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A Detailed Schematic Diagram of a Biological System
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Model
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• An abstraction of reality.
• Cannot capture everything.
• Useful models:

◦ Explain things.
◦ Predict things.

• Sufficient details are needed.
• Do we want to model an ecological system

at the molecular level?
• Needs to balance accuracy and efficiency.
• Make things as simple as possible but not

simpler.



Detailed View
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C. Jordan, Gyre, 2009



Higher Level View
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Global View
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Stochastic Formations of Biochemical Models
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• Molecular Dynamics:

◦ Keeps track of positions and velocities of all the molecules.
◦ Captures both reactive and non-reactive collisions as well as

movements of diffusing molecules.

• Green’s Function Reaction Dynamics:

◦ Keeps track of a set of diffusing molecules.
◦ Captures both reactive and non-reactive collisions of molecules

via discrete events.

• Stochastic Chemical Kinetics:

◦ Keeps track of molecular populations.
◦ Captures only reactive collisions via discrete events.



Stochastic Chemical Kinetics (SCK)
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Considers molecules of N species {S1, . . . , SN}, interacting through M
reaction channels {R1, . . . , RM} inside a well-stirred system.

• X(t) = (X1(t), . . . , XN (t)) is the system state that denotes the
number of molecules of each Si in the system at time t.

• Given X(t) = x, each reaction Rj is characterized by:

◦ Propensity function aj(x) where aj(x)dt is probability that one Rj

event will occur within next dt.
◦ State-change vector vj where one Rj event results in state

transition x→ x+ vj.



Time Evolution of SCK Models
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Given X(t0) = x0, the time evolution of SCK model is governed by:

X(t+ dt) = X(t) + Ξ(dt;X(t)),

where Ξ(dt;x) is a random variable with density function pΞ(v | dt;x):

pΞ(v | dt;x) =

{

aj(x)dt if v = vj ,

1−
∑M

j′=1
aj′(x)dt if v = 0.

• Ignores the case where two or more reactions occur in time interval
[t, t+ dt) as this probability is proportional to (dt)2 (i.e., very small).

• Strictly speaking, each reaction must be elementary.



Simulation of SCK Models (Naive Approach)
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Replace dt by small but finite value ∆t:

X(t+∆t) = X(t) + Ξ(∆t;X(t)).

• Not exact since ∆t is finite.
• Not efficient since ∆t must be very small.



Gillespie’s Stochastic Simulation Algorithm (SSA)
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Idea: Don’t approximate dt by ∆t, but instead, randomly sample the
waiting time to the next reaction T (x) and the next reaction index J(x).

It turns out:

• T (x) is an exponential random variable with mean 1/
∑

j′ aj′(x).
• J(x) is a random variable with Prob(j | x) = aj(x)/

∑

j′ aj′(x).

1: initialize: t← 0, x← x0

2: evaluate all propensity functions.
3: repeat
4: generate τ and j according to P (j, τ | x, t)
5: update: t← t+ τ , x← x+ vj

6: evaluate propensity functions of reactions affected by the change.
7: until simulation termination condition is satisfied



Simple Example: Enzymatic Reaction
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R1 : E + S
k1−→ C , a1(x) = k1xSxE

R2 : C
k2−→ E + S , a2(x) = k2xC

R3 : C
k3−→ E + P , a3(x) = k3xC

• Three reaction channels.
• Transforms S into P , catalyzed by E .



Sample SSA Run of Enzymatic Reaction (Direct Method)
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An SSA simulation run with initial condition:
X(0) ≡ (XS(0), XE(0), XC(0), XP (0)) = (10, 1, 0, 0), and with rate
constants: k1 = 1, k2 = 1, k3 = 0.01.

Reaction Propensity Partial sum
R1 k1xSxE = 10 10

R2 k2xC = 0 10

R3 k3xC = 0 10

r1 = 0.00475, r2 = 0.420

τ = − ln (r1)/(10 + 0 + 0) = 0.535

θ = r2 × (10 + 0 + 0) = 4.200

Iteration 1

t = 0



Sample SSA Run of Enzymatic Reaction (Direct Method)
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An SSA simulation run with initial condition:
X(0) ≡ (XS(0), XE(0), XC(0), XP (0)) = (10, 1, 0, 0), and with rate
constants: k1 = 1, k2 = 1, k3 = 0.01.

Reaction Propensity Partial sum
R1 k1xSxE = 10 10

R2 k2xC = 0 10

R3 k3xC = 0 10

r1 = 0.00475, r2 = 0.420

τ = − ln (r1)/(10 + 0 + 0) = 0.535

θ = r2 × (10 + 0 + 0) = 4.200

Iteration 1

t = 0



Sample SSA Run of Enzymatic Reaction (Direct Method)
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An SSA simulation run with initial condition:
X(0) ≡ (XS(0), XE(0), XC(0), XP (0)) = (10, 1, 0, 0), and with rate
constants: k1 = 1, k2 = 1, k3 = 0.01.

Reaction Propensity Partial sum
R1 k1xSxE = 0 0

R2 k2xC = 1 1

R3 k3xC = 0.01 1.01

r1 = 0.297, r2 = 0.520

τ = − ln (r1)/(0 + 1 + 0.01) = 1.202

θ = r2 × (0 + 1 + 0.01) = 0.525

Iteration 2

t = 0.535



Sample SSA Run of Enzymatic Reaction (Direct Method)
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An SSA simulation run with initial condition:
X(0) ≡ (XS(0), XE(0), XC(0), XP (0)) = (10, 1, 0, 0), and with rate
constants: k1 = 1, k2 = 1, k3 = 0.01.

Reaction Propensity Partial sum
R1 k1xSxE = 0 0

R2 k2xC = 1 1

R3 k3xC = 0.01 1.01

r1 = 0.297, r2 = 0.520

τ = − ln (r1)/(0 + 1 + 0.01) = 1.202

θ = r2 × (0 + 1 + 0.01) = 0.525

Iteration 2

t = 0.535



Sample SSA Run of Enzymatic Reaction (Direct Method)
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An SSA simulation run with initial condition:
X(0) ≡ (XS(0), XE(0), XC(0), XP (0)) = (10, 1, 0, 0), and with rate
constants: k1 = 1, k2 = 1, k3 = 0.01.

Reaction Propensity Partial sum
R1 k1xSxE = 10 10

R2 k2xC = 0 10

R3 k3xC = 0 10

r1 = 0.210, r2 = 0.647

τ = − ln (r1)/(10 + 0 + 0) = 0.156

θ = r2 × (10 + 0 + 0) = 6.47

Iteration 3

t = 1.737
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An SSA simulation run with initial condition:
X(0) ≡ (XS(0), XE(0), XC(0), XP (0)) = (10, 1, 0, 0), and with rate
constants: k1 = 1, k2 = 1, k3 = 0.01.

Reaction Propensity Partial sum
R1 k1xSxE = 10 10

R2 k2xC = 0 10

R3 k3xC = 0 10

r1 = 0.210, r2 = 0.647

τ = − ln (r1)/(10 + 0 + 0) = 0.156

θ = r2 × (10 + 0 + 0) = 6.47

Iteration 3

t = 1.737



Sample SSA Run of Enzymatic Reaction (Direct Method)
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An SSA simulation run with initial condition:
X(0) ≡ (XS(0), XE(0), XC(0), XP (0)) = (10, 1, 0, 0), and with rate
constants: k1 = 1, k2 = 1, k3 = 0.01.

Reaction Propensity Partial sum
R1 k1xSxE = 0 0

R2 k2xC = 1 1

R3 k3xC = 0.01 1.01

r1 = 0.312, r2 = 0.849

τ = − ln (r1)/(0 + 1 + 0.01) = 1.153

θ = r2 × (0 + 1 + 0.01) = 0.857

Iteration 4

t = 1.893
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An SSA simulation run with initial condition:
X(0) ≡ (XS(0), XE(0), XC(0), XP (0)) = (10, 1, 0, 0), and with rate
constants: k1 = 1, k2 = 1, k3 = 0.01.

Reaction Propensity Partial sum
R1 k1xSxE = 0 0

R2 k2xC = 1 1

R3 k3xC = 0.01 1.01

r1 = 0.312, r2 = 0.849

τ = − ln (r1)/(0 + 1 + 0.01) = 1.153

θ = r2 × (0 + 1 + 0.01) = 0.857

Iteration 4

t = 1.893



Multi-Timescale Problem with SSA
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An SSA simulation run with initial condition: X(0) = (10, 1, 0, 0), and
with rate constants: k1 = 1, k2 = 1, k3 = 0.01.

• On average, we encounter 100 dissociation reaction events before we
observe the next production reaction event.

• We spend lots of CPU time for uninteresting reaction events.

More extreme case with initial condition: X(0) = (3000, 220, 0, 0), and
with rate constants: k1 = 0.01, k2 = 100, k3 = 0.01:

• 1,000 simulation runs of 20,000 time units took over 68 hours on a
3GHz Pentium 4 machine.

In general, when k2 � k3:

• Most of computation time is allocated for simulating formations and
breakups of C .

• Very unproductive.



Bottom Line
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SSA can be very expensive not only because it can require a very large
number of simulation runs to obtain statistically meaningful results but
also because it simulates each reaction event one at a time.

• A higher level abstraction is essential for analysis of large multiscale
systems.

• Essential to balance accuracy and efficiency.
• However, it is hard to do in general setting.
• One approach is to reduce commonly seen network structures at

various resolutions.



Our Automated Modeling and Analysis Tool Flow
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Model
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Engine

Abstracted
Model

Analysis
Engine Results

• Our approach to accelerate temporal behavior analysis.



Our Automated Modeling and Analysis Tool Flow
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Abstracted
Model
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Engine Results

• Reaction-based model in SBML format.
• Usually a low-level abstraction (elementary reaction level).
• Requires substantial computational costs for analysis.



Our Automated Modeling and Analysis Tool Flow
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Original
Model

Abstraction
Engine

Abstracted
Model

Analysis
Engine Results

• Contains a suite of model abstraction methods.
• User can configure which methods to apply.
• Systematically checks conditions for each model abstraction.
• Automatically performs transformations.
• Faster and more accurate compared with manual model abstraction.
• Easy to generate models with various level of resolutions.



Our Automated Modeling and Analysis Tool Flow
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Original
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Abstraction
Engine

Abstracted
Model

Analysis
Engine Results

• A higher-level model which contains fewer species and reactions.
• Easier to intuitively visualize crucial components and interactions.
• Many fast reactions are removed.
• Substantially lowers the cost of stochastic analysis.
• Can be saved as SBML.



Our Automated Modeling and Analysis Tool Flow

Hiroyuki Kuwahara Efficient Analysis of Dynamical Properties in Stochastic Chemical Kinetic Models – Page 16

Original
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Abstracted
Model
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Engine Results

• Various Monte Carlo simulation methods including the SSA.
• Various ODE simulation methods.
• Efficient probabilistic analysis features.



Our Automated Modeling and Analysis Tool Flow
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Original
Model

Abstraction
Engine

Abstracted
Model
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Engine Results

• Can be obtained significantly faster.
• Can approximate the original model well.



Model Representation of Enzymatic Reaction
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Model: E + S
k1
�

k2

C
k3−→ E + P .

S

r

E

r

k1xSxE |k2xC

p

C

r

k3xC

p

p

P

• Bipartite graph with species nodes
and reaction nodes.

• Double arrows represent reversible
reactions.

• 4 species and 3 reactions.
• Unproductive when k2 � k3.



Production-Passage-Time Approximation
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The idea: simple model reduction to minimize the number of reaction
events that fire in each simulation of the enzymatic reaction.

S

r

E

r

k1k3
k2+k3

xSxE

p

C

r

k3xC

p

p

P

• Removes unproductive reaction.
• Approximates passage time of C

formation leading to P production.
• 4 species and 2 reactions.



Quasi-Steady-State Approximation
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Assumes C in steady state, and deterministically and algebraically
expresses xC in terms of xS.

S

r

k3Etot
k1

k2+k3
xS

1+
k1

k2+k3
xS

p

P

• Removes fast reactions.
• Further reduces dimensionality.
• 2 species and 1 reaction.
• Etot � Stot +

k2+k3
k1

.



Enzymatic Cycle
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• Ubiquitous control motif.
• Has two enzymatic reactions.
• Models regulation of protein activity.
• Can have rich dynamics:

◦ Ultrasensitivity.
◦ Adaptation.
◦ Bistable oscillation.

Ef + S
k1
�

k2

Cf
k3−→ Ef + P

Eb + P
k4
�

k5

Cb
k6−→ Eb + S



Enzymatic Cycle Example 1
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Ef + S
k1
�

k2

Cf
k3−→ Ef + P , Eb + P

k4
�

k5

Cb
k6−→ Eb + S

with the initial conditions:

(XS(0), XP (0), XEf
(0), XEb

(0), XCf
(0), XCb

(0)) = (100, 0, 2, 1, 0, 0).

The rate constants:

k1 = 0.1; k2 = 1.0; k3 = 0.01; k4 = 0.1; k5 = 1.0; and k6 = 0.01.

• Run for 20000 time units.
• Simulated for 1,000 runs.



Enzymatic Cycle Example 1: Accuracy
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Enzymatic Cycle Example 1: Accuracy
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Enzymatic Cycle Example 1: Accuracy
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Enzymatic Cycle Example 1: Efficiency
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Model Time Speedup
Original 228s 1
PPTA 17s 13
QSSA 12s 19



Enzymatic Cycle Example 2
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Ef + S
k1
�

k2

Cf
k3−→ Ef + P , Eb + P

k4
�

k5

Cb
k6−→ Eb + S

with the initial conditions:

(XS(0), XP (0), XEf
(0), XEb

(0), XCf
(0), XCb

(0)) = (0, 100, 10, 20, 0, 0).

The rate constants:

k1 = 103; k2 = 1.5× 103; k3 = 2; k4 = 103; k5 = 5× 102; and k6 = 1.

• Run for 300 time units.
• Simulated for 1,000 runs.



Enzymatic Cycle Example 2: Accuracy
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Enzymatic Cycle Example 2: Accuracy
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Enzymatic Cycle Example 2: Accuracy
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Enzymatic Cycle Example 2: Efficiency
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Model Time Speedup
Original 17.73h 1
PPTA 87.51s 729
QSSA 53.43s 1,194



Rare yet Catastrophic Events
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• Natural biological systems are robust to a certain range of internal
and external variations.

• Occurrence of failure events may be rare under normal settings.
• However, when they happen, they can lead to catastrophic

consequences.
• By treating complex non-Mendelian diseases as system failure, in

silico rare event analysis can become an important tool to understand
disease etiology.

• Rare event analysis presents a particularly challenging computational
problem.



Transition Event Analysis via Simulation
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Objective: Estimate p ≡ Pt≤tmax
(X→ E | x0), the probability that X

moves to any states in E within tmax given X(0) = x0.

• Define Y be a Boolean random variable such that:

Y =

{

1 if the system moves to E within tmax,

0 otherwise.

• Also, let Y {i} be the i-th sample of Y . Then generate n samples of Y
by running n simulation of X(t), and estimate p by pn:

pn ≡
1

n

n
∑

i=1

Y {i}.



Problem with This Approach
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Since we only use 0 and 1, it takes very large n to estimate very small p.

For example, suppose p = 10−6:

• On average, it takes 106 samples to get the first hit.
• With n = 105, pn = 10−5 with one hit, pn = 0 with no hit.
• Very sensitive to 1’s.
• Has high variance.



Importance Sampling
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Instead of using rare 1’s for hits, use much more frequent smaller number.

Suppose p = 0.005.

p10 = 0/10 = 0



Importance Sampling
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Instead of using rare 1’s for hits, use much more frequent smaller number.

Suppose p = 0.005.

p10 = 0.04/10 = 0.004



Weighted Stochastic Simulation Algorithm (wSSA)
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Idea: bias reaction selection to observe X→ E more often and weight
each outcome to correct the sampling bias.

• Next reaction is selected using biased propensity functions bj(x):

Prob(j | x) =
bj(x)

∑

j′ bj′(x)
.

• To compensate this bias in the reaction selection, the weight factor

w(j;x) =
aj(x)

∑M
j′=1

bj′(x)

bj(x)
∑M

j′=1
aj′(x)

is used to reflect the likelihood of the reaction selection.
• Each run has a weight based on the product of all w(j;x).
• Each weight is usually less than 1, so we can have smaller variance.



Rare Event Analysis: Balanced Enzymatic Cycle
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Ef + S
k1
�

k2

Cf
k3−→ Ef + P , Eb + P

k4
�

k5

Cb
k6−→ Eb + S

XE∗
(0) = 1;XS(0) = XP (0) = 50;XC∗

(0) = 0,

k1 = k2 = k4 = k5 = 1; k3 = k6 = 0.1.

With this condition, XS and XP typically stay around 50.

We are interested in estimating the probability that XP moves to 25 within
100 time units. The true probability is:

Pt≤100(XP → 25 | x0) = 1.738153× 10−7.



wSSA Rare Event Analysis: Balanced Enzymatic Cycle
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Ef + S
k1
�

k2

Cf
k3−→ Ef + P , Eb + P

k4
�

k5

Cb
k6−→ Eb + S

XE∗
(0) = 1;XS(0) = XP (0) = 50;XC∗

(0) = 0,

k1 = k2 = k4 = k5 = 1; k3 = k6 = 0.1.

In order to observe XP → 25 more often, the following biased propensity
functions are used:

b3(x) = 0.5× a3(x),

b6(x) = 2.0× a6(x).



Balanced Enzymatic Cycle Results
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Conclusions
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• Stochastic simulation becomes an important tool to study stochastic
effects on system-level properties.

• Stochastic simulation can be very expensive.
• Modeling and analysis method should be tailored for specific

properties of interest.
• For multiscale system, model abstraction can be useful.
• For rare event analysis, wSSA can be useful.
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