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Introduction

Safety Verification Using Reachable Sets

unsafe set

initial set reachable set

exemplary trajectory

x1

x2

System is safe, if no trajectory enters the unsafe set.
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Introduction

Safety Verification Using Reachable Sets

unsafe set

initial set

exemplary trajectory

overapproximated
reachable setx1

x2

System is safe, if no trajectory enters the unsafe set.

Overapproximated system is safe → real system is safe.
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Linear Systems

Linear Systems with Uncertain Parameters

Reachability analysis is performed for the following system class:

System Model

ẋ = A x + u(t),

x(0) ∈ X0 ⊂ Rn, u(t) ∈ U ⊂ Rn, A ∈ A ⊂ Rn×n

where A is a matrix of intervals and U is a zonotope (specified later).

Example:
A ∈ A =

[
[−1.05,−0.95] [−4.05,−3.95]

[3.95, 4.05] [−1.05,−0.95]

]

u(t) ∈ U =

[
1
1

]
[−0.1, 0.1]
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Linear Systems

Initial State Solution (Homogeneous Solution)

Exact Solution (no uncertainties)

x(r) = eA rx(0).

Exact Solution (uncertain system matrix)

x(r) ∈
{
eA rx(0)

∣∣∣A ∈ A
}

The set of exponential matrices is written in short as eAr .

How to compute a tight over-approximation?
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Linear Systems

Preliminaries: Interval Arithmetic

The interval matrix exponential eAr is computed based on the addition
and multiplication rule:

Given are the intervals a = [a, a] and b = [b, b]:

a + b =[a + b, a + b]

ab =[min(ab, ab, ab, ab),max(ab, ab, ab, ab)]

Interval arithmetic is only exact for single-use-expressions (SUE).
Example (a = [−2,−1], b = [−1, 1]):

c = ab + a = [−4, 1], not SUE → overapproximated

c = a(b + 1) = [−4, 0], SUE → exact
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Linear Systems

Interval Matrix Exponential

Taylor series of eAt

eAt = I + At + 1
2! (At)2 + 1

3!(At)3 + . . .︸ ︷︷ ︸ ︸ ︷︷ ︸
eAt ⊂ I + W (t) +

∑m
i=3

1
i !(At)i + E (t)

W is computed exactly: Interval arithmetic (SUE) & Analytical
minimum and maximum for non-SUE elements.∑m

i=3
1
i !(At)i is overapproximated with interval arithmetic (not SUE).

E (t) is a standard approximation for the matrix exponential
remainder extended to interval matrices.
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Linear Systems

Overview of Reachable Set Computation

➀ Compute reachable set R̂h(r) at time r (without input).

➁ Obtain convex hull of R̂(0) and R̂h(r).

➂ Enlarge reachable set to guarantee enclosure of all trajectories.

R̂([0, r ]) = CH(R̂(0),

➀︷ ︸︸ ︷
eAr R̂(0))︸ ︷︷ ︸

➁

+ FR̂(0) + R̂ i([0, r ])︸ ︷︷ ︸
➂

F : Error interval due to the curvature of trajectories within t ∈ [0, r ].
R̂ i([0, r ]) : Reachable set of the input (inhomogeneous solution).

R̂(0)

R̂h(r)
convex
hull of
R̂(0), R̂h(r)

R̂([0, r ])

➀ ➁ ➂

enlargement
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Linear Systems

Representation of Reachable Sets

Definition of a zonotope Z

Z =

{
x ∈ Rn

∣∣∣x = c +

p∑
i=1

βig
(i), −1 ≤ βi ≤ 1

}
, c , g (i) ∈ Rn

Interpretation: Minkowski sum of line segments li = [−1, 1]g (i).

Zonotopes are centrally symmetric to c .

Short notation: Z = (c , g (1...p)).

0 1 2
0

1

2

c

l1

(a) c + l1

−1 0 1 2 3
−1

0

1

2

3

c

l1 l2

(b) c + l1 + l2

−2 0 2 4
−1

0

1

2

3

c

l1 l2

l3

(c) c + l1 + l2 + l3
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Linear Systems

Operations on Zonotopes

Given are Z1 = (c1, g
(1...p)) and Z2 = (c2, d

(1...p)).

Addition

Z1 + Z2 := {x + y |x ∈ Z1, y ∈ Z2} = (c1 + c2, g
(1...p), d (1...u))

Matrix Multiplication

LZ1 := {Lx |x ∈ Z1} = (Lc ,Lg (1...p)), L ∈ Rn×n

Interval Matrix Multiplication

After defining Â = [−S ,S ] and Ã,S ∈ Rn×n, it follows that

AZ1 = (Ã + Â)Z1

⊆ ÃZ1 + ÂZ1

⊆ ÃZ1 + Âbox(Z1), box() : generates over-appr. axis-aligned box.
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Linear Systems

Operations on Zonotopes

Given are Z1 = (c1, g
(1...p)) and Z2 = (c2, d

(1...p)).

Addition

Z1 + Z2 := {x + y |x ∈ Z1, y ∈ Z2} = (c1 + c2, g
(1...p), d (1...u))

Matrix Multiplication

LZ1 := {Lx |x ∈ Z1} = (Lc ,Lg (1...p)), L ∈ Rn×n

Example:

Zonotope with a single
generator:

−1 −0.5 0 0.5 1
−0.5

0

0.5

x
1

x 2

original
zonotope

exact solution

overapproximation
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Linear Systems

Input Solution (Inhomogeneous Solution)

Exact Solution

The set of all input solution is:

xp(r) ∈
{

eA r

∫ r

0
e−A tu(t) dt

∣∣∣A ∈ A, u(t) ∈ U
}

Over-approximative Solution

The integral can be over-approximated as follows:

R̂ i([0, r ]) =

∫ r

0
eAτU dτ

⊆
m∑

i=0

(Ai r i+1

(i + 1)!
U

)
+ E (r) r U.

(proof omitted)
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Linear Systems

Numerical Example (1)

ẋ =

»
[−1.05,−0.95] [−4.05,−3.95]

[3.95, 4.05] [−1.05,−0.95]

–
| {z }

A

x +

»
1
1

–
[−0.1, 0.1]

| {z }
U

−1 0 1
−1

−0.5

0

0.5

1

1.5

x
1

x 2 initial set

exemplary trajectories

reachable set
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Linear Systems

Numerical Example (2)

Five dimensional example:

−0.5 0 0.5 1 1.5

0

0.5

1

x
2

x 3

initial set

(a) Projection on x2 and x3

0 0.5 1
−0.5

0

0.5

1

x
4

x 5

initial set

(b) Projection on x4 and x5

Computation with systems of higher dimensions for 125 time intervals:

Dimension n 5 10 20 50 100

CPU-time [sec] 0.14 0.20 0.35 1.72 7.96
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Linear Systems

Further Work

Compute with Matrix zonotopes instead of interval matrices:

Matrix Zonotope

A(p) = Â(0) +
∑κ

i=1 p(i)Â(i), p̂(i) ∈ [−1, 1].

Example:

ẋ =

(
k ·

[−1.1 −4.1
3.9 −1.1

]
+ (1 − k)

[−0.9 −3.9
4.1 −0.9

])
x + u(t),

k ∈ [0, 1].

Corresponding Interval Matrix:

ẋ =

[
[−1.1,−0.9] [−4.1,−3.9]

[3.9, 4.1] [−1.1,−0.9]

]
x + u(t).
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Nonlinear Systems

Nonlinear Systems with Uncertain Parameters

Reachability analysis is performed for the following system class:

System Model

ẋ = f (x(t), u(t), p),

x(0) ∈ X0 ⊂ Rn, u(t) ∈ U ⊂ Rm, p ∈ P ⊂ Io

and u(t) is Lipschitz continuous.

Representations of the initial set X0, the parameter set P and the input set
U:

Initial state set X0, input set U: represented by a zonotope.

Parameter set P: represented by an o-dimensional interval (I is the
set of real valued intervals).
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Nonlinear Systems

Basic Ideas, Properties

➀ Efficient Computation

Embed efficient computation of reachable sets for linear systems using
zonotopes.

→ Linearize the system dynamics.

➁ Over-approximation

Compute linearization error bounds and add them to the set of uncertain
inputs U.

→ Reachable set of the nonlinear system is over-approximative.

➂ Constrain Linearization Error

Control linearization error bounds by splitting reachable sets.

→ Allows a tradeoff between accuracy and efficiency.
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Nonlinear Systems

Overall Algorithm

Initial set X0, input set U, time step l = 1

Linearize System

Compute reachable set Rlin without linearization error

Obtain set of linearization errors L based on
Rlin and L (L: set of admissible linearization errors)

L ⊆ L ? Split reachable set

Compute reachable set Rerr due to the linearization error L

R = Rlin + Rerr

l
:=

l
+

1

Yes

No
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Nonlinear Systems

Overall Algorithm: Animation

Linearize System

R(0) = X0
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Nonlinear Systems

Overall Algorithm: Animation

Compute reachable set Rlin

without linearization error

Rlin(t1)
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Nonlinear Systems

Overall Algorithm: Animation

Compute reachable set Rlin

without linearization error

Rlin([t0, t1])
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Nonlinear Systems

Overall Algorithm: Animation

Obtain set of linearization
errors L based on

Rlin + Rerr

Rlin([t0, t1]) + Rerr ,
Rerr : reachable set due to L
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Nonlinear Systems

Overall Algorithm: Animation

R([t0, t1]) =
Rlin([t0, t1]) + Rerr([t0, t1])

R([t0, t1])
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Nonlinear Systems

Overall Algorithm: Animation

L � L !
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Nonlinear Systems

Overall Algorithm: Animation

Rlin(tn)
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Nonlinear Systems

Overall Algorithm: Animation

Rencl ⊇ Rlin(tn)
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Nonlinear Systems

Overall Algorithm: Animation

Split reachable set
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Nonlinear Systems

Linearization and Lagrange Remainder

Original system: ẋ = f (z(t), p(t)), with zT := [xT , uT ]:

Taylor series

ẋi ∈ fi (z
∗, p) +

∂fi (z , p)

∂z

∣∣∣
z=z∗

(z − z∗)︸ ︷︷ ︸
1st order Taylor series=̂A(p)x+B(p)u+fi (z∗,p)

+

1

2
(z − z∗)T

∂2fi (ξ, p)

∂z2
)
∣∣∣
z=z∗

(z − z∗)︸ ︷︷ ︸
Lagrange remainderLi

, ξ = z∗ + [0, 1](z − z∗)

In case of parameter uncertainties: A(p) ∈ A, B(p) ∈ B are bounded by
interval matrices A, B.

Linearization error is obtained from the Lagrange remainder using interval
arithmetic → enclose reachable set by multidimensional interval.
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Nonlinear Systems

Control of the Linearization Error

Linearization error not enclosed by set of admissible linearization errors
(L � L) → Split reachable set (reduces search space for L).

1. Problem: How to split a zonotope, such that the resulting sets are
zonotopes?

Split of a zonotope

A zonotope Z = (c , g (1...p)) is split into Z1 and Z2 such that Z1 ∪ Z2 = Z ,
Z1 ∩ Z2 = Z ∗ by splitting a single generator:

Z1 = (c − 1
2g (j), g (1...j−1), 1

2g (j), g (j+1...p))

Z2 = (c + 1
2g (j), g (1...j−1), 1

2g (j), g (j+1...p))

Z ∗ = (c , g (1...j−1), g (j+1...p))
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Nonlinear Systems

Splitting of Zonotopes: Overlapping vs. Overapproximation

2. Problem: Proposed split is not effective if zonotope is com-
posed by many generators.

→ Zonotope is over-approximated by less generators.
→ Tradeoff between over-approximation and effectiveness.

Z
Zred

g (j)

g
(j)
red

(a) Z , Zred

Z 1Z 2

1
2g (j)

(b) Z 1, Z 2

Z 1
redZ 2

red

1
2g

(j)
red

(c) Z 1
red , Z 2

red

3. Problem: Which generator should be split?

→ Brute force approach is applied.
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Nonlinear Systems

Van-der-Pol Oscillator

ẋ1 = x2, ẋ2 = (1 − x2
1 )x2 − x1

−2 0 2
−3

−2

−1

0

1

2

3

x
1

x 2 initial set

0 5
0

2

4

6

8

10

12

14

time t
N

um
be

r 
of
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om

pu
te

d 
se

ts
 p

er
 ti

m
e 

st
ep

Computational time: 19 sec (Matlab, AMD Athlon64 3700+ processor).
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Nonlinear Systems

Water Tank System: Set Up

The states xi are the water levels of each tank and u is the water flow
into the first tank.
The differential equation for the ith tank is

ẋi =
1

Ai
(ki−1

√
2gxi−1 − ki

√
2gxi ).

The uncertain parameters are ki ∈ [0.0148, 0.015] and the inflow
disturbance is v ∈ [−0.005, 0.005].

x1

x2

x3

u

Matthias Althoff (Carnegie Mellon Univ.) Reachability Analysis of Nonlinear and Hybrid Systems using ZonotopesMay 7, 2010 23 / 56



Nonlinear Systems

Water Tank System: Reachable Sets

1 2 3 4
1

2

3

4

x
1

x 2

initial set

ki = 0.015

ki ∈ [0.0148, 0.015]

(a) Projection onto x1, x2.

1 2 3 4

2

3

4

5

6

x
1

x 6 initial set

(b) Projection onto x1, x6.

Dimension n 5 10 20 50 100

CPU-time [sec] 1.19 1.73 3.11 11.59 35.78

CPU-time [sec] (uncertain param.) 6.83 12.92 28.94 119.58 523.56
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Nonlinear Systems

Water Tank System: Reachable Sets

2 3 4
1.5

2

2.5

3

3.5

x
3

x 4

initial set

(a) Projection onto x3, x4.

2 4 6 8 10

2

3

4

5

6

x
5

x 6 initial set

ki = 0.015

ki ∈ [0.0148, 0.015]

(b) Projection onto x5, x6.

Dimension n 5 10 20 50 100

CPU-time [sec] 1.19 1.73 3.11 11.59 35.78

CPU-time [sec] (uncertain param.) 6.83 12.92 28.94 119.58 523.56
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Hybrid Systems

Hybrid Systems

Hybrid Automaton HA = (Z , z0,X ,X0, inv ,T , g , j , flow)

the set of locations Z with initial location z0,

the continuous state space X ⊂ Rn with initial state set X0,

the invariant inv and guard sets g of each location z which are modeled as
polytopes,

the set of discrete transitions T ⊆ Z × Z ,

the linear jump function j such that x ′ = Cgx + dg (x ′: state after jump)

the linear flow function ẋ = Az x + u(t)

initial set

reachable set

guards

jump

etc.
invariant

x1

x2

z1 z2
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Hybrid Systems

Combined use of Zonotopes and Polytopes

Representation of continuous evolution by zonotopes:

Representation of the intersection with guards, invariants by
polytopes:

P =
{
x ∈ Rn

∣∣∣Cx ≤ d
}
, C ∈ Rq×n, d ∈ Rq

Alternative definition: Intersection of
halfspaces Si .

S1
S2

S3

S4
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Hybrid Systems

Reachable Set Computation for Guard Set Intersection

➀ Compute reachable set using zonotopes.

➁ Transform zonotopes to overapproximated polytopes.

➂ Intersect polytopes with the guard set.

➃ Overapproximate intersected polytopes by a single zonotope →
Continue computation within the invariant of the next discrete state.

guard
set

reachable
set

(a) Step ➀

overappr.
polytopes

(b) Step ➁

overappr.
zonotope

(c) Step ➂ and ➃

Alternative for guards modeled by hyperplanes: A. Girard, C. Le Guernic (HSCC’08)
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Hybrid Systems

Representation of Zonotopes by Halfspaces

Overview:

Zonotopes are a special case of polytopes:
Exact Conversion

Conversion of parallelotopes
Conversion of zonotopes

The change of representation is computationally expensive:
Overapproximative Conversion

Overapproximate zonotopes by parallelotopes
Order reduction of zonotopes
Overapproximate zonotopes by several parallelotopes → intersection
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Hybrid Systems

Preliminaries and Notations

➀ Parallelotope is a zonotope of order 1: Number of generators p equals
the dimension n.

➁ Facets are spanned by n − 1 generators. Matrix of generators with the
ith generator missing:

G 〈i〉 = [g (1), . . . , g (i−1), g (i+1), . . . , g (n)].

c g (1)

g (2)

g (3)

C+
1
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Hybrid Systems

Preliminaries and Notations

➀ Parallelotope is a zonotope of order 1: Number of generators p equals
the dimension n.

➁ Facets are spanned by n − 1 generators. Matrix of generators with the
ith generator missing:

G 〈i〉 = [g (1), . . . , g (i−1), g (i+1), . . . , g (n)].

➂ Normal vector C+
i of the ith facet is perpendicular to all generators in

H := G 〈i〉:

C+
i = nX (H) := [. . . , (−1)k+1 det(H [k]), . . .]T ,

where H [k] is the matrix H whose kth row is removed.
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Hybrid Systems

Conversion from Generator to Halfspace Representation of
Parallelotopes

Halfspace representation Cx ≤ d

C =
ˆ
C+ −C+

˜T
C+

i = nX (G 〈i〉)T /‖nX (G 〈i〉)‖2

d =
ˆ
d+ d−˜T

d+
i = C+

i · c + Δdi , d−
i = −C+

i · c + Δdi

Δdi = |C+
i · g (i)|

x1

x2

g (1)

g (2)d−
1

d+
1C+

i · c

Δd1 = |C+
i · g (i)|

C+
1

−C+
1

c
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Hybrid Systems

Conversion from Generator to Halfspace Representation of
Parallelotopes

Halfspace representation Cx ≤ d

C =
ˆ
C+ −C+

˜T
C+

i = nX(G〈i〉)T/‖nX(G〈i〉)‖2

d =
ˆ
d+ d−˜T

d+
i = C+

i · c + Δdi , d−
i = −C+

i · c + Δdi

Δdi = |C+
i · g (i)|

x1

x2

g (1)

g (2)d−
1

d+
1C+

i · c

Δd1 = |C+
i · g (i)|

C+
1

−C+
1

c
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Hybrid Systems

Conversion from Generator to Halfspace Representation of
Parallelotopes

Halfspace representation Cx ≤ d

C =
ˆ
C+ −C+

˜T
C+

i = nX (G 〈i〉)T /‖nX (G 〈i〉)‖2

d =
ˆ
d+ d−˜T

d+
i = C+

i · c + Δdi, d−
i = −C+

i · c + Δdi

Δdi = |C+
i · g(i)|

x1

x2

g (1)

g (2)d−
1

d+
1C+

i · c

Δd1 = |C+
i · g (i)|

C+
1

−C+
1

c
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Hybrid Systems

Conversion from Generator to Halfspace Representation of
Zonotopes

Extension is straightforward: n − 1 generators selected from p
generators for each non-parallel facet → 2

( p
n−1

)
facets.

Facet obtained by cancelling p − n + 1 generators from the G -matrix
which is denoted by G 〈γ,...,η〉.

Halfspace representation Cx ≤ d

C =
ˆ
C+ −C+

˜T
C+

i = nX (G 〈γ,...,η〉)T /‖nX (G 〈γ,...,η〉)‖2

d =
ˆ
d+ d−˜T

d+
i = C+

i · c + Δdi , d−
i = −C+

i · c + Δdi

Δdi =
Pp

υ=1 |C+
i · g (υ)|

Complexity with respect to the number p of generators is O(
( p
n−1

) · p) →
linear in the number of facets.
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Hybrid Systems

Overapproximation of a Zonotope by a Parallelotope

Basic Procedure

➀ Choose n generators that should represent the parallelotope.

➁ Stretch chosen generators such that the zonotope is enclosed.

The overapproximated parallelotope Ψ is generated as follows:

Ψ = Γ · box(Γ−1Z )

where

Γ ∈ Rn×n is the matrix of n generators g (i) taken out of all p
generators,

box(Z ) returns the axis-oriented bounding box of a zonotope Z .
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Hybrid Systems

Overapproximation of a Zonotope by a Parallelotope

Basic Procedure

➀ Choose n generators that should represent the parallelotope.

➁ Stretch chosen generators such that the zonotope is enclosed.

0 5 10
0
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10

x
1

x 2

0 2 4

0

2

4

x
1

x 2

0 5 10
0

5

10

x
1

x 2

Γ−1· Γ·

g (1)g (1)

g (2)g (2)

Γ−1g (1)

Γ
−

1
g

(2
)

ZZ Γ−1Z

box(Γ−1Z) Γbox(Γ−1Z)

Remaining question: How to choose Γ?
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Hybrid Systems

Overapproximation of a Zonotope by a Parallelotope

Choose Γ such that a metric is minimized:

Proposed Metric

Θ = (vol(W · Z red)/vol(W · Z ))1/n, W = diag(w).

Z : original zonotope, Z red: reduced zonotope, W : normalizes coordinate axes.

W = 1: Determines the ratio of the edge length of two cubes, in which the volume
of the reduced zonotope and the original zonotope fit.

Candidates for Γ have to pass two tests:

➀ Length test: longest generators (2-norm) pass.

➁ Pseudo volume test: generator combination spanning the largest volume
Θ̃ = | det[g (i1), . . . , g (in)]|−1 pass (no stretching considered).

For the remaining generator combinations, the best performance index Θ wins (sufficient
to compute vol(W · Z red)).
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Hybrid Systems

Overapproximation of a Zonotope by a Parallelotope

Choose Γ such that a metric is minimized:

Proposed Metric

Θ = (vol(W · Z red)/vol(W · Z ))1/n, W = diag(w).

Z : original zonotope, Z red: reduced zonotope, W : normalizes coordinate axes.

W = 1: Determines the ratio of the edge length of two cubes, in which the volume
of the reduced zonotope and the original zonotope fit.

dimension order mean mean [min,max] variance
of t [sec]: of Θ: of Θ: of Θ:

2 2 0.0046 1.0582 [1.0030, 1.1349] 0.0011
2 6 0.0056 1.0908 [1.0369, 1.1522] 0.0005
4 2 0.0078 1.1560 [1.0343, 1.2899] 0.0024
4 6 0.0060 1.2967 [1.2143, 1.3995] 0.0015
6 2 0.0221 1.2574 [1.0779, 1.4088] 0.0039
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Hybrid Systems

Overapproximation of a Zonotope by a Reduced Zonotope

Basic Procedure

➀ Split zonotope into a part Ž which is unchanged and a part Z̃
reduced to a parallelotope (Z = Ž + Z̃).

➁ Selected generators of unchanged part Ž are the longest generators
(2-norm).

The reduced zonotope Z red is generated as follows:

Z red = Ž + Ψ, Ψ = Γbox(Γ−1Z̃).

Result: Improvements are marginal; computation time for halfspace
conversion is drastically increased.
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Hybrid Systems

Overapproximation of a Zonotope by Intersected
Parallelotopes

Basic Procedure

➀ Compute several enclosing parallelotopes with the best performance
indices.

➁ Intersect obtained parallelotopes.

dim. order inters. mean mean [min,max] variance
of t [sec]: of Θ: of Θ: of Θ:

4 2 1 0.0078 1.1560 [1.0343, 1.2899] 0.0024
4 2 4 0.0382 1.0288 [1.0019, 1.0836] 0.0003
4 6 1 0.0060 1.2967 [1.2143, 1.3995] 0.0015
4 6 4 0.0421 1.1383 [1.0808, 1.2892] 0.0010
6 2 1 0.0221 1.2574 [1.0779, 1.4088] 0.0039
6 2 4 0.0739 1.0964 [1.0251, 1.1759] 0.0010
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Hybrid Systems

Overapproximation of a Zonotope by Intersected
Parallelotopes

Basic Procedure

➀ Compute several enclosing parallelotopes with the best performance
indices.

➁ Intersect obtained parallelotopes.

(a) No intersection. (b) 4 intersections.
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Hybrid Systems

Overapproximation of a Set of Polytopes

Polytopes have only a few facets → computation of vertices is feasible.

Task: Enclose points in Rn

Possible methods are, e.g.:

➀ Oriented rectangular hulls based on singular value decomposition
(O. Stursberg, B. Krogh: HSCC 2003).

➁ Compute axis-oriented box where one of these generators is replaced
by the flow direction.

➂ Compute in parallel with several enclosures.
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Hybrid Systems

Over-Approximation of a Set of Polytopes
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Hybrid Systems

Room Heating Example

6 rooms with heaters in room 1 and 6 are considered.

The heaters are switched on if the temperature is below 20 degree
celsius and switched off when the temperature exceeds 24 degree.

The temperature dynamics of room i is:

ẋi = cihi + bi(u − xi) +
∑
i �=j

aij(xj − xi)

with room specific constant parameters aij , bi and ci .

1 2 3

4 5 6

heater
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Hybrid Systems

Reachable Sets

22 23 24
21

22

23

24

x
1

x 2

initial set

reachable set

simu-
lations

(a) Projection of x1, x2

22 23 24
22

22.5

23

23.5

24

x
1

x 6

initial set

(b) Projection of x1, x6

Computation time: 16.8 sec on an AMD Athlon64 3700+ processor (single
core) in Matlab.
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Hybrid Systems

Reachable Sets
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(c) Projection of x3, x4
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initial set

(d) Projection of x5, x6

Computation time: 16.8 sec on an AMD Athlon64 3700+ processor (single
core) in Matlab.
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Hybrid Systems

Conclusions

Linear Systems:

Uncertain parameters within specified intervals.
No wrapping-free implementation as for LTI systems.

Nonlinear Systems:

Efficient computation for high dimensional nonlinear systems with
uncertain parameters.
Algorithm is best suited for systems with lower nonlinearity measure.
In case of highly nonlinear systems, the current implementation may
get stuck due to numerical problems.

Hybrid Systems:

Zonotopes allow efficient computations for the cont. evolution.
Efficient conversion from zonotopes to polytopes and vice versa
possible; drawback: introduced overapproximation.
However: Reachable sets computed by polytopes also generate an
overapproximation when intersected by guards.
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Stochastic Systems

Stochastic Safety Verification

unsafe set

initial set
probability density function

exemplary trajectory

x1

x2

Probability of being in an unsafe set can be computed from the
probability density function (pdf).
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Stochastic Systems

Stochastic Safety Verification

unsafe set

initial set

exemplary trajectory

over-approximated
probability density function?

x1

x2

Probability of being in an unsafe set can be computed from the
probability density function (pdf).

Is the exact probability density function computable? Is an
over-approximation computable and how is it defined?
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Stochastic Systems

Two Different Definitions

Probability of entering an unsafe set X unsafe:

P(reachtf ) = P(∃t ∈ [0, tf ], x(t) ∈ X unsafe)

P(reach∞) = P(∃t ≥ 0, x(t) ∈ X unsafe)

Applied methods: Monte Carlo simulation, Markov chain abstraction,
reformulation as stochastic optimal control problem, . . .

Except for Monte Carlo simulation, methods suffer under the curse of
dimensionality (usually exponential complexity in number of
continuous state variables).

Probability of being in an unsafe set X unsafe:

P(x ∈ X unsafe, t) =

∫
Xunsafe

fX (x , t) dx .

Equivalent to above definition when unsafe set is absorbing.
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Stochastic Systems

Definition of the Considered System Class

Considered System Class

Ẋ = A X (t) + u(t) + Cξ(t),

X (0) � fX (x , t = 0), u(t) ∈ U, ξ=̂white noise

where A and C are matrices of proper dimension and A has full rank. X (t)
is a stochastic process, fX (x , t) its probability density function.

There are two kinds of inputs:

u(t): can take values from a set U; no stochastic information given.

Cξ(t): white noise input with multivariate Gaussian distribution.
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Stochastic Systems

Enclosing Hull of Probability Distributions

Input trajectory u(t) is known:
exact solution has Gaussian distribution: X (t) � N (μ(t), Σ(t)) with
mean value μ(t) and covariance matrix Σ(t).

Input trajectory u(t) is unknown: → Enclosing hulls required:

f̄X (x , t = r) = sup{fX (x , t = r)|X (t) is a stochastic process,

u(t) ∈ U, fX (x , 0) = f0}

Enclosing hull
f̄X (x , t = r)

Exemplary probability
density function

x

fX (x)
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Stochastic Systems

Enclosing Hull for Time Intervals

Numerical examples:

f (0), f (r): probability distribution at time t = 0 and t = r ,
f̄ ([0, r ]): enclosing probabilistic hull for t ∈ [0, r ].

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

0

0.4

0.8

1 3 5

f̄ ([0, r ])

f (r)

f (0)

x

(e) One dimensional example.

00

0

0.4

0.8

5 5

f̄ ([0, r ])

f (r)

f (0)

x1x2

(f) Two dimensional example.

Uncertain mean is modeled by a zonotope → computational methods from
previous slides can be applied.
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Stochastic Systems

Two-dimensional example

ẋ =

[−1 −4
4 −1

]
x +

[
[−0.01, 0.01]
[−0.01, 0.01]

]
+

[
0.7 0
0 0.7

]
ξ.

−4 −2 0 2 4
−3

−2

−1

0

1

2

3

4

5

(a) Simulation examples.

Γ(R(0))

(b) Enclosing probabilistic hulls.
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Stochastic Systems

Five-dimensional example

ẋ = Ax + u + 0.5 · I · ξ,

A =

⎡
⎢⎣
−1 −4 0 0 0
4 −1 0 0 0
0 0 −3 1 0
0 0 −1 −3 0
0 0 0 0 −2

⎤
⎥⎦, u ∈ U =

⎡
⎣[−0.1, 0.1]

...
[−0.1, 0.1]

⎤
⎦

T

.

Γ(R(0))

U
n
sa

fe
se

t
B

(a) Projection on x2, x3.

Γ(R(0))

(b) Projection on x4, x5.
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Stochastic Systems

Results and Computational Times

0 1 2
0

0.2

0.4

0.6

0 1 2
0

0.2

0.4

0.6

0.8

0
0
0

0

0.2
0.2

0.4
0.4

0.6

0.6 0.8

11 22

r = 0.02 r = 0.04

p̄p̄

time ttime t

p̄
([

k
r,

(k
+

1
)r

])

p̄
([

k
r,

(k
+

1
)r

])
p̄(kr)

p̄(kr)

Computational times: Higher order systems with randomly generated
matrices A, C computed (Matlab + single core desktop computer (AMD
Athlon64 3700)).

Dimension n 5 10 20 50 100
CPU-time [sec] 0.72 1.29 2.61 8.97 29.1
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Stochastic Systems

Conclusions

Efficient computation of enclosing probabilistic hulls for high
dimensional linear systems.

Algorithm allows combining Gaussian white noise with disturbances of
unknown stochastic properties.

Over-approximative approach allows one to consider non-Gaussian
noise.

Possible integration in algorithms for the reachability analysis of
nonlinear systems.
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Autonomous Cars

Safety Assessment of Autonomous Cars

Environment sensors:

Road geometry

Static obstacles

Dynamic
obstacles

Trajectory planner:

Planned trajectory

Safety Verification: Predict situation for each cycle → Crash probabilities

Cycle time ≈ 0.5 sec

Prediction horizon > Cycle time
→ Prediction has to be faster than real time.
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Autonomous Cars

Modeling of Other Traffic Participants

Structured Environments:

Vehicles follow preferred paths such as traffic lanes.

Used for: Normal behavior of traffic participants on a road network.

Longitudinal dynamics:

ṡ = v , v̇ = f (v , u), s : position, v : velocity, u : input.

→ Longitudinal probability distribution based on this model.

Lateral dynamics:
Difficult to model (e.g. driver model for lane keeping)
→ Static probability distribution.
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Autonomous Cars

Modeling of Other Traffic Participants

Structured Environments:

Vehicles follow preferred paths such as traffic lanes.

Used for: Normal behavior of traffic participants on a road network.
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Autonomous Cars

Abstraction to Markov Chains via Reachable Sets

Geometric determination of the transition probabilities Φα
ij :

Φα
ij =

V (Rα
j ∩ Xi)

V (Rα
j )

, V(): Volume

j : Initial cell, i : Cell after transition, alpha: Input cell
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Autonomous Cars

Abstraction to Markov Chains via Simulations

Counting the number N of final states in cells:

Φα
ij =

Nα
ij∑

i N
α
ij

.

j : Initial cell, i : Cell after transition, alpha: Input cell

s [m]

v 
[m

/s
]

100 120 140

10

12

14

16

18

s [m]

v 
[m

/s
]

100 120 140

10

12

14

16

18

initial
cell

initial
cell

simulation
results

reachable
cells

Matthias Althoff (Carnegie Mellon Univ.) Reachability Analysis of Nonlinear and Hybrid Systems using ZonotopesMay 7, 2010 53 / 56



Autonomous Cars

Overtaking Scenario
t ∈ [0, 0.5] s t ∈ [2, 2.5] s t ∈ [4, 4.5] s t ∈ [6, 6.5] s t ∈ [8, 8.5] s

autonom.
car

bicycle

other car

planned
path
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Autonomous Cars

Overtaking Scenario
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Autonomous Cars

Test Drive

left car

right car

autonomous
car

initial
position of the
prediction
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Autonomous Cars

Conclusions

Traffic is inherently unsafe → Stochastic verification.

Non-stochastic safety verification is only useful when all vehicles
broadcast their plans.

Separation into longitudinal & lateral dynamics saves computational
time.

Things that have not been presented:

Adaption of the longitudinal dynamics according to lane curvature,
speed limit, interaction with traffic participants, lane changing.

Comparison with Monte Carlo simulation:

Probability distribution: Markov chain abstraction is better.
Crash probability: Monte Carlo simulation is better.
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