Groebner Bases in Boolean Rings

for Model Checking and

Applications in Bioinformatics*

Quoc-Nam Tran, Ph.D.
Professor of Computer Science
Lamar University

Outline

- Groebner bases in a general setting
- Applications
- Complexity
- Groebner bases in Boolean rings
- Naive approach
- Problems
- Our solutions
- Applications in bioinformatics
- Conclusion \& new developments + open problems

The Groebner bases method in a general setting

- Invented by B. Buchberger in 1965/1985 for polynomials over a computational field.
- Church-Rosser Term Rewriting System (G. Huet's procedure)

$$
F=\left\{\begin{array}{l}
\frac{2 x^{3}}{}-16 x^{2}+48 x-44+x y z-2 x z-5 x y-2 y z+4 z+10 y, \\
\frac{x^{3}}{}-8 x^{2}+10 x+33+y z^{2} x-4 x y z+3 x y-3 x z^{2}+12 x z- \\
5 y z^{2}+20 y z-15 y+15 z^{2}-60 z, \\
\frac{y z^{2} x}{15 y}-x y z-12 x y-3 x z^{2}+6 x z+21 x-5 y z^{2}+14 y z+ \\
\frac{2}{2}-48 z-15
\end{array}\right.
$$

lcm(lpp(f),lpp(g))

A Gröbner basis of this system w.r.t. an elimination term order (lexicographic term order where $x \succ y \succ z$)

$$
G=\left\{\begin{array}{l}
z^{3}-9 z^{2}+23 z-15 \\
-z^{2}+8 y+4 z-19 \\
x^{3}-8 x^{2}+19 x-12
\end{array}\right.
$$

$$
V(F)=V(G),\langle F\rangle=\langle G\rangle,\left\langle i n_{\succ}(\langle G\rangle)\right\rangle=\left\langle i n_{\succ}(G)\right\rangle
$$

Some Applications of Groebner Bases Computation

- Solving systems of non-linear equations
- Computer Aided Geometric Design \& Solid Modeling
- Automated Theorem Proving
- Applied Mathematics
- Automated Verification of Hardware \& Software (Model Checking)

Computer Aided Geometric Design

Trisecting an Angle by Hand

$t \leftarrow 0 ;$
process p_{0}

$$
\begin{aligned}
& s_{0} \leftarrow \mathrm{nc} ; \\
& \text { while } 1 \\
& t^{\prime} \leftarrow\left(t=0 \wedge s_{0}=\mathrm{c} ? \neg t: t\right) \\
& s_{0}^{\prime} \leftarrow(\text { case } \\
& \\
& s_{0}=\mathrm{nc}:\{\mathrm{r}, \mathrm{nc}\} \\
& \\
& s_{0}=\mathrm{r} \wedge s_{1}=\mathrm{nc}: \mathrm{c}, \\
& \\
& s_{0}=\mathrm{r} \wedge s_{1}=\mathrm{r} \wedge t=0: \mathrm{c} \\
& \\
& s_{0}=\mathrm{c}:\{\mathrm{c}, \mathrm{nc}\} \\
& \\
& \text { default: } \left.s_{0}\right) \\
& t \\
& t \\
& s_{0} \leftarrow t^{\prime}
\end{aligned}
$$

process p_{1}

$$
\begin{aligned}
& s_{1} \leftarrow \mathrm{nc} \\
& \text { while } 1 \\
& t^{\prime} \leftarrow\left(t=1 \wedge s_{1}=\mathrm{c} ? \neg t: t\right) \\
& s_{1}^{\prime} \leftarrow(\mathrm{case} \\
& \quad s_{1}=\mathrm{nc}:\{\mathrm{r}, \mathrm{nc}\} \\
& \\
& s_{1}=\mathrm{r} \wedge s_{0}=\mathrm{nc}: \mathrm{c} \\
& \\
& s_{1}=\mathrm{r} \wedge s_{0}=\mathrm{r} \wedge t=0: \mathrm{c} \\
& \\
& s_{1}=\mathrm{c}:\{\mathrm{c}, \mathrm{nc}\} \\
& \\
& \left.\quad \text { default: } s_{1}\right) \\
& t
\end{aligned}
$$

- Use one variable x_{1} for t, two variables x_{2}, x_{3} for s_{0}, two variables x_{4}, x_{5} for s_{1}, and one variable x_{6} for keeping track of the running process. We encode the enumerated variables s_{0} and s_{1} by setting the corresponding pair of bits to $(0,0)$ for $n c,(0,1)$ for r, and $(1,0)$ for c .
- The transition relation T can be constructed based on the assignments made by processes p_{0} and p_{1}.
- The property we want to check is $\operatorname{EF} f$, where $f \equiv\left(s_{0}=\mathrm{c}\right) \wedge\left(s_{1}=\mathrm{c}\right)$.
- The temporal formula can be translated into the least fixed point of $\mu y . f \vee \mathbf{E X} y$ where f can be represented by $I_{f}=\left\langle x_{2}\left(x_{3}+1\right)+1\right.$, $\left.x_{4}\left(x_{5}+1\right)+1\right\rangle$.
- Groebner basis computation found the least fixed point of $\lambda y . f \vee$ EX y as $I_{\mathbf{E F} f}=\left\langle x_{2}+1, x_{3}, x_{4}+1, x_{5}\right\rangle$. The initial condition can be represented by $I_{\text {init }}=\left\langle x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right\rangle$.
- Another simple Groebner basis computation for $V\left(I_{\mathbf{E F f} f}\right) \cap V\left(I_{\text {init }}\right)$ show that the constant polynomial 1 is the Groebner basis.
- That means $\operatorname{EF} f$ is false in the initial states.

Complexity

- Exponential Space
- $P \subseteq N P \subseteq P-S P A C E=N P-S P A C E \subseteq E X P-T I M E \subseteq E X P-S P A C E$

Focus

- Improving the practical efficiency.
- Better complexity for specific domains.
- Hybrid symbolic-numerical methods.

The Groebner bases method in Boolen rings
A ring $\mathbf{R}=\langle R,+, \cdot, 0,1\rangle$ is Boolean if \mathbf{R} satisfies $x^{2} \approx x, \forall x \in R$.

If \mathbf{R} is a Boolean ring, then \mathbf{R} is commutative and $x+x \approx 0$.
Boolean algebra (R, \wedge, \vee) gives rise to a ring $(R,+, \cdot)$ and vice versa
$a+b=(a \wedge \neg b) \vee(b \wedge \neg a)$ and $a \cdot b=a \wedge b$.
$x \vee y=x+y+x \cdot y, x \wedge y=x \cdot y$ and $\neg x=x+1$.

Naive Approach

- $F \subset \mathbf{R}[X]$
- $F^{\prime}=F \cup\left\{x_{1}^{2}+x_{1}, x_{2}^{2}+x_{2}, \ldots x_{n}^{2}+x_{n}\right\}$

Problems

- Theoretical point of view: EXP-SPACE
- Practical point of view: Blow-up in degree and number of terms
- Parallelism: very hard to parallelize Buchberger's algorithm

Our Solutions

$$
p-\operatorname{nf}(p)=\sum_{i=1}^{s} f_{i} \cdot h_{i}
$$

$$
\begin{align*}
p= & \sum_{x \in[X], \operatorname{deg}(x) \leq n} r_{x} \cdot x+ \\
& \sum_{i=1}^{s}\left(\sum_{x \in[X], \operatorname{deg}(x) \leq n} f_{i, x} \cdot x\right) \\
& \left(\sum_{x \in[X], \operatorname{deg}(x) \leq n} h_{i, x} \cdot x\right) \tag{1}\\
= & \sum_{x \in[X], \operatorname{deg}(x) \leq n}\left(r_{x}+\right. \\
= & \left.\sum_{i=1}^{s} \sum_{u, v \in[X], u \cdot v=x} f_{i, u} \cdot h_{i, v}\right) \cdot x \\
= & M . b
\end{align*}
$$

Given a set of polynomials F, a term order \prec and a polynomial p.

Find the normal form $\operatorname{nf}(p)$ of p with respect to $I=\langle F\rangle$ and \prec.
Step $1 M$ and b on fly.
Step_2 Find a full row rank sub-matrix
Step 3 Find a full column rank sub-matrix
Add corresponding elements of vector b into vector b^{\prime}
Return the solution of $p=M^{\prime} . b^{\prime}$

Remark:

Let s be the number of polynomials in F and S be the biggest number of monomials in all polynomials of F. Finding the value of any element in M requires $O(s \cdot S \cdot n)$ memory space.

$$
F=\left\{\left(x_{1}+1\right) \cdot\left(x_{2}+1\right) \ldots\left(x_{n}+1\right), x_{1} x_{2}+x_{3}\right\} ? ?
$$

Given a set of polynomials F and a term order \prec.

Find the reduced Groebner basis of $I=\langle F\rangle$ with respect to \prec.
Step_1 Set $G^{\prime}=\emptyset$; Matrix M and vector b on the fly
Step 2 For all monomial $m, 1 \nprec m \prec x_{1} \cdot x_{2} \cdots x_{n}$ do
If $1=m+\mathrm{nf}(m)$ then stop and return $\{1\}$;
Add $m+\mathrm{nf}(m)$ into G^{\prime} when m is minimal reducible.
Step_3 return G^{\prime}.

- Theoretical point of view: P-SPACE
- Practical point of view:
- No blow-up in degree

AMC vs Maple

- Parallelism: multi-core GPUs

Boolean Networks

One of the extensively studied topics for BN is to identify the attractors, the directed cycles in the state transition diagram.

time t				time $\mathrm{t}+1$		
v_{1}	v_{2}	v_{3}	v_{1}	v_{2}	v_{3}	
0	0	0	0	1	0	
0	0	1	0	0	0	
0	1	0	0	1	1	
0	1	1	0	0	1	
1	0	0	1	1	1	
1	0	1	1	0	1	
1	1	0	0	1	1	
1	1	1	0	0	1	

Boolean network with $v_{1}(t+1)=v_{1}(t) \wedge \neg v_{2}(t), v_{2}(t+1)=\neg v_{3}(t)$, $v_{3}(t+1)=v_{1}(t) \vee v_{2}(t)$

Finding a singleton attractor is NP-hard. Can be easily translated into an LTL model checking problem. Fore example, to find an attractor of length 4 of the BN in Figure 1, one can use the following LTL formula: LTLSPEC !F (($\times \times \times \times(\mathrm{v} 1)<->\mathrm{v} 1)$ \& $(\times \times \times \times(\mathrm{v} 2)<->\mathrm{v} 2)$ \& (X $\times \times \times(\mathrm{v} 3)<->\mathrm{v} 3)) \&!((\mathrm{X}(\mathrm{v} 1)<->\mathrm{v} 1) \&(X(\mathrm{v} 2)<->\mathrm{v} 2) \&(X(\mathrm{v} 3)$ <-> v3))).

Finding control strategies for a network

Internal			Control	
v_{1}	v_{2}	v_{3}	c_{1}	c_{2}
1	1	0	0	0
0	1	1	0	1
0	0	0	0	0
0	1	0		

$v_{1}(t+1)=v_{1}(t) \wedge \neg v_{2}(t) \wedge c_{1}, v_{2}(t+1)=\neg v_{3}(t), v_{3}(t+1)=\left(v_{1}(t) \vee\right.$ $\left.v_{2}(t)\right) \wedge \neg c_{2}$.

To find a control strategy for this $B N$ with the initial state of $[1,1,0]$ and desired state of $[0,1,0]$, one can use the following LTL formula: LTLSPEC !F ((v1 <-> 0$) \&(v 2<->1) \&(v 3<->0))$.

We generated 3,600 random networks with $25,30,35,40,45$ and 50 internal nodes; in-degree of 3, 4, 5, and 6; cycle length of $1,2,3,4$ and 5 .

For experimenting with the problem of finding the control strategies for BN, we generated 2,160 random networks with $25,30,35,40,45$ and 50 internal nodes; in-degree of $3,4,5,6,7$ and 8 ; and 5,8 and 10 control nodes.

When the symbolic model checking using BDD approach is used, for almost all of the problems, the BDDs were blown up very fast and the system crashed very soon, especially for BNs with more than 30 nodes and in-degree of more than 3.

When bounded model checking is used with zChaff SAT solver, for almost all of the problems, memory use was reasonable but NuSMV failed to find a counter-example after 10,000 seconds with a bound of at most 30. Notice that in real-world BNs, one may have thousands of nodes.

Conclusion

- Lowest bound for Groebner bases computation P-SPACE vs EXPSPACE
- Same complexity for generalized Boolean rings, e.g. $F_{4}[X]$
- Parallelism
- Bases conversions over generalized Boolean rings
- Conjecture: P

$$
a_{1} \Leftrightarrow b_{1} \wedge a_{2} \Leftrightarrow b_{2}
$$

- $I=\left\langle\left\{f_{1}, f_{2}, \ldots, f_{k}\right\}\right\rangle \triangleleft K\left[x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right]$, we need $I \cap K\left[x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right]$. If G_{I} is a Groebner basis of I w.r.t. an elimination term order, where $x_{1} \succ \ldots \succ x_{n} \succ x_{1}^{\prime} \succ \ldots \succ x_{n}^{\prime}$. Return $G \cap K\left[x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right]$.

THANKS!

- Questions or suggestions?

