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• We know a lot about the processes that take place in cells

• Gene expression (transcription, translation)

• Sensing, signaling, control of gene expression

• Processes can be described as "reactions"

• Molecular species consumed (A,B) produced (C,D), or neither (E)

• Changes are modeled by differential equations

• Issues: uncertainty, parameter variability, stochasticity

Cells as machines
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Phenotypes and Steady states

• Genetically identical cells can exhibit different phenotypes

• Cell differentiation in multicellular organisms

• Examples in the bacterial world: alternative phenotypes, possibly with 
a role in survival, adaptation,..

• Due to the different sets of genes that are “on”

• Multiple phenotypes correspond to different equilibria of 
the dynamical system encoded in the DNA.

• Is phenotype multiplicity always the same as multistability?

• Model predictions may change when including stochastic 
and spatial effects
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Example of positive feedback in a genetic 
network discovered in the 50’s
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Abstractions

• A two-state automaton captures the switching 
behavior
• The states can be further characterized, individually

• More often than not, many details are not important as 
far as the rest of the system is concerned
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Lac system, stochastic model
The ODE description is not satisfactory:

- once a stable state is attained, the system (cell) 
should stay there indefinitely 

- experimental results show spontaneous transitions 
and coexistence of two states

(Ozbudak, Thattai, Lim, Shraiman, van Oudenaarden, Nature 2004)
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A stochastic abstraction

• For intermediate values of Te there is a quantifiable 
stochastic switching rate

• Stochastic transitions occur in addition to the deterministic 
switching triggered by extreme values of Te
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Lac system
System well described by an abstraction:
- two-state Markov chain model
- transition rates depend on external TMG
- can be computed from the full model

Macroscopic behavior well fitted by this model
- the timescale of individual transitions is 

smaller than the characteristic time of 
transition initiation

Remaining issue:
Model parameters are typically fitted to 

macroscopic measurements
- need to reconcile microscopic and 

macroscopic model predictions
- possible new insight into in vitro vs.
in vivo parameters
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Lac system

• A classic gene switch

• Simple deterministic dynamics 

• bistability through positive feedback

• Spontaneous transitions due to stochastic effects

• fluctuations, finite molecule numbers

• Phenomenologically, the two modes coexist

• the same colony has populations of cells in either state

• Relative population sizes influenced by the 
characteristic times of the transitions



Competence in B. subtilis
(based on a paper from the Elowitz lab)

•A two-prong response to 
nutritional stress

• Most cells commit to 
sporulation

• A small minority (<4%) 
become competent for 
DNA uptake

• ComK acts as a "master" 
transcription factor



Competence in B. subtilis

1. comK is self-promoting, and is 
expressed at a basal rate

2. ComK is degraded by MecA

3. ComS competes with MecA, 
inhibiting ComK degradation

4. comS is induced by stress, 
and is susceptible to noise

5. Overexpression of ComK 
suppresses comS

[Suel et al., Nature, 2006]



Bistability and slow return

• Two genes with mutual influence:
• A fluctuation induces Gene 1 (comK)

• Gene 2 (comS) is inhibited; drops below the threshold for Gene 1

• Gene 1 returns to its low state, and Gene 2 slowly increases
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Competence in B. subtilis

•A fluctuation in ComS blocks 
the degradation of ComK

•Increased ComK induces 
comK and the module "flips" 
into the high mode

•Eventually, the high level of 
ComK suppresses comS

•Lack of ComS leads to 
increased degradation of 
ComK

•comK "flips" back into the 
low mode ComS (red) and ComK (green) activities during 

a competence event

[From Suel et al., Nature, 2006]



The competence example

• Two phenotypes, with identifiable roles in the 
survival of the species

• Entry into competence is triggered stochastically, 
similarly to "spontaneous induction" in the lac 
system.

• However, exit from competence is deterministic; 
it is guaranteed by the dynamics of the network

• Even though a bistability motif is present (self-
promotion of comK), the system is not bistable



A different abstraction

• Only one steady state and a transient
• Stochastic transition in one direction

• Deterministic trajectory on the way back

• Similar long-term population distributions
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Bacterial persistence

Discovered in the 1940’s during the first large scale 
administration of antibiotics

• Small fraction survive therapy at a higher rate than the 
rest of the colony

• Persistence opens the 
door to the emergence 
of resistant strains

• Persisters are genetically 
identical to the rest

• They give rise to a colony 
identical to the old one



Bacterial persistence

• Persisters are non-growing cells
• Some are generated during stationary phase

• There is spontaneous persister generation
• Persistence is an 

alternative phenotype

• “Hedging strategy”

• Mechanism not well 
understood

• Likely an example of 
spontaneous entry and 
slow, deterministic 
return to growth [From Balaban et al., Science, 2004]



Spatial effects in cell signaling

• Cells must coordinate in multicellular organisms 
• This is achieved through signaling; signals are special substances
• Specialized receptors on the cell membrane, some inside the cell

• Receptor tyrosine kinase (RTK) receptors have to dimerize 
in order to signal
• These are membrane receptors; they can move more or less freely 

on the membrane
• Dimerization is more likely if the receptors are located in high 

density patches, rather then being uniformly distributed
• Such patches have been observed; the mechanism behind their 

formation is unclear

• Spatial self-organization contributes to the dynamics of 
signal initiation
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• Large molecules which straddle the cell membrane
• Ligand binding and dimerization are required for signal 

initiation



Spatial Monte-Carlo simulation

• Sometimes the only approach to signal initiation
• Molecules are simulated individually
• The system evolves as a Markov chain with spatial and 

chemical transitions



Summary

• Cellular processes can usually be described by ODE-
based rate laws

• Two apparently conflicting challenges
• The complexity of the networks requires simplifications

(abstractions)
• The ODE approach is itself an idealization of a richer 

underlying phenomenology of stochastic effects and 
spatial structure

• There are good mathematical methods for 
abstraction, and good algorithms for simulation



Acknowledgments

• People (mostly form U.Penn):

• Harvey Rubin, Vijay Kumar, Junhyong Kim
• Marcin Imielinski (HMS), Agung Julius (RPI), Selman Sakar
• Jeremy Edwards (UNM)  

• Funding: 
• NIH (F33, K25), DARPA (BioSPICE) 
• Penn Genomics Frontiers Institute / Commonwealth of 

Pennsylvania
• State of West Virginia


