How to make a logic probabilistic?

Pedro Baltazar

SQIG - IT, Lisbon - Portugal
pedro.baltazar@ist.utl.pt

CMU, CMACS Seminar - January 14th, 2010

■ D. Henriques, M. Biscaia, P. Baltazar, and P. Mateus, Probabilistic quantified linear temporal logic: Model checking, SAT and complete Hilbert calculus.
submitted for publication.

- P. Baltazar and P. Mateus.

Temporalization of probabilistic propositional logic. LFCS 2009, LNCS, 2009.

■ P. Baltazar, P. Mateus, R. Nagarajan, and N. Papanikolaou. Exogenous probabilistic computation tree logic. Electronic Notes in Theoretical Computer Science, 190(3) : 95-110, 2007.

non-probabilistic	probabilistic
Propositional logic	
■ Modal logic, CTL, LTL	PCTL and PCTL*
■ First-order theories:	\vdots
■ Presburger arithmetic	
■ Pointer logic	
\vdots	
■ Separation logic	
■ Duration calculus	
■ Metric temporal logic	
\square Differential dynamic logic	
\vdots	

1 Exogenous Combination of Logics

2 Probabilization of Logics:

- (generic) SAT
- completeness

3 Examples:

- EPPL - Probabilistic propositional logic
- PTL - Probabilistic temporal logic

■ CTPL - Temporal EPPL

Definition (Satisfaction system)

Let \mathcal{L} be a set of formulas, \mathcal{M} a class of models and $\Vdash \subseteq \mathcal{M} \times \mathcal{L}$ a satisfaction relation.
The tuple $\mathscr{S}=\langle\mathcal{L}, \mathcal{M}, \Vdash\rangle$ is a satisfaction system.

Definition (Satisfaction system)

Let \mathcal{L} be a set of formulas, \mathcal{M} a class of models and $\Vdash \subseteq \mathcal{M} \times \mathcal{L}$ a satisfaction relation.
The tuple $\mathscr{S}=\langle\mathcal{L}, \mathcal{M}, \Vdash\rangle$ is a satisfaction system.
Definition (Morphism and weak morphism)
A morphism $h: \mathscr{S} \rightarrow \mathscr{S}^{\prime}$ is a pair $\langle\bar{h}, \underline{h}\rangle$, with

$$
\bar{h}: \mathcal{L} \rightarrow \mathcal{L}^{\prime} \quad \text { and } \quad \underline{h}: \mathcal{M}^{\prime} \rightarrow 2^{\mathcal{M}}
$$

morphism: \quad for all $m \in \underline{h}\left(m^{\prime}\right), m \Vdash \varphi$ iff $m^{\prime} \Vdash^{\prime} \bar{h}(\varphi)$

Definition (Satisfaction system)

Let \mathcal{L} be a set of formulas, \mathcal{M} a class of models and $\Vdash \subseteq \mathcal{M} \times \mathcal{L}$ a satisfaction relation.
The tuple $\mathscr{S}=\langle\mathcal{L}, \mathcal{M}, \Vdash\rangle$ is a satisfaction system.

Definition (Morphism and weak morphism)

A morphism $h: \mathscr{S} \rightarrow \mathscr{S}^{\prime}$ is a pair $\langle\bar{h}, \underline{h}\rangle$, with

$$
\bar{h}: \mathcal{L} \rightarrow \mathcal{L}^{\prime} \quad \text { and } \quad \underline{h}: \mathcal{M}^{\prime} \rightarrow 2^{\mathcal{M}}
$$

morphism: \quad for all $m \in \underline{h}\left(m^{\prime}\right), m \Vdash \varphi$ iff $m^{\prime} \Vdash^{\prime} \bar{h}(\varphi)$
weak morphism: \quad exists $m \in \underline{h}\left(m^{\prime}\right), m \Vdash \varphi$ iff $m^{\prime} \Vdash^{\prime} \bar{h}(\varphi)$
for all $\varphi \in \mathcal{L}$ and for all $m^{\prime} \in \mathcal{M}_{h} \stackrel{\text { def }}{=}\left\{m^{\prime} \in \mathcal{M}^{\prime}: \underline{h}\left(m^{\prime}\right) \neq \emptyset\right\}$.

Definition（（Weak）equivalent systems）

\mathscr{S} and \mathscr{S}^{\prime} are（resp．weak）equivalent if there are（resp．weak） total morphisms $h: \mathscr{S} \rightarrow \mathscr{S}^{\prime}$ and $h^{\prime}: \mathscr{S}^{\prime} \rightarrow \mathscr{S}$ such that $\varphi=⿰ ⿰ 三 丨 ⿰ 丨 三^{\prime} \bar{h}^{\prime}(\bar{h}(\varphi)) \quad$ and $\quad \psi \nexists \bar{h}\left(\bar{h}^{\prime}(\psi)\right), \quad$ for $\varphi \in \mathcal{L}, \psi \in \mathcal{L}^{\prime}$.

Denoted by
■ equivalent， $\mathscr{S}_{1} \approx_{S} \mathscr{S}_{2}$
■ weak equivalent， $\mathscr{S}_{1} \approx_{S}^{w} \mathscr{S}_{2}$

Definition ((Weak) equivalent systems)

\mathscr{S} and \mathscr{S}^{\prime} are (resp. weak) equivalent if there are (resp. weak) total morphisms $h: \mathscr{S} \rightarrow \mathscr{S}^{\prime}$ and $h^{\prime}: \mathscr{S}^{\prime} \rightarrow \mathscr{S}$ such that

Denoted by
■ equivalent, $\mathscr{S}_{1} \approx_{S} \mathscr{S}_{2}$
■ weak equivalent, $\mathscr{S}_{1} \approx_{S}^{w} \mathscr{S}_{2}$

$$
\text { Proposition }\left(\left\langle\mathcal{L}, \mathcal{M}_{1}, \Vdash_{1}\right\rangle \approx_{S}\left\langle\mathcal{L}, \mathcal{M}_{2}, \Vdash_{2}\right\rangle \quad\right)
$$

$\Gamma \vDash_{1} \varphi \quad$ iff $\quad \Gamma \vDash_{2} \varphi$.
Proposition $\left(\left\langle\mathcal{L}, \mathcal{M}_{1}, \Vdash_{1}\right\rangle \approx_{S}^{w}\left\langle\mathcal{L}, \mathcal{M}_{2}, \Vdash_{2}\right\rangle\right)$
$\vDash_{1} \varphi \quad$ iff $\quad \vDash_{2} \varphi$.

Let $h_{1}: \mathscr{S} \rightarrow \mathscr{S}_{1}$ and $h_{2}: \mathscr{S} \rightarrow \mathscr{S}_{2}$ be morphisms.

$$
\begin{aligned}
& \mathscr{S}_{1} \\
& \uparrow_{h_{1}}^{h_{1}} \xrightarrow{h_{2}} \mathscr{S}_{2}
\end{aligned}
$$

Let $h_{1}: \mathscr{S} \rightarrow \mathscr{S}_{1}$ and $h_{2}: \mathscr{S} \rightarrow \mathscr{S}_{2}$ be morphisms.

$$
\begin{aligned}
& \mathscr{S}_{1} \\
& \uparrow_{h_{1}} \xrightarrow{h_{2}} \mathscr{S}_{2}
\end{aligned}
$$

Idea: $\mathscr{S}_{1} \otimes \mathscr{S}_{2}=\left\langle\mathcal{L}_{1} \otimes \mathcal{L}_{2}, \mathcal{M}^{\prime}, \Vdash^{\prime}\right\rangle$, with $\mathcal{M}^{\prime} \subseteq \mathcal{M}_{1} \times \mathcal{M}_{2}$

Example (Parametrization)

$$
\mathscr{S}_{\left(h_{1} \Rightarrow h_{2}\right)}=\left\langle\mathcal{L}_{1}, \mathcal{M}_{\left(h_{1} \Rightarrow h_{2}\right)}, \Vdash_{1}\right\rangle,
$$

where $\mathcal{M}_{\left(h_{1} \Rightarrow h_{2}\right)}=\left\{m \in \mathcal{M}_{h_{1}}: \underline{h}_{1}(m) \subseteq \underline{h}_{2}\left(\mathcal{M}_{2}\right)\right\}$.

Definition (probabilization + globalization)

The probabilization + globalization operator transforms
$\langle\mathcal{L}, \mathcal{M}, \Vdash\rangle$ into the system $\mathscr{S}^{(p+g)}=\left\langle\mathcal{L}^{(p+g)}, \mathcal{M}^{(p+g)}, \Vdash^{(p+g)}\right\rangle$:

- $\mathcal{L}^{(p+g)}$ is
(with $\beta \in \mathcal{L}$ and $r \in \operatorname{Alg}(\mathbb{R})$)

$$
\begin{aligned}
& t::=r \rrbracket \int \beta \rrbracket(t+t) \rrbracket(t . t) \\
& \varphi::=[\beta] \rrbracket(t<t) \rrbracket(\sim \varphi) \rrbracket(\varphi \sqsupset \varphi) ;
\end{aligned}
$$

Definition (probabilization + globalization)

The probabilization + globalization operator transforms
$\langle\mathcal{L}, \mathcal{M}, \Vdash\rangle$ into the system $\mathscr{S}^{(p+g)}=\left\langle\mathcal{L}^{(p+g)}, \mathcal{M}^{(p+g)}, \Vdash^{(p+g)}\right\rangle:$

- $\mathcal{L}^{(p+g)}$ is
(with $\beta \in \mathcal{L}$ and $r \in \operatorname{Alg}(\mathbb{R})$)

$$
\begin{aligned}
& t::=r \rrbracket \int \beta \rrbracket(t+t) \rrbracket(t . t) \\
& \varphi::=[\beta] \rrbracket(t<t) \rrbracket(\sim \varphi) \rrbracket(\varphi \sqsupset \varphi) ;
\end{aligned}
$$

■ $\mathcal{M}^{(p+g)}$ is the class of all $m=\langle S, \mathcal{F}, \mathbf{P}, V\rangle$, where $\langle S, \mathcal{F}, \mathbf{P}\rangle$ is a probability space, and $V: S \rightarrow \mathcal{M}$ is a measurable valuation, i.e. $V^{-1}[\beta] \stackrel{\text { def }}{=}\{s \in S: V(s) \Vdash \beta\} \in \mathcal{F}$;

Definition (probabilization + globalization)

The probabilization + globalization operator transforms
$\langle\mathcal{L}, \mathcal{M}, \Vdash\rangle$ into the system $\mathscr{S}^{(p+g)}=\left\langle\mathcal{L}^{(p+g)}, \mathcal{M}^{(p+g)}, \Vdash^{(p+g)}\right\rangle$:

- $\mathcal{L}^{(p+g)}$ is
(with $\beta \in \mathcal{L}$ and $r \in \operatorname{Alg}(\mathbb{R})$)

$$
\begin{aligned}
& t::=r \rrbracket \int \beta \rrbracket(t+t) \rrbracket(t . t) \\
& \varphi::=[\beta] \rrbracket(t<t) \rrbracket(\sim \varphi) \rrbracket(\varphi \sqsupset \varphi) ;
\end{aligned}
$$

- $\mathcal{M}^{(p+g)}$ is the class of all $m=\langle S, \mathcal{F}, \mathbf{P}, V\rangle$, where $\langle S, \mathcal{F}, \mathbf{P}\rangle$ is a probability space, and $V: S \rightarrow \mathcal{M}$ is a measurable valuation, i.e. $V^{-1}[\beta] \stackrel{\text { def }}{=}\{s \in S: V(s) \Vdash \beta\} \in \mathcal{F}$;
- the satisfaction relation $\Vdash^{(p+g)}$ is given by

■ $\llbracket \int \beta \rrbracket_{m}=\mathbf{P}\left(V^{-1}[\beta]\right)$
■ $m \Vdash \Vdash^{(p+g)}[\beta]$ iff $\quad V(S) \Vdash \beta$;
(...)
weak morphism $h_{p}: \mathscr{S}^{p} \rightarrow \mathscr{S}_{\text {RCF }}\left(\left\{x_{\beta}: \beta \in \mathcal{L}\right\} \cup X_{a l g} \cup X\right)$

- $\Delta_{\mathscr{S}}^{p}$ - probabilistic (sub)theory of \mathscr{S} in RCF
weak morphism $h_{p}: \mathscr{S}^{p} \rightarrow \mathscr{S}_{\text {RCF }}\left(\left\{x_{\beta}: \beta \in \mathcal{L}\right\} \cup X_{a l g} \cup X\right)$
- $\Delta_{\mathscr{S}}^{p}$ - probabilistic (sub)theory of \mathscr{S} in RCF
\square finite $\Delta_{\varphi}^{\Sigma} \subseteq \mathcal{L}_{\text {RCF }}$, such that $\Delta_{\mathscr{S}}^{p} \vDash_{\text {RCF }} \varphi$ iff $\Delta_{\Sigma}^{\varphi} \vDash_{\text {RCF }} \varphi$
weak morphism $h_{p}: \mathscr{S}^{p} \rightarrow \mathscr{S}_{\text {RCF }}\left(\left\{x_{\beta}: \beta \in \mathcal{L}\right\} \cup X_{a l g} \cup X\right)$
- $\Delta_{\mathscr{S}}^{p}$ - probabilistic (sub)theory of \mathscr{S} in RCF
\square finite $\Delta_{\varphi}^{\Sigma} \subseteq \mathcal{L}_{\text {RCF }}$, such that $\Delta_{\mathscr{S}}^{p} \vDash_{\text {RCF }} \varphi$ iff $\Delta_{\Sigma}^{\varphi} \vDash_{\text {RCF }} \varphi$
weak morphism $h_{p}: \mathscr{S}^{p} \rightarrow \mathscr{S}_{\text {RCF }}\left(\left\{x_{\beta}: \beta \in \mathcal{L}\right\} \cup X_{a l g} \cup X\right)$
- $\Delta_{\mathscr{S}}^{p}$ - probabilistic (sub)theory of \mathscr{S} in RCF
\square finite $\Delta_{\varphi}^{\Sigma} \subseteq \mathcal{L}_{\text {RCF }}$, such that $\Delta_{\mathscr{S}}^{p} \vDash_{\text {RCF }} \varphi$ iff $\Delta_{\Sigma}^{\varphi} \vDash_{\text {RCF }} \varphi$

Proposition (Transference of SAT)

φ has a model in $\mathcal{M}^{p} \quad$ iff $\quad \bar{h}_{p}(\varphi) \wedge \Delta_{\varphi}^{\Sigma}$ has a model in \mathbb{R}^{X}.
weak morphism $h_{p}: \mathscr{S}^{p} \rightarrow \mathscr{S}_{\text {RCF }}\left(\left\{x_{\beta}: \beta \in \mathcal{L}\right\} \cup X_{a l g} \cup X\right)$

- $\Delta_{\mathscr{S}}^{p}$ - probabilistic (sub)theory of \mathscr{S} in RCF

■ finite $\Delta_{\varphi}^{\Sigma} \subseteq \mathcal{L}_{\text {RCF }}$, such that $\Delta_{\mathscr{S}}^{p} \vDash_{\mathrm{RCF}} \varphi$ iff $\Delta_{\Sigma}^{\varphi} \vDash_{\mathrm{RCF}} \varphi$

Proposition (Transference of SAT)

φ has a model in $\mathcal{M}^{p} \quad$ iff $\quad \bar{h}_{p}(\varphi) \wedge \Delta_{\varphi}^{\Sigma}$ has a model in \mathbb{R}^{X}.

Theorem (SAT complexity lower-bound)

The SAT problem for \mathscr{S}^{p} is at least PSPACE and obtaining a witness is at least EXPSPACE.

Proposition (Transference of weak completeness)
The axiomatization $\mathbb{A X}_{\mathscr{S}}^{p} \stackrel{\text { def }}{=} h_{p}^{-1}\left(\mathbb{A}_{R C F}+\Delta_{\mathscr{S}}^{p}\right)$ is a sound and weakly complete axiomatization for \mathscr{S}^{p}.

Let $\varphi \in \mathcal{L}^{(p+g)}$
■ $b f(\varphi)=\left\{\beta_{1}, \ldots, \beta_{k}\right\}$ - base formulas in φ

Let $\varphi \in \mathcal{L}^{(p+g)}$
■ $b f(\varphi)=\left\{\beta_{1}, \ldots, \beta_{k}\right\}$ - base formulas in φ
$■ \operatorname{atb}(\varphi)=\left\{\left(\wedge_{i \in A} \beta_{i}\right) \wedge\left(\wedge_{i \notin A} \neg \beta_{i}\right): A \in 2^{k}\right\}$ - atomic fml. for φ

Let $\varphi \in \mathcal{L}^{(p+g)}$
$\square b f(\varphi)=\left\{\beta_{1}, \ldots, \beta_{k}\right\}$ - base formulas in φ
■ $\operatorname{atb}(\varphi)=\left\{\left(\wedge_{i \in A} \beta_{i}\right) \wedge\left(\wedge_{i \notin A} \neg \beta_{i}\right): A \in 2^{k}\right\}$ - atomic fml. for φ
■ $\Gamma_{\varphi, N}$ is the set of all $\beta \in \operatorname{atb}(\varphi)$ such that $\vDash^{g}(\varphi \sqsupset[\neg \beta])$

Let $\varphi \in \mathcal{L}^{(p+g)}$
$\square b f(\varphi)=\left\{\beta_{1}, \ldots, \beta_{k}\right\}$ - base formulas in φ
■ $\operatorname{atb}(\varphi)=\left\{\left(\wedge_{i \in A} \beta_{i}\right) \wedge\left(\wedge_{i \notin A} \neg \beta_{i}\right): A \in 2^{k}\right\}$ - atomic fml. for φ
■ $\Gamma_{\varphi, N}$ is the set of all $\beta \in \operatorname{atb}(\varphi)$ such that $\vDash^{g}(\varphi \sqsupset[\neg \beta])$
■ let $\psi_{g}=\left(\sqcap_{\beta \in \Gamma_{\varphi, N}}[\neg \beta]\right)$ and $\psi_{p}=\left(\sqcap_{\beta \in \Gamma_{\varphi, N}}\left(\int \beta=0\right)\right)$

Let $\varphi \in \mathcal{L}^{(p+g)}$
$\square b f(\varphi)=\left\{\beta_{1}, \ldots, \beta_{k}\right\}$ - base formulas in φ
■ $\operatorname{atb}(\varphi)=\left\{\left(\wedge_{i \in A} \beta_{i}\right) \wedge\left(\wedge_{i \notin A} \neg \beta_{i}\right): A \in 2^{k}\right\}$ - atomic fml. for φ
■ $\Gamma_{\varphi, N}$ is the set of all $\beta \in \operatorname{atb}(\varphi)$ such that $\vDash^{g}(\varphi \sqsupset[\neg \beta])$
■ let $\psi_{g}=\left(\sqcap_{\beta \in \Gamma_{\varphi, N}}[\neg \beta]\right)$ and $\psi_{p}=\left(\sqcap_{\beta \in \Gamma_{\varphi, N}}\left(\int \beta=0\right)\right)$

Let $\varphi \in \mathcal{L}^{(p+g)}$
■ bf $(\varphi)=\left\{\beta_{1}, \ldots, \beta_{k}\right\}$ - base formulas in φ
$\square \operatorname{atb}(\varphi)=\left\{\left(\wedge_{i \in A} \beta_{i}\right) \wedge\left(\wedge_{i \notin A} \neg \beta_{i}\right): A \in 2^{k}\right\}$ - atomic fml. for φ
■ $\Gamma_{\varphi, N}$ is the set of all $\beta \in \operatorname{atb}(\varphi)$ such that $\vDash^{g}(\varphi \sqsupset[\neg \beta])$
\square let $\psi_{g}=\left(\sqcap_{\beta \in \Gamma_{\varphi, N}}[\neg \beta]\right)$ and $\psi_{p}=\left(\sqcap_{\beta \in \Gamma_{\varphi, N}}\left(\int \beta=0\right)\right)$
Let $\varphi^{g} \in \mathcal{L}^{g}$ and $\varphi^{p} \in \mathcal{L}^{p}$.
Proposition
A formula $\left(\varphi^{g} \sqcap \varphi^{p}\right)$ is satisfiable iff φ^{g} and $\left(\varphi^{p} \sqcap \psi_{p}\right)$ are satisfiable.

Let $\varphi \in \mathcal{L}^{(p+g)}$
$\square b f(\varphi)=\left\{\beta_{1}, \ldots, \beta_{k}\right\}$ - base formulas in φ
■ $\operatorname{atb}(\varphi)=\left\{\left(\wedge_{i \in A} \beta_{i}\right) \wedge\left(\wedge_{i \notin A} \neg \beta_{i}\right): A \in 2^{k}\right\}$ - atomic fml. for φ
■ $\Gamma_{\varphi, N}$ is the set of all $\beta \in \operatorname{atb}(\varphi)$ such that $\vDash^{g}(\varphi \sqsupset[\neg \beta])$
■ let $\psi_{g}=\left(\sqcap_{\beta \in \Gamma_{\varphi, N}}[\neg \beta]\right)$ and $\psi_{p}=\left(\sqcap_{\beta \in \Gamma_{\varphi, N}}\left(\int \beta=0\right)\right)$
Let $\varphi^{g} \in \mathcal{L}^{g}$ and $\varphi^{p} \in \mathcal{L}^{p}$.

Proposition

A formula ($\varphi^{g} \sqcap \varphi^{p}$) is satisfiable iff φ^{g} and ($\varphi^{p} \sqcap \psi_{p}$) are satisfiable.

Theorem (Transference of SAT)

If the SAT problem is solvable in \mathscr{S}, then it is solvable in $\mathscr{S}^{(p+g)}$.

Schema axiom: IN $\left([\beta] \sqsupset\left(\int \beta=1\right)\right)$

2 - Exogenous Probabilization of Logics

Schema axiom: IN $\left([\beta] \sqsupset\left(\int \beta=1\right)\right)$

Theorem (Transference of weak completeness)

If \mathscr{S} has a weakly complete axiomatization $\mathbb{A}_{\mathscr{S}}$, then

$$
\mathbb{A} \mathbb{X}_{\mathscr{S}}^{(p+g)} \stackrel{\text { def }}{=} \mathbb{A X}_{\mathscr{S}}^{p}+\mathbb{A}_{\mathscr{S}}^{g}+\mathbf{I N}
$$

is a weakly complete for $\mathscr{S}^{(p+g)}$.

Theorem (small-model theorem)

Every φ satisfiable has a model (probability dist.) of $2 \times \operatorname{size}(\varphi)$.
Theorem (SAT complexity lower-bound)
The SAT problem for $\mathscr{S}^{(p+g)}$ is at least PSPACE and obtaining a witness is at least EXPSPACE.

Algorithm 1: Sat $_{\mathscr{S}}^{(p+g)}(\varphi)$
Input: formula $\varphi \in \mathcal{L}^{(p+g)}$
Output: $m=\langle M, \mathbf{P}\rangle\left(m \Vdash^{(p+g)} \varphi\right)$ or \emptyset (No Model)
foreach $\varphi_{i}=\left(\varphi_{i, g} \sqcap \varphi_{i, p}\right)$ molecule of φ do
2 foreach $\Gamma \subseteq \operatorname{atb}(\varphi)$ of $\operatorname{size} \leq 2 \times \operatorname{Size}(\varphi)$ do

$$
M=\emptyset ;
$$

foreach $\beta \in \Gamma$ do

$$
m_{\beta} \longleftarrow \operatorname{Sat}_{\mathscr{I}}(\beta) ; M=M \cup\left\{m_{\beta}\right\} ;
$$

end
if $M \neq \emptyset$ and $M \Vdash^{g} \varphi_{i, g}$ then
$\phi \longleftarrow \bar{h}_{p}\left(\varphi_{i, p} \sqcap \psi_{i, p}\right) ;$
$\delta \longleftarrow \phi \wedge \Delta_{\phi}^{\Sigma}(\Gamma) ;$
$\eta \longleftarrow \operatorname{Sat}_{\mathrm{RCF}}(\delta) ;$
if $\eta \neq \emptyset$ then return $m=\left\langle M, \mathbf{P}_{\eta}\right\rangle$;
end
end
14 end
15 return \emptyset (No Model);

Let Λ be a countable set of propositional symbols.

Definition (EPPL)

$\mathscr{S}_{\text {EPPL }}(\Lambda)=\left\langle\mathcal{L}_{\text {EPPL }}(\Lambda), \mathcal{M}_{\text {EPPL }}, \Vdash_{\text {EPPL }}\right\rangle:$
■ set of formulas $\mathcal{L}_{\text {EPPL }}(\Lambda)$ is

$$
\begin{aligned}
& \beta::=\alpha \rrbracket(\neg \beta) \rrbracket(\beta \Rightarrow \beta) \\
& t::=r \rrbracket \int \beta \rrbracket(t+t) \rrbracket(t . t) \\
& \varphi::=[\beta] \rrbracket(t<t) \rrbracket(\sim \varphi) \llbracket(\varphi \sqsupset \varphi)
\end{aligned}
$$

with $\alpha \in \Lambda$ and $r \in \operatorname{Alg}(\mathbb{R})$;
Let $\left\{X_{\alpha}: \Omega \rightarrow 2\right\}_{\alpha \in \Lambda}$ be a stochastic process over $\langle\Omega, \mathcal{F}, \mathbf{P}\rangle$.

- $X_{(\neg \beta)}=1-X_{\beta}$;

■ $X_{\left(\beta_{1} \Rightarrow \beta_{2}\right)}=\max \left\{1-X_{\beta_{1}}, X_{\beta_{2}}\right\}$.

Definition (EPPL (cont.))

■ the class of models $\mathcal{M}_{\text {EPPL }}$ are the tuples $m=\langle S, \mathcal{F}, \mathbf{P}, \mathbf{X}\rangle$ such that $\mathbf{X}:=\left\{X_{\alpha}: S \rightarrow 2\right\}_{\alpha \in \Lambda}$ is a stochastic process over $\langle S, \mathcal{F}, \mathbf{P}\rangle$;

- the satisfaction relation $\Vdash_{\text {EPPL }}$ is defined by:
- $\llbracket r \rrbracket_{m}=r$;
- $\llbracket \int \beta \rrbracket_{m}=\mathbf{P}\left(X_{\beta}=1\right)$
- $\llbracket t_{1}+t_{2} \rrbracket_{m}=\llbracket t_{1} \rrbracket_{m}+\llbracket t_{2} \rrbracket_{m}$;
- $\llbracket t_{1} \cdot t_{2} \rrbracket_{m}=\llbracket t_{1} \rrbracket_{m} \cdot \llbracket t_{2} \rrbracket_{m}$;
- $m \Vdash_{\text {EPPL }}[\beta]$ iff $X_{\beta}(s)=1$ for all $s \in S$;
- $m \Vdash_{\text {EPPL }}\left(t_{1}<t_{2}\right)$ iff $\llbracket t_{1} \rrbracket_{m}<\llbracket t_{2} \rrbracket_{m}$;
- $m \Vdash_{\text {EPPL }}(\sim \varphi)$ iff $m \Vdash_{\text {EPPL }} \varphi$;
- $m \Vdash_{\text {EPPL }}\left(\varphi_{1} \sqsupset \varphi_{2}\right)$ iff $m \Vdash \Vdash_{\text {EPPL }} \varphi_{1}$ or $m \Vdash_{\text {EPPL }} \varphi_{2}$, for $m \in \mathcal{M}_{\text {EPPL }}$ and $\varphi \in \mathcal{L}_{\text {EPPL }}(\Lambda)$.

Theorem (equivalence)

$\mathscr{S}_{\text {EPPL }}(\Lambda) \approx_{S} \mathscr{S}_{C P L}^{(p+g)}(\Lambda)$.

Corollary (weak completeness)

The axiomatization $\mathbb{A X}_{C P L}^{(p+g)}$ is weakly complete and sound for the satisfaction system $\mathscr{S}_{\text {EPPL }}(\Lambda)$.

Theorem (SAT complexity)

The SAT problem for EPPL is PSPACE, and providing a witness (a model) is EXPSPACE.

Theorem (model-checking complexity)
It takes $O(|\varphi| \times|S|)$ time to decide if an EPPL model $m=\langle S, \mathbf{P}, \mathbf{X}\rangle$ satisfies φ.

Algorithm 2: $S A T(\varphi)$

Input: formula $\varphi \in \mathcal{L}^{(p+g)}(\Lambda)$
Output: $m=\langle M, \mathbf{P}\rangle\left(m \Vdash_{\text {CPL }}^{(p+g)} \varphi\right)$ or \emptyset (No Model)
1 foreach $\varphi_{i}=\left(\varphi_{i, g} \sqcap \varphi_{i, p}\right)$ molecule of φ do
2 foreach $M \subseteq 2^{\Lambda(\varphi)}$ of $\operatorname{size}(M) \leq 2 \times \operatorname{Size}\left(\varphi_{i}\right)$ do
$\mathbb{A X}_{\text {EPPL }}$ is
G1 $\vdash_{\text {EPPL }}[\beta] \quad$ for all valid $\beta \in \mathcal{L}_{\mathrm{CPL}}(\Lambda)$;
$\mathrm{G} 2 \vdash_{\mathrm{EPPL}}\left(\left[\beta_{1} \Rightarrow \beta_{2}\right] \sqsupset\left(\left[\beta_{1}\right] \sqsupset\left[\beta_{2}\right]\right)\right)$;
IN $\vdash_{\text {EPPL }}\left([\beta] \sqsupset\left(\int \beta=1\right)\right)$;
$\operatorname{EqN} \vdash_{\mathrm{EppL}}\left(\int \neg \beta=1-\int \beta\right)$;
$E q P \vdash_{\text {EPPL }}\left(\int \beta \geq 0\right)$;
EqA $\vdash_{\text {EPPL }}\left(\int\left(\beta_{1} \vee \beta_{2}\right)=\int \beta_{1}+\int \beta_{2}-\int\left(\beta_{1} \wedge \beta_{2}\right)\right)$;
RCF $\vdash_{\text {EPPL }} \varphi$
if $\bar{h}_{p}(\varphi) \wedge\left(\wedge_{r \in \operatorname{alg}(\varphi)} \varphi_{r}\left(x_{r}\right)\right)$ is a valid formula in the real closed fields - RCF;

MP $\varphi_{1},\left(\varphi_{1} \sqsupset \varphi_{2}\right) \vdash_{\text {EPPL }} \varphi_{2}$.

Figure: AND-OR-INVERTER (AOI21)

Figure: AND-OR-INVERTER (AOI21)
implementation:
$\left(\int\left(\alpha_{4} \Leftrightarrow \alpha_{1} \wedge \alpha_{2}\right)>0.97\right) \sqcap\left(\int\left(\alpha_{5} \Leftrightarrow \alpha_{3} \vee \alpha_{4}\right)>0.99\right) \sqcap\left[\left(\alpha_{6} \Leftrightarrow \neg \alpha_{5}\right)\right]$

Figure: AND-OR-INVERTER (AOI21)
implementation:
$\left(\int\left(\alpha_{4} \Leftrightarrow \alpha_{1} \wedge \alpha_{2}\right)>0.97\right) \sqcap\left(\int\left(\alpha_{5} \Leftrightarrow \alpha_{3} \vee \alpha_{4}\right)>0.99\right) \sqcap\left[\left(\alpha_{6} \Leftrightarrow \neg \alpha_{5}\right)\right]$
specification:

$$
\left(\int \alpha_{6} \Leftrightarrow \neg\left(\alpha_{3} \vee\left(\alpha_{1} \wedge \alpha_{2}\right)\right) \geq 0.98\right)
$$

1) $x=\operatorname{rand}()$;
2) $y=\operatorname{rand}()$;

$$
\varphi_{P}=\left(\int \alpha_{x 1}=0.5\right) \sqcap\left(\int \alpha_{y 1}=0.5\right) \sqcap
$$

3) $y=x \vee y$;
4) if (x) \{
$\sqcap\left[\alpha_{y 2} \Leftrightarrow \alpha_{x 1} \vee \alpha_{y 1}\right] \sqcap\left[\alpha_{x 3} \Leftrightarrow \neg \alpha_{x 2}\right] \sqcap$
5) $x=\neg x$;
6) else
7) $\mathrm{x}=\mathrm{x} \vee \mathrm{y}$; \}

$$
\sqcap\left[\alpha_{x 4} \Leftrightarrow\left(\alpha_{x 2} \vee \alpha_{y 2}\right)\right] \sqcap
$$

$$
\sqcap\left[\alpha_{x 5} \Leftrightarrow\left(\alpha_{x 2} ? \alpha_{x 3}: \alpha_{x 4}\right)\right]
$$

Table: Translation to EPPL formula

$$
\varphi_{s a f}=\left(\left(\int \alpha_{x 1} \leq 0.5\right) \sqcap\left(\int \alpha_{x 2} \leq 0.5\right) \sqcap \ldots \sqcap\left(\int \alpha_{x 5} \leq 0.5\right)\right)
$$

1) $x=\operatorname{rand}()$;
2) $y=\operatorname{rand}()$;

$$
\varphi_{P}=\left(\int \alpha_{x 1}=0.5\right) \sqcap\left(\int \alpha_{y 1}=0.5\right) \sqcap
$$

3) $y=x \vee y$;
4) if (x) \{
$\sqcap\left[\alpha_{y 2} \Leftrightarrow \alpha_{x 1} \vee \alpha_{y 1}\right] \sqcap\left[\alpha_{x 3} \Leftrightarrow \neg \alpha_{x 2}\right] \sqcap$
5) $x=\neg x$;
6) else
$\sqcap\left[\alpha_{x 4} \Leftrightarrow\left(\alpha_{x 2} \vee \alpha_{y 2}\right)\right] \sqcap$
7) $\mathrm{x}=\mathrm{x} \vee \mathrm{y}$; \}

$$
\sqcap\left[\alpha_{x 5} \Leftrightarrow\left(\alpha_{x 2} ? \alpha_{x 3}: \alpha_{x 4}\right)\right]
$$

Table: Translation to EPPL formula

$$
\begin{gathered}
\varphi_{s a f}=\left(\left(\int \alpha_{x 1} \leq 0.5\right) \sqcap\left(\int \alpha_{x 2} \leq 0.5\right) \sqcap \ldots \sqcap\left(\int \alpha_{x 5} \leq 0.5\right)\right) \\
S A T\left(\left(\varphi_{P} \sqcap \sim \varphi_{s a f}\right)\right)=?
\end{gathered}
$$

PTL- Probabilistic LTL

Let Λ be a countable set of propositional symbols.

Definition (PTL)

The probabilistic temporal logic (PTL) over Λ, is the system $\mathscr{S}_{\text {PTL }}(\Lambda)=\left\langle\mathcal{L}_{\text {PTL }}(\Lambda), \mathcal{M}_{\text {PTL }}, \Vdash_{\text {PTL }}\right\rangle$ where $\mathcal{L}_{\text {PTL }}(\Lambda)$ is

$$
\begin{aligned}
\beta & ::=\alpha \rrbracket(\neg \beta) \rrbracket(\beta \Rightarrow \beta) \llbracket(\mathrm{X} \beta) \rrbracket(\beta \mathrm{U} \beta) \\
t & ::=r \rrbracket\left(\int \beta\right) \rrbracket(t+t) \rrbracket(t . t) \\
\varphi & ::=[\beta] \rrbracket(t \leq t) \rrbracket(\sim \varphi) \llbracket(\varphi \sqsupset \varphi)
\end{aligned}
$$

with $\alpha \in \Lambda$, and $r \in \operatorname{alg}(\mathbb{R})$;
$\left\{X_{\alpha}: S \rightarrow 2\right\}_{\alpha \in \Lambda}$ is extended to a stochastic process over $\left\langle S^{\omega}, \mathcal{F}, \mathbf{P}\right\rangle$ (sequence space of a Markov chain).

■ $X_{(\mathrm{X} \beta)}(\pi)=X_{\beta}\left(\pi^{(1)}\right)$
■ $X_{\left(\beta_{1} \cup \beta_{2}\right)}(\pi)=X_{\beta_{2}}(\pi)+X_{\left(\neg \beta_{2}\right)}(\pi) \cdot X_{\beta_{1}}(\pi) \cdot X_{\left(\beta_{1} \cup \beta_{2}\right)}\left(\pi^{(1)}\right)$

Definition (PTL (cont.))

- $\mathcal{M}_{\text {PTL }}$ is the class of tuples $m=\langle S, P, \mu, V\rangle$ where $\langle S, P, \mu\rangle$ is a Markov chain and $V: S \rightarrow 2^{\Lambda}$;
- $\vdash_{\text {PTL }}$ is defined by
- $\llbracket r \rrbracket_{m}=r$;
- $\llbracket \int \beta \rrbracket_{m}=\mathbf{P}\left(X_{\beta}=1\right)$;

■ $\llbracket t_{1}+t_{2} \rrbracket_{m}=\llbracket t_{1} \rrbracket_{m}+\llbracket t_{2} \rrbracket_{m} ;$

- $\llbracket t_{1} \cdot t_{2} \rrbracket_{m}=\llbracket t_{1} \rrbracket_{m} \cdot \llbracket t_{2} \rrbracket_{m}$;
- $m \vdash^{\vdash_{\text {PTL }}}[\beta]$ iff $K_{m} \vdash_{\text {LTL }} \beta$;

■ $m \Vdash_{\text {PTL }}\left(t_{1}<t_{2}\right)$ iff $\llbracket t_{1} \rrbracket_{m}<\llbracket t_{2} \rrbracket_{m}$;
■ $m \Vdash_{\text {PTL }}(\sim \varphi)$ iff $m \Vdash_{\text {PTL }} \varphi$;

- $m \Vdash_{\text {PTL }}\left(\varphi_{1} \sqsupset \varphi_{2}\right)$ iff $m \Vdash_{\text {PTL }} \varphi_{1}$ or $m \Vdash_{\text {PTL }} \varphi_{2}$,
for $m \in \mathcal{M}_{\text {PTL }}$ and $\varphi \in \mathcal{L}_{\text {PTL }}(\Lambda)$.

Proposition (Exogenous weak equivalent)
$\mathscr{S}_{\text {PTL }}(\Lambda) \approx_{S}^{w} \mathscr{S}_{\text {LTL }}^{(p+g)}(\Lambda)$.
Corollary (Transference of weak completeness)
The axiomatization

$$
\mathbb{A} \mathbb{X}_{L T L}^{(p+g)} \stackrel{\text { def }}{=} \mathbb{A} \mathbb{X}_{L T L}^{g}+\mathbb{A} \mathbb{X}_{L T L}^{p}+\mathbf{I} \mathbf{N}
$$

is a sound and weakly complete axiomatization for $\mathscr{S}_{\text {PTL }}(\Lambda)$.

Theorem (Transference of SAT)

The SAT problem for PTL is PSPACE and obtaining a witness (model) is EXPSPACE.

Definition (CTPL)

Consider the system

$$
\mathscr{S}_{\mathrm{CTPL}}(\Lambda)=\left\langle\mathcal{L}_{\mathrm{CTPL}}(\Lambda), \mathcal{M}_{\mathrm{CTPL}}, \Vdash_{\mathrm{CTPL}}\right\rangle,
$$

- $\mathcal{L}_{\text {CTPL }}(\Lambda)$ is

■ $\varphi:=\beta \rrbracket(\neg \varphi) \rrbracket(\varphi \Rightarrow \varphi) \rrbracket(\mathrm{AX} \varphi) \rrbracket(\mathrm{A}(\varphi \mathrm{U} \varphi)) \rrbracket(\mathrm{AG} \varphi)$ with $\beta \in \mathcal{L}_{\text {EPPL }}(\Lambda)$;

- $\mathcal{M}_{\text {CTPL }}$ is the class of tuples $m=\left\langle S, R, V: S \rightarrow \mathcal{M}_{\text {EPPL }}\right\rangle$, where $\langle S, R\rangle$ is a Kripke frame;
- $\vdash_{\text {cTPL }}$ is defined by
- $m, s \Vdash_{\text {ctpl }} \beta$ iff $V(s) \Vdash_{\text {EPPL }} \beta$;
- ... (as in CTL)

$$
\begin{aligned}
& \mathscr{S}_{\mathrm{CTL}}\left(\Lambda^{\prime}\right) \\
& \quad \upharpoonright_{h_{1}} \\
& \mathscr{S}_{\mathrm{CPL}}\left(\Lambda^{\prime}\right) \xrightarrow[h_{2}]{\longrightarrow} \mathscr{S}_{\mathrm{EPPL}}(\Lambda)
\end{aligned}
$$

Proposition (Equivalence)

$$
\mathscr{S}_{\left(h_{1}=h_{2}\right)} \approx_{S} \mathscr{S}_{C T P L}(\Lambda)
$$

Theorem (Transference of weak completeness)
The axiomatization $\mathbb{A}_{\mathbb{X}_{C T L}}+h_{1}\left(h_{2}^{-1}\left(\mathbb{A}_{\mathbb{X}_{\text {EPPL }}}\right)\right)$ is weakly complete and sound for $\mathscr{S}_{\text {CTPL }}(\Lambda)$.

Theorem (SAT complexity)
The satisfaction problem for CTPL is 2EXPTIME.

Future Work:

■ study exogenous combination as a generic tool to analyze heterogeneous systems (cyber-physical systems):

- automatic methods to combine systems;
- generalize Nelson-Oppen combination procedure;
- reuse of SAT and model-checking procedures (tools).

■ investigate Craig's interpolation on probabilistic logics;

■ developed non-Hilbert calculus for probabilistic logics (to applied in verification by rewriting)

