced techniques for PMC

- symbolic model checking with variants of BDDs e.g., in PRISM [Kwiatkowska/Norman/Parker]

ProbVerus [Hartonas-Garmhausen, Campos, Clarke]
randomized distributed algorithms, communication and multimedia protocols, power management, security, ...

- state aggregation with bisimulation e.g., in MRMC [Katoen et al]
- abstraction-refinement

$$
\begin{gathered}
\text { e.g., in RAPTURE [d'Argenio/Jeannet/Jensen/Larsen] } \\
\text { PASS [Hermanns/Wachter/Zhang] }
\end{gathered}
$$

- partial order reduction
e.g., in LiQuor [Baier/Ciesinski/Größer]

Partial order reduction

technique for reducing the state space of concurrent systems [Godefroid,Peled,Valmari, ca. 1990]

- attempts to analyze a sub-system by identifying "redundant interleavings"
- explores representatives of paths that agree up to the order of independent actions

Partial order reduction

technique for reducing the state space of concurrent systems [Godefroid,Peled,Valmari, ca. 1990]

- attempts to analyze a sub-system by identifying "redundant interleavings"
- explores representatives of paths that agree up to the order of independent actions

$$
\begin{aligned}
& \text { e.g., } \underbrace{x:=x+y}_{\text {action } \alpha} \| \underbrace{z:=z+3}_{\text {action } \beta} \\
& \text { has the same effect as } \alpha ; \beta \text { or } \beta ; \alpha
\end{aligned}
$$

Partial order reduction

technique for reducing the state space of concurrent systems [Godefroid,Peled,Valmari, ca. 1990]

- attempts to analyze a sub-system by identifying "redundant interleavings"
- explores representatives of paths that agree up to the order of independent actions

DFS-based on-the-fly generation of a reduced system for each expanded state s

- choose an appropriate subset Ample(s) of $\operatorname{Act}(s)$
- expand only the α-successors of s for $\alpha \in$ Ample(s) (but ignore the actions in $\operatorname{Act}(s) \backslash$ Ample(s))

Partial order reduction

concurrent execution of processes $\mathcal{P}_{\mathbf{1}}, \mathcal{P}_{\mathbf{2}}$

- no communication
- no competition
transition system for $\mathcal{P}_{\mathbf{1}} \| \mathcal{P}_{\mathbf{2}}$ where

$$
\begin{aligned}
& \mathcal{P}_{1}=\alpha ; \beta ; \gamma \\
& \mathcal{P}_{2}=\lambda ; \mu ; \nu
\end{aligned}
$$

Partial order reduction

concurrent execution of processes $\mathcal{P}_{1}, \mathcal{P}_{\mathbf{2}}$

- no communication
- no competition
transition system for $\mathcal{P}_{\mathbf{1}} \| \mathcal{P}_{\mathbf{2}}$ where

$$
\begin{aligned}
& \mathcal{P}_{1}=\alpha ; \beta ; \gamma \\
& \mathcal{P}_{2}=\lambda ; \mu ; \nu
\end{aligned}
$$

idea: explore just 1 path as representative for all paths

Ample-set method [Peled 1993]

given: processes $\mathcal{P}_{\boldsymbol{i}}$ of a parallel system $\mathcal{P}_{\mathbf{1}}\|\ldots\| \mathcal{P}_{\boldsymbol{n}}$ with transition system $\mathcal{T}=(S, A c t, \rightarrow, \ldots)$
task: on-the-fly generation of a sub-system \mathcal{T}_{r} s.t.
(A1) stutter condition
(A2) dependency condition
(A3) cycle condition

Ample-set method [Peled 1993]

given: processes $\mathcal{P}_{\boldsymbol{i}}$ of a parallel system $\mathcal{P}_{\mathbf{1}}\|\ldots\| \mathcal{P}_{\boldsymbol{n}}$ with transition system $\mathcal{T}=(S, A c t, \rightarrow, \ldots)$
task: on-the-fly generation of a sub-system \mathcal{T}_{r} s.t.
(A1) stutter condition
(A2) dependency condition
(A3) cycle condition
$\left\{\begin{array}{l}\pi \leadsto \pi_{r} \\ \text { by permutations of } \\ \text { independent actions }\end{array}\right.$
Each path π in \mathcal{T} is represented by an "equivalent" path π_{r} in \mathcal{T}_{r}

Ample-set method [Peled 1993]

given: processes $\mathcal{P}_{\boldsymbol{i}}$ of a parallel system $\mathcal{P}_{\mathbf{1}}\|\ldots\| \mathcal{P}_{\boldsymbol{n}}$ with transition system $\mathcal{T}=(S, A c t, \rightarrow, \ldots)$
task: on-the-fly generation of a sub-system \mathcal{T}_{r} s.t.
(A1) stutter condition
(A2) dependency condition
(A3) cycle condition
$\left\{\begin{array}{l}\pi \leadsto \pi_{r} \\ \text { by permutations of } \\ \text { independent actions }\end{array}\right.$
Each path π in \mathcal{T} is represented by an "equivalent" path π_{r} in \mathcal{T}_{r} \|
\mathcal{T} and \mathcal{T}_{r} satisfy the same stutter-invariant events, e.g., next-free LTL formulas

Ample-set method for MDP

given: processes $\mathcal{P}_{\boldsymbol{i}}$ of a probabilistic system $\mathcal{P}_{\mathbf{1}}\|\ldots\| \mathcal{P}_{\boldsymbol{n}}$ with MDP-semantics $\mathcal{M}=(S, A c t, P, \ldots)$
task: on-the-fly generation of a sub-MDP \mathcal{M}_{r} s.t.
\mathcal{M}_{r} and \mathcal{M} have the same extremal probabilities for stutter-invariant events

Ample-set method for MDP

given: processes $\mathcal{P}_{\boldsymbol{i}}$ of a probabilistic system $\mathcal{P}_{\mathbf{1}}\|\ldots\| \mathcal{P}_{\boldsymbol{n}}$ with MDP-semantics $\mathcal{M}=(S, A c t, P, \ldots)$
task: on-the-fly generation of a sub-MDP \mathcal{M}_{r} s.t.

For all schedulers D for \mathcal{M} there is a scheduler D_{r} for \mathcal{M}_{r} s.t. for all measurable, stutter-invariant events E :

$$
\operatorname{Pr}_{\mathcal{M}}^{D}(E)=\operatorname{Pr}_{\mathcal{M}_{r}}^{D_{r}}(E)
$$

\Downarrow
$\mathcal{M}_{\boldsymbol{r}}$ and \mathcal{M} have the same extremal probabilities for stutter-invariant events

Independence of actions

Independence of non-probabilistic actions

Actions α and β are called independent in a transition system \mathcal{T} iff:
whenever $\boldsymbol{s} \xrightarrow{\alpha} t$ and $\boldsymbol{s} \xrightarrow{\beta} \boldsymbol{u}$ then
(1) α is enabled in u
(2) β is enabled in t
(3) if $u \xrightarrow{\alpha} v$ and $t \xrightarrow{\beta} w$ then $v=w$

Independence of actions in an MDP

Let $\mathcal{M}=(S, A c t, P, \ldots)$ be a MDP and $\alpha, \beta \in \boldsymbol{A c t}$.

α and β are independent in \mathcal{M} if for each state \boldsymbol{s} s.t. $\alpha, \beta \in \operatorname{Act}(s)$:
(1) if $P(s, \alpha, t)>0$ then $\beta \in \operatorname{Act}(t)$
(2) if $P(s, \beta, u)>0$ then $\alpha \in \operatorname{Act}(u)$
(3) \ldots

Independence of actions in an MDP

Let $\mathcal{M}=(S, A c t, P, \ldots)$ be a MDP and $\alpha, \beta \in \boldsymbol{A c t}$.

α and β are independent in \mathcal{M} if for each state \boldsymbol{s} s.t. $\alpha, \beta \in \operatorname{Act}(s)$:
(1) if $P(s, \alpha, t)>0$ then $\beta \in \operatorname{Act}(t)$
(2) if $P(s, \beta, u)>0$ then $\alpha \in \operatorname{Act}(u)$
(3) for all states w :

$$
P(s, \alpha \beta, w)=P(s, \beta \alpha, w)
$$

$\sum_{t \in S} P(s, \alpha, t) \cdot P(t, \beta, w) \quad \sum_{u \in S} P(s, \beta, u) \cdot P(u, \alpha, w)$

Example: ample set method

original system \mathcal{T}
α independent from β and γ

Example: ample set method

original system \mathcal{T}
α independent from β and γ

reduced system \mathcal{T}_{r}
(A1)-(A3) are fulfilled

Example: ample set method fails for MDP

original MDP \mathcal{M}

reduced MDP \mathcal{M}_{r} (A1)-(A3) are fulfilled
α independent from β and γ

Example: ample set method fails for MDP

original MDP \mathcal{M}

reduced MDP \mathcal{M}_{r}
$\operatorname{Pr}_{\text {max }}^{\mathcal{M}}(s, \Delta$ green $)=1 \quad \diamond$ "eventually"

Example: ample set method fails for MDP

original MDP \mathcal{M}

reduced MDP \mathcal{M}_{r}
$\operatorname{Pr}_{\text {max }}^{\mathcal{M}}(s, \Delta g r e e n)=1>\frac{1}{2}=\operatorname{Pr}_{\text {max }}^{\mathcal{M}_{r}}(s, \Delta g r e e n)$

Partial order reduction for MDP

extend Peled's conditions (A1)-(A3) for the ample-sets
(A1) stutter condition
(A2) dependency condition ...
(A3) cycle condition
(A4) probabilistic condition
If there is a path $s \xrightarrow{\beta_{1}} \xrightarrow{\beta_{2}} \ldots \xrightarrow{\beta_{n}} \xrightarrow{\alpha}$ in \mathcal{M} s.t.
$\beta_{1}, \ldots, \beta_{n}, \alpha \notin \operatorname{Ample}(s)$ and α is probabilistic then \mid Ample(s) $\mid=1$.

Partial order reduction for MDP

extend Peled's conditions (A1)-(A3) for the ample-sets
(A1) stutter condition
(A2) dependency condition ...
(A3) cycle condition
(A4) probabilistic condition
If there is a path $s \xrightarrow{\beta_{1}} \xrightarrow{\beta_{2}} \ldots \xrightarrow{\beta_{n}} \xrightarrow{\alpha}$ in \mathcal{M} s.t.
$\beta_{1}, \ldots, \beta_{n}, \alpha \notin \operatorname{Ample}(s)$ and α is probabilistic then \mid Ample(s) $\mid=1$.

If (A1)-(A4) hold then \mathcal{M} and \mathcal{M}_{r} have the same extremal probabilities for all stutter-invariant properties.

Probabilistic model checking

Probabilistic model checking, e.g., LiQuor

modeling language
$\mathcal{P}_{1}\|\ldots\| \mathcal{P}_{n}$
partial order reduction

quantitative
requirements
$\mathrm{LTL}_{\backslash \mathrm{O}}$ formula φ
(path event)
quantitative analysis of $\mathcal{M}_{\boldsymbol{r}}$ against φ
maximal/minimal probability for φ

Probabilistic model checking, e.g., LiQuor

modeling language
$\mathcal{P}_{1}\|\ldots\| \mathcal{P}_{n}$
quantitative
requirements
partial order reduction

Outline

- Markov decision processes (MDP) and quantitative analysis against path events
- partial order reduction for MDP
- partially-oberservable MDP
- conclusions

Monty-Hall problem

3 doors
initially closed
candidate
는 master

Monty-Hall problem

3 doors
initially closed
candidate
IL master

Monty-Hall problem

3 doors initially closed
candidate

1. candidate chooses one of the doors

Monty-Hall problem

3 doors initially closed
candidate $\frac{8}{\boldsymbol{\jmath}}$ IL master

1. candidate chooses one of the doors
2. show master opens a non-chosen, non-winning door

Monty-Hall problem

3 doors initially closed
candidate

1. candidate chooses one of the doors
2. show master opens a non-chosen, non-winning door
3. candidate has the choice:

- keep the choice or
- switch to the other (still closed) door

Monty-Hall problem

no prize

3 doors initially closed
candidate

1. candidate chooses one of the doors
2. show master opens a non-chosen, non-winning door
3. candidate has the choice:

- keep the choice or
- switch to the other (still closed) door

4. show master opens all doors

Monty-Hall problem

3 doors
initially closed
candidate

optimal strategy for the candidate:
initial choice of the door: arbitrary revision of the initial choice (switch)
probability for getting the prize: $\frac{\mathbf{2}}{\mathbf{3}}$

MDP for the Monty-Hall problem

MDP for the Monty-Hall problem

3 doors initially closed
candidate's actions

1. choose one door
2. keep or switch ?

show master's actions
3. opens a non-chosen, non-winning door
4. opens all doors

MDP for the Monty-Hall problem

3 doors initially closed
candidate's actions 1. choose one door

shox master's actions 2. opens non-chosen, 4. opens all doors 4. opens all doors
3. keep or switch ?

MDP for the Monty-Hall problem

3 doors initially closed
candidate's actions

1. choose one door

$\operatorname{Pr}_{\text {max }}($ start,Δ won $)=1$

3. keep or switch ?
optimal scheduler requires complete information on the states

MDP for the Monty-Hall problem

3 doors initially closed
candidate's actions 1. choose one door J 3. keep or switch ?
cannot be distinguished by the candidate

MDP for the Monty-Hall problem

3 doors initially closed
candidate's actions

1. choose one door

observation-based strategy: choose action switch in state door ${ }_{i}$
2. keep or switch ?

MDP for the Monty-Hall problem

3 doors initially closed
candidate's actions

1. choose one door

observation-based strategy: choose action switch in state door ${ }_{i}$ probability for \diamond won: $\frac{2}{3}$
2. keep or switch ?

Partially-observable Markov decision process

A partially-observable MDP (POMDP for short) is an MDP $\mathcal{M}=(S, A c t, P, \ldots)$ together with an equivalence relation \sim on S

Partially-observable Markov decision process

A partially-observable MDP (POMDP for short) is an MDP $\mathcal{M}=(S, A c t, P, \ldots)$ together with an equivalence relation \sim on S
if $s_{1} \sim s_{2}$ then s_{1}, s_{2} cannot be distinguished from outside (or by the scheduler)
observables: equivalence classes of states

Partially-observable Markov decision process

A partially-observable MDP (POMDP for short) is an MDP $\mathcal{M}=(S, A c t, P, \ldots)$ together with an equivalence relation \sim on S

if $s_{1} \sim s_{2}$ then s_{1}, s_{2} cannot be distinguished from outside (or by the scheduler)
 observables: equivalence classes of states

observation-based scheduler:
scheduler $D: S^{*} \rightarrow A c t$ such that for all $\pi_{1}, \pi_{2} \in S^{*}$:

$$
D\left(\pi_{1}\right)=D\left(\pi_{2}\right) \text { if obs }\left(\pi_{1}\right)=\operatorname{obs}\left(\pi_{2}\right)
$$

where $\operatorname{obs}\left(s_{0} s_{1} \ldots s_{n}\right)=\left[s_{0}\right]\left[s_{1}\right] \ldots\left[s_{n}\right]$

Extreme cases of POMDP

extreme cases of an POMDP:

- $s_{1} \sim s_{2}$ iff $s_{1}=s_{2}$
- $s_{1} \sim s_{2}$ for all s_{1}, s_{2}

Extreme cases of POMDP

extreme cases of an POMDP:

- $s_{1} \sim s_{2}$ iff $s_{1}=s_{2} \longleftarrow$ standard MDP
- $s_{1} \sim s_{2}$ for all s_{1}, s_{2}

Probabilistic automata are special POMDP

extreme cases of an POMDP:

- $s_{1} \sim s_{2}$ iff $s_{1}=s_{2} \longleftarrow$ standard MDP
- $\boldsymbol{s}_{1} \sim \boldsymbol{s}_{2}$ for all $\boldsymbol{s}_{1}, \boldsymbol{s}_{2} \longleftarrow$ probabilistic automata
note that for totally non-observable POMDP:
observation-based
scheduler $\widehat{=} \begin{gathered}\text { function } \\ D: \mathbb{N} \rightarrow A c t\end{gathered} \widehat{=} \begin{gathered}\text { infinite word } \\ \text { over Act }\end{gathered}$

Undecidability results for POMDP

extreme cases of an POMDP:

- $s_{1} \sim s_{2}$ iff $s_{1}=s_{2} \longleftarrow$ standard MDP
- $s_{1} \sim s_{2}$ for all $\boldsymbol{s}_{1}, s_{2} \longleftarrow$ probabilistic automata note that for totally non-observable POMDP:
$\underset{\text { scheduler }}{\substack{\text { observation-based } \\ \text { scher } \\ D: \mathbb{N} \rightarrow A c t}} \widehat{\begin{array}{c}\text { function }\end{array}} \widehat{\begin{array}{c}\text { infinite word } \\ \text { over Act }\end{array}}$
undecidability results for PFA carry over to POMDP
maximum probabilistic reachability problem
"does $\operatorname{Pr}_{\max }^{o b s}(\diamond F)>p$ hold ?"
non-emptiness
人 problem for PFA

Undecidability results for POMDP

- The model checking problem for POMDP and quantitative properties is undecidable, e.g., probabilistic reachability properties.

Undecidability results for POMDP

- The model checking problem for POMDP and quantitative properties is undecidable, e.g., probabilistic reachability properties.
- There is no even no approximation algorithm for reachability objectives.
[Paz'71], [Madani/Hanks/Condon'99], [Giro/d'Argenio'07]

Undecidability results for POMDP

- The model checking problem for POMDP and quantitative properties is undecidable, e.g., probabilistic reachability properties.
- There is no even no approximation algorithm for reachability objectives.
- The model checking problem for POMDP and several qualitative properties is undecidable, e.g.,
repeated reachability with positive probability "does $\operatorname{Pr}_{\max }^{\text {obs }}(\square \diamond F)>0$ hold ?"
$\square \diamond \widehat{=}$ "infinitely often"

Undecidability results for POMDP

- The model checking problem for POMDP and quantitative properties is undecidable, e.g., probabilistic reachability properties.
- There is no even no approximation algorithm for reachability objectives.
- The model checking problem for POMDP and several qualitative properties is undecidable, e.g.,
repeated reachability with positive probability "does $\operatorname{Pr}_{\max }^{\text {obs }}(\square \diamond F)>0$ hold ?"

Many interesting verification problems for distributed probabilistic multi-agent systems are undecidable.

Undecidability results for POMDP

- The model checking problem for POMDP and quantitative properties is undecidable, e.g., probabilistic reachability properties.
- There is no even no approximation algorithm for reachability objectives.
- The model checking problem for POMDP and several qualitative properties is undecidable, e.g.,
repeated reachability with positive probability "does $\operatorname{Pr}_{\max }^{\text {obs }}(\square \diamond F)>0$ hold ?"
... already holds for $\underbrace{\text { totally non-observable POMDP }}$ probabilistic Büchi automata

Remind: LTL model checking for MDP

probabilistic reachability analysis in the product-MDP $\mathcal{M} \times \mathcal{A}$

PA rather than DA?

probabilistic reachability analysis in the product-MDP $\mathcal{M} \times \mathcal{A}$

PA rather than DA?

probabilistic reachability analysis in the product-MDP $\mathcal{M} \times \mathcal{A}$
impossible, due to undecidability results

Decidability results for POMDP

Decidability results for POMDP

The model checking problem for POMDP and several qualitative properties is decidable, e.g.,

- invariance with positive probability "does $\operatorname{Pr}_{\max }^{\text {obs }}(\square F)>0$ hold ?"
- almost-sure reachability

$$
\text { "does } \operatorname{Pr}_{\max }^{\text {obs }}(\diamond F)=1 \text { hold ?" }
$$

- almost-sure repeated reachability

$$
\text { "does } \operatorname{Pr}_{\max }^{\text {obs }}(\square \diamond F)=1 \text { hold ?" }
$$

- persistence with positive probability

$$
\text { "does } \operatorname{Pr}_{\max }^{\text {obs }}(\Delta \square F)>0 \text { hold ?" }
$$

Decidability results for POMDP

The model checking problem for POMDP and several qualitative properties is decidable, e.g.,

- invariance with positive probability "does $\operatorname{Pr}_{\max }^{\text {obs }}(\square F)>0$ hold ?"
- almost-sure reachability

$$
\text { "does } \operatorname{Pr}_{\max }^{\text {obs }}(\diamond F)=1 \text { hold ?" }
$$

- almost-sure repeated reachability

$$
\text { "does } \operatorname{Pr}_{\max }^{\text {obs }}(\square \diamond F)=1 \text { hold ?" }
$$

- persistence with positive probability

$$
\text { "does } \operatorname{Pr}_{\max }^{o b s}(\diamond \square F)>0 \text { hold ?" }
$$

algorithms use a certain powerset construction

Probabilistic Automata and Verification

- Markov decision processes (MDP) and quantitative analysis against path events
- partial order reduction for MDP
- partially-oberservable MDP
- conclusions

Conclusion

- worst/best-case analysis of MDP solvable by
* numerical methods for solving linear programs
* known techniques for non-probabilistic systems \uparrow
graph algorithms, LTL-2-AUT translators, ... techniques to combat the state explosion problem (such as partial order reduction)

Conclusion

- worst/best-case analysis of MDP solvable by
* numerical methods for solving linear programs
* known techniques for non-probabilistic systems \uparrow
graph algorithms, LTL-2-AUT translators, ... techniques to combat the state explosion problem (such as partial order reduction)
but: strongly simplified definition of schedulers
assumption "full knowledge of the history" is inadequate, e.g., for agents of distributed systems

Conclusion

- worst/best-case analysis of MDP solvable by
* numerical methods for solving linear programs
* known techniques for non-probabilistic systems
- more realistic model: partially-observable MDP and multi-agents variants with distributed schedulers

Conclusion

- worst/best-case analysis of MDP solvable by
* numerical methods for solving linear programs
* known techniques for non-probabilistic systems
- more realistic model: partially-observable MDP and multi-agents variants with distributed schedulers
- many algorithms for "finite-horizon properties"
- few decidability results for qualitative properties
- undecidability for quantitative properties and, e.g., repeated reachability with positive probability

Conclusion

- worst/best-case analysis of MDP solvable by
* numerical methods for solving linear programs
* known techniques for non-probabilistic systems
- more realistic model: partially-observable MDP and multi-agents variants with distributed schedulers
- many algorithms for "finite-horizon properties"
- few decidability results for qualitative properties
- undecidability for quantitative properties and, e.g., โ repeated reachability with positive probability
proof via probabilistic language acceptors (PFA/PBA)

Conclusion

- worst/best-case analysis of MDP solvable by
* numerical methods for solving linear programs
* known techniques for non-probabilistic systems
- more realistic model: partially-observable MDP and multi-agents variants with distributed schedulers
- many algorithms for "finite-horizon properties"
- few decidability results for qualitative properties
- undecidability for quantitative properties and, e.g., repeated reachability with positive probability
- probabilistic Büchi automata interesting in their own ...

Probabilistic Büchi automaton (PBA)

$$
\mathcal{P}=(Q, \Sigma, \delta, \mu, F)
$$

- Q finite state space
- Σ alphabet
- $\delta: Q \times \Sigma \times Q \rightarrow[0,1]$ s.t. for all $q \in Q, a \in \Sigma$:
- initial distribution $\mu \quad \sum_{p \in Q} \delta(q, a, p) \in\{0,1\}$
- set of final states $F \subseteq Q$

Probabilistic Büchi automaton (PBA)

$$
\begin{gathered}
\mathcal{P}=(Q, \Sigma, \delta, \mu, F) \\
\bullet Q \text { finite state space }
\end{gathered} \longleftarrow \begin{gathered}
\text { POMDP where } \Sigma=\text { Act } \\
\text { and } \sim \widehat{=} Q \times Q
\end{gathered}
$$

- Σ alphabet
- $\delta: Q \times \Sigma \times Q \rightarrow[0,1]$ s.t. for all $q \in Q, a \in \Sigma$:
- initial distribution $\mu \quad \sum_{p \in Q} \delta(q, a, p) \in\{0,1\}$
- set of final states $F \subseteq Q$

Probabilistic Büchi automaton (PBA)

$\mathcal{P}=(Q, \Sigma, \delta, \mu, F)$

- Q finite state space
\longleftarrow POMDP where $\Sigma=A c t$ and $\sim \widehat{=} Q \times Q$
- Σ alphabet
- $\delta: Q \times \Sigma \times Q \rightarrow[0,1]$ s.t. for all $q \in Q, a \in \Sigma$:
- initial distribution μ $\sum_{p \in Q} \delta(q, a, p) \in\{0,1\}$
- set of final states $F \subseteq Q$

For each infinite word $x \in \Sigma^{\omega}$:
$\operatorname{Pr}(x)=$ probability for the accepting runs for x accepting run: visits F infinitely often

Probabilistic Büchi automaton (PBA)

$\mathcal{P}=(Q, \Sigma, \delta, \mu, F)$

- Q finite state space
- Σ alphabet
- $\delta: Q \times \Sigma \times Q \rightarrow[0,1]$ s.t. for all $q \in Q, a \in \Sigma$:
- initial distribution $\mu \quad \sum_{p \in Q} \delta(q, a, p) \in\{0,1\}$
- set of final states $F \subseteq Q$

For each infinite word $x \in \Sigma^{\omega}$:
$\operatorname{Pr}(x)=$ probability for the accepting runs for x
probability measure in the infinite Markov chain induced by \boldsymbol{x} viewed as a scheduler

Accepted language of a PBA

$\mathcal{P}=(Q, \Sigma, \delta, \mu, F)$

- Q finite state space, Σ alphabet
- $\delta: Q \times \Sigma \times \boldsymbol{Q} \rightarrow[0,1]$ s.t. \ldots
- initial distribution μ
- set of final states $F \subseteq Q$
three types of accepted language:
$\mathcal{L}^{>0}(\mathcal{P})=\left\{x \in \Sigma^{\omega}: \operatorname{Pr}(x)>0\right\} \quad$ probable semantics
$\mathcal{L}^{=1}(\mathcal{P})=\left\{x \in \Sigma^{\omega}: \operatorname{Pr}(x)=1\right\} \quad$ almost-sure sem.
$\mathcal{L}^{>\lambda}(\mathcal{P})=\left\{x \in \Sigma^{\omega}: \operatorname{Pr}(x)>\lambda\right\}$ threshold semantics where $0<\lambda<1$

Example for PBA

Example for PBA

accepted language:

$$
\mathcal{L}^{>0}(\mathcal{P})=(a+b)^{*} a^{\omega}
$$

Example for PBA

accepted language:

$$
\begin{aligned}
& \mathcal{L}^{>0}(\mathcal{P})=(a+b)^{*} a^{\omega} \\
& \mathcal{L}^{=1}(\mathcal{P})=b^{*} a^{\omega}
\end{aligned}
$$

Example for PBA

accepted language:

$$
\begin{aligned}
& \mathcal{L}^{>0}(\mathcal{P})=(a+b)^{*} a^{\omega} \\
& \mathcal{L}^{=1}(\mathcal{P})=b^{*} a^{\omega}
\end{aligned}
$$

Thus: $\mathrm{PBA}^{>0}$ are strictly more expressive than DBA

Example for PBA

accepted language:

$$
\begin{aligned}
& \mathcal{L}^{>0}(\mathcal{P})=(a+b)^{*} a^{\omega} \\
& \mathcal{L}^{=1}(\mathcal{P})=b^{*} a^{\omega}
\end{aligned}
$$

Thus: $\mathrm{PBA}^{>0}$ are strictly more expressive than DBA

Example for PBA

accepted language:

$$
\begin{aligned}
& \mathcal{L}^{>0}(\mathcal{P})=(a+b)^{*} a^{\omega} \\
& \mathcal{L}^{=1}(\mathcal{P})=b^{*} a^{\omega}
\end{aligned}
$$

Thus: $\mathrm{PBA}^{>0}$ are strictly more expressive than DBA

Example for PBA

accepted language:

$$
\begin{aligned}
& \mathcal{L}^{>0}(\mathcal{P})=(a+b)^{*} a^{\omega} \\
& \mathcal{L}^{=1}(\mathcal{P})=b^{*} a^{\omega}
\end{aligned}
$$

Thus: PBA $^{>0}$ are strictly more expressive than DBA

accepted language:

$$
\mathcal{L}^{>0}(\mathcal{P})=(a b+a c)^{*}(a b)^{\omega}
$$

but NBA accepts $\left((a c)^{*} a b\right)^{\omega}$

Example for PBA

accepted language:

$$
\begin{aligned}
& \mathcal{L}^{>0}(\mathcal{P})=(a+b)^{*} a^{\omega} \\
& \mathcal{L}^{=1}(\mathcal{P})=b^{*} a^{\omega}
\end{aligned}
$$

Thus: PBA $^{>0}$ are strictly more expressive than DBA

accepted language:

$$
\begin{aligned}
& \mathcal{L}^{>0}(\mathcal{P})=(a b+a c)^{*}(a b)^{\omega} \\
& \mathcal{L}^{=1}(\mathcal{P})=(a b)^{\omega}
\end{aligned}
$$

but NBA accepts $\left((a c)^{*} a b\right)^{\omega}$

PBA ${ }^{>0}$ are strictly more expressive than NBA

PBA ${ }^{>0}$ are strictly more expressive than NBA

from NBA to PBA:
NBA \longrightarrow deterministic in $\widehat{=}$ PBA $^{>0}$

Courcoubetis/ limit Yannakakis

Expressiveness of PBA with probable semantics ${ }_{\text {PBA-10 }}$
PBA ${ }^{>0}$ are strictly more expressive than NBA
from NBA to PBA:
NBA
NBA \longrightarrow deterministic in $\widehat{=}$ PBA >0

Expressiveness of PBA with probable semantics ${ }_{\text {PBA-10 }}$
PBA ${ }^{>0}$ are strictly more expressive than NBA
from NBA to PBA:
NBA
NBA \longrightarrow deterministic in $\widehat{=}$ PBA $^{>0}$

PBA ${ }^{>0}$ are strictly more expressive than NBA
from NBA to PBA:
NBA
NBA \longrightarrow deterministic in $\widehat{=}$ PBA $^{>0}$ Courcoubetis/ limit
Yannakakis

PBA $^{>0}$ are strictly more expressive than NBA

- from NBA to PBA:
via NBA that are deterministic in limit
- PBA can accept non- $\boldsymbol{\omega}$-regular languages

PBA $^{>0}$ are strictly more expressive than NBA

- from NBA to PBA:
via NBA that are deterministic in limit
- PBA can accept non- ω-regular languages

accepted language (probable semantics):
$\mathcal{L}^{>0}(\mathcal{P})=\left\{a^{k_{1}} b a^{k_{2}} b a^{k_{3}} b \ldots \mid\right.$

$P^{P B A}{ }^{>0}$ are strictly more expressive than NBA

- from NBA to PBA:
via NBA that are deterministic in limit
- PBA can accept non- $\boldsymbol{\omega}$-regular languages

accepted language (probable semantics):
$\mathcal{L}^{>0}(\mathcal{P})=\left\{a^{k_{1}} b a^{k_{2}} b a^{k_{3}} b \ldots \left\lvert\, \prod_{i=1}^{\infty}\left(1-\left(\frac{1}{2}\right)^{k_{i}}\right)>0\right.\right\}$

Expressiveness of PBA

PBA ${ }^{>0}$

DBA

Expressiveness of PBA

Expressiveness of PBA

PBA with thresholds
PBA ${ }^{>0}$
NBA

DBA

Expressiveness of PBA

PBA with thresholds
PBA ${ }^{>0}$
NBA

PBA $=1$
almost-sure semantics

Expressiveness of PBA

PBA with thresholds
$(a+b)^{*} a^{\omega}$
PBA ${ }^{>0}$
NBA

DBA

PBA $=1$
almost-sure semantics

Expressiveness of PBA

Expressiveness of PBA

Expressiveness of PBA

PBA with thresholds

emptiness problem: undecidable for $\mathrm{PBA}^{>0}$ decidable for $\mathrm{PBA}^{=1}$

Decidability results for POMDP

The model checking problem for POMDP and several qualitative properties is decidable:

- almost-sure reachability

$$
\text { "does } \operatorname{Pr}_{\max }^{o b s}(\Delta F)=1 \text { hold ?" }
$$

- invariance with positive probability "does $\operatorname{Pr}_{\max }^{\text {obs }}(\square F)>0$ hold ?"
- almost-sure repeated reachability "does $\operatorname{Pr}_{\max }^{\text {obs }}(\square \diamond F)=1$ hold ?"
- persistence with positive probability

$$
\text { "does } \operatorname{Pr}_{\max }^{\text {obs }}(\diamond \square F)>0 \text { hold ?" }
$$

algorithms use a certain powerset construction

Decidability results for POMDP

The model checking problem for POMDP and several qualitative properties is decidable:

- almost-sure reachability

$$
\text { "does } \operatorname{Pr}_{\max }^{o b s}(\Delta F)=1 \text { hold ?" }
$$

- invariance with positive probability "does $\operatorname{Pr}_{\max }^{o b s}(\square F)>0$ hold ?"
- almost-sure repeated reachability "does $\operatorname{Pr}_{\max }^{\text {obs }}(\square \diamond F)=1$ hold ?"
- persistence with positive probability

$$
\text { "does } \operatorname{Pr}_{\max }^{\text {obs }}(\diamond \square F)>0 \text { hold ?" }
$$

algorithms use a certain powerset construction

Almost-sure reachability/repeated reachability

The almost-sure repeated reachability problem

$$
\text { "does } \operatorname{Pr}_{\max }^{o b s}(\square \diamond F)=1 \text { hold ?" }
$$

is polynomially reducible to the almost-sure reachability problem "does $\operatorname{Pr}_{\max }^{\text {obs }}(\Delta F)=1$ hold ?"

Almost-sure reachability/repeated reachability

The almost-sure repeated reachability problem

$$
\text { "does } \operatorname{Pr}_{\max }^{o b s}(\square \diamond F)=1 \text { hold ?" }
$$

is polynomially reducible to the almost-sure reachability problem "does $\operatorname{Pr}_{\max }^{\text {obs }}(\Delta F)=1$ hold ?"

POMDP \mathcal{M}
objective: repeated reachability $\square \diamond F$

Almost-sure reachability/repeated reachability

The almost-sure repeated reachability problem

$$
" \text { does } \operatorname{Pr}_{\max }^{\text {obs }}(\square \diamond F)=1 \text { hold ?" }
$$

is polynomially reducible to the almost-sure reachability problem "does $\operatorname{Pr}_{\max }^{\text {obs }}(\nabla f)=1$ hold ?"

POMDP \mathcal{M}
objective: repeated reachability $\square \diamond F$

POMDP \mathcal{M}^{\prime}
objective: reachability $\diamond f$

Almost-sure reachability/repeated reachability

The almost-sure repeated reachability problem

$$
" \text { does } \operatorname{Pr}_{\max }^{\text {obs }}(\square \diamond F)=1 \text { hold ?" }
$$

is polynomially reducible to the almost-sure reachability problem "does $\operatorname{Pr}_{\max }^{\text {obs }}(\nabla f)=1$ hold ?"

POMDP \mathcal{M}
objective: repeated reachability $\square \diamond F$

POMDP \mathcal{M}^{\prime}
objective: reachability $\diamond f$

Almost-sure reachability

powerset construction for almost-sure reachability "does $\operatorname{Pr}_{\max }^{\text {obs }}(\diamond F)=1$ hold ?"

Almost-sure reachability

powerset construction for almost-sure reachability "does $\operatorname{Pr}_{\max }^{\text {obs }}(\diamond F)=1$ hold ?"

POMDP \mathcal{M} with equivalence \sim

MDP $\operatorname{Pow}(\mathcal{M})$
fully observable

Almost-sure reachability

powerset construction for almost-sure reachability "does $\operatorname{Pr}_{\max }^{\text {obs }}(\diamond F)=1$ hold ?"

POMDP \mathcal{M} with equivalence \sim

$$
\operatorname{Pr}_{\max }^{o b s}(\Delta F)=1 \text { in } \mathcal{M} \quad \text { iff } \quad \operatorname{Pr} \max \left(\diamond F^{\prime}\right)=1 \text { in } \operatorname{Pow}(\mathcal{M})
$$

Almost-sure reachability

powerset construction for almost-sure reachability "does $\operatorname{Pr}_{\max }^{\text {obs }}(\diamond F)=1$ hold ?"

POMDP \mathcal{M} with equivalence \sim

$$
\operatorname{Pr}_{\max }^{o b s}(\Delta F)=1 \text { in } \mathcal{M} \quad \text { iff } \quad \operatorname{Pr}_{\max }\left(\Delta F^{\prime}\right)=1 \text { in } \operatorname{Pow}(\mathcal{M})
$$ state \boldsymbol{s} in $\mathcal{M} \mapsto$ states $\langle s, R\rangle$ where $s \in R \subseteq[s]$

$[\boldsymbol{s}]=$ equivalence class of \boldsymbol{s} w.r.t. \sim

Almost-sure reachability

powerset construction for almost-sure reachability "does $\operatorname{Pr}_{\max }^{\text {obs }}(\diamond F)=1$ hold ?"

POMDP \mathcal{M} with equivalence \sim

$$
\operatorname{Pr}_{\max }^{o b s}(\Delta F)=1 \text { in } \mathcal{M} \quad \text { iff } \quad \operatorname{Pr}_{\max }(\diamond f)=1 \quad \text { in } \operatorname{Pow}(\mathcal{M})
$$ state \boldsymbol{s} in $\mathcal{M} \mapsto$ states $\langle s, R\rangle$ where $s \in R \subseteq[s]$

fresh goal state f
$[\boldsymbol{s}]=$ equivalence class of \boldsymbol{s} w.r.t. \sim

Almost-sure reachability

powerset construction for almost-sure reachability "does $\operatorname{Pr}_{\max }^{\text {obs }}(\Delta F)=1$ hold ?"

Almost-sure reachability

powerset construction for almost-sure reachability "does $\operatorname{Pr}_{\max }^{\text {obs }}(\Delta F)=1$ hold ?"
state \boldsymbol{s} in \mathcal{M}

$$
\text { if } \operatorname{Post}(s, \alpha) \cap F=\varnothing
$$

Almost-sure reachability

powerset construction for almost-sure reachability "does $\operatorname{Pr}_{\max }^{\text {obs }}(\diamond F)=1$ hold ?"

state $\langle s, R\rangle$ in $\operatorname{Pow}(\mathcal{M})$
 action $\boldsymbol{\alpha}$
if $\operatorname{Post}(s, \alpha) \cap F=\varnothing$
where $s \in R \subseteq[s]$

Almost-sure reachability

powerset construction for almost-sure reachability "does $\operatorname{Pr}_{\max }^{\text {obs }}(\diamond F)=1$ hold ?"
state s in \mathcal{M}
where $s \in R \subseteq[s]$
state $\langle s, R\rangle$ in $\operatorname{Pow}(\mathcal{M})$
 action $\boldsymbol{\alpha}$
$t \in \operatorname{Post}(s)$

Almost-sure reachability

powerset construction for almost-sure reachability "does $\operatorname{Pr}_{\max }^{\text {obs }}(\diamond F)=1$ hold ?"
action α state s in \mathcal{M}
where $s \in R \subseteq[s]$

$$
U=\operatorname{Post}(R, \alpha)
$$

state $\langle s, R\rangle$ in $\operatorname{Pow}(\mathcal{M})$
 action $\boldsymbol{\alpha}$
$t \in \operatorname{Post}(s)$

Almost-sure reachability

powerset construction for almost-sure reachability "does $\operatorname{Pr}_{\max }^{\text {obs }}(\diamond F)=1$ hold ?"

state $\langle s, R\rangle$ in $\operatorname{Pow}(\mathcal{M})$
 action $\boldsymbol{\alpha}$

$$
P(s, \alpha, t)=P^{\prime}(\langle s, R\rangle, \alpha,\langle t, \cup \cap[t]\rangle)
$$

Almost-sure reachability

powerset construction for almost-sure reachability "does $\operatorname{Pr}_{\max }^{o b s}(\Delta F)=1$ hold ?"
state \boldsymbol{s} in \mathcal{M}

$v \in F$
if $\operatorname{Post}(s, \alpha) \cap F \neq \varnothing$
where $\quad s \in R \subseteq[s]$

$$
U=\operatorname{Post}(R, \alpha)
$$

Almost-sure reachability

powerset construction for almost-sure reachability "does $\operatorname{Pr}_{\max }^{\text {obs }}(\Delta F)=1$ hold ?"

$v \in F$
if $\operatorname{Post}(s, \alpha) \cap F \neq \varnothing$
where $s^{\prime}, s \in R \subseteq[s]$

$$
U=\operatorname{Post}(R, \alpha)
$$

Almost-sure reachability

powerset construction for almost-sure reachability "does $\operatorname{Pr}_{\max }^{\text {obs }}(\Delta F)=1$ hold ?"

$v \in F$
if $\operatorname{Post}(s, \alpha) \cap F \neq \varnothing$
where $s^{\prime}, s \in R \subseteq[s]$

$$
U=\operatorname{Post}(R, \alpha)
$$

Almost-sure reachability

powerset construction for almost-sure reachability "does $\operatorname{Pr}_{\max }^{\text {obs }}(\Delta F)=1$ hold ?"

where $t \in U \backslash F$

Almost-sure reachability

powerset construction for almost-sure reachability "does $\operatorname{Pr}_{\max }^{\text {obs }}(\diamond F)=1$ hold ?"

where $s^{\prime}, s \in R \subseteq[s]$

$$
U=\operatorname{Post}(R, \alpha)
$$

Almost-sure reachability

powerset construction for almost-sure reachability "does $\operatorname{Pr}_{\max }^{\text {obs }}(\Delta F)=1$ hold ?"

if $\operatorname{Post}(s, \alpha) \cap F \neq \varnothing$
where $s^{\prime}, s \in R \subseteq[s]$

$$
U=\operatorname{Post}(R, \alpha)
$$

Almost-sure reachability

powerset construction for almost-sure reachability "does $\operatorname{Pr}_{\max }^{o b s}(\Delta F)=1$ hold ?"

$P^{\prime}(\langle s, R\rangle, \alpha,\langle t, U \cap[t]\rangle)=\frac{1}{2 K}$
where $K=|\operatorname{Post}(R, \alpha) \backslash F|$

Almost-sure reachability

powerset construction for almost-sure reachability "does $\operatorname{Pr}_{\max }^{o b s}(\Delta F)=1$ hold ?"

