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(some) Logics in Verification

non-probabilistic probabilistic

Propositional logic

Modal logic, CTL, LTL

First-order theories:

Presburger arithmetic
Pointer logic
...

Separation logic

Duration calculus

Metric temporal logic

Differential dynamic logic
...

PCTL and PCTL*

Continuous stochastic logic
...



Outline

1 Exogenous Combination of Logics

2 Probabilization of Logics:
(generic) SAT
completeness

3 Examples:
EPPL - Probabilistic propositional logic
PTL - Probabilistic temporal logic
CTPL - Temporal EPPL
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Definition (Satisfaction system)

Let L be a set of formulas,M a class of models and ⊆M×L
a satisfaction relation.
The tuple S = 〈L,M,〉 is a satisfaction system.

Definition (Morphism and weak morphism)

A morphism h : S → S ′ is a pair 〈h, h〉, with

h : L → L′ and h :M′ → 2M

morphism: for all m ∈ h(m′), m  ϕ iff m′

′ h(ϕ)

weak morphism: exists m ∈ h(m′), m  ϕ iff m′

′ h(ϕ)

for all ϕ ∈ L and for all m′ ∈ Mh
def
= {m′ ∈ M′ : h(m′) 6= ∅}.



1 - Exogenous Combination of Logics

Definition ((Weak) equivalent systems)

S and S ′ are (resp. weak) equivalent if there are (resp. weak)
total morphisms h : S → S ′ and h′ : S ′ → S such that
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′
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equivalent, S1 ≅S S2

weak equivalent, S1 ≅
w
S S2



1 - Exogenous Combination of Logics

Definition ((Weak) equivalent systems)

S and S ′ are (resp. weak) equivalent if there are (resp. weak)
total morphisms h : S → S ′ and h′ : S ′ → S such that

ϕ ��
′ h

′
(h(ϕ)) and ψ �� h(h

′
(ψ)), for ϕ ∈ L, ψ ∈ L′.

Denoted by

equivalent, S1 ≅S S2

weak equivalent, S1 ≅
w
S S2

Proposition ( 〈L,M1,1〉 ≅S 〈L,M2,2〉 )

Γ �1 ϕ iff Γ �2 ϕ.

Proposition ( 〈L,M1,1〉 ≅
w
S 〈L,M2,2〉 )

�1 ϕ iff �2 ϕ.
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Exogenous Combination of Logics

Let h1 : S → S1 and h2 : S → S2 be morphisms.

S1

S

h1

OO

h2
// S2

Idea: S1 ⊗S2 = 〈L1 ⊗ L2,M′,′〉, with M′ ⊆M1 ×M2

Example (Parametrization)

S(h1⇒h2) = 〈L1,M(h1⇒h2),1〉,

where M(h1⇒h2) = {m ∈ Mh1
: h1(m) ⊆ h2(M2)}.



2 - Exogenous Probabilization of Logics

Definition (probabilization + globalization)

The probabilization + globalization operator transforms
〈L,M,〉 into the system S (p+g) = 〈L(p+g),M(p+g),(p+g)〉:

L(p+g) is (with β ∈ L and r ∈ Alg(R))

t ::= r 8
∫
β 8 (t+ t) 8 (t.t)

ϕ ::= [β] 8 (t < t) 8 (∼ϕ) 8 (ϕ = ϕ);
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Definition (probabilization + globalization)

The probabilization + globalization operator transforms
〈L,M,〉 into the system S (p+g) = 〈L(p+g),M(p+g),(p+g)〉:

L(p+g) is (with β ∈ L and r ∈ Alg(R))

t ::= r 8
∫
β 8 (t+ t) 8 (t.t)

ϕ ::= [β] 8 (t < t) 8 (∼ϕ) 8 (ϕ = ϕ);

M(p+g) is the class of all m = 〈S,F ,P, V 〉, where 〈S,F ,P〉
is a probability space, and V : S →M is a measurable

valuation, i.e. V −1[β]
def
= {s ∈ S : V (s)  β} ∈ F ;

the satisfaction relation 
(p+g) is given by

[[
∫
β]]m = P(V −1[β])

m 
(p+g) [β] iff V (S)  β;

(. . . )
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2 - Exogenous Probabilization of Logics

weak morphism hp : S p → SRCF({xβ : β ∈ L} ∪Xalg ∪X)

∆p
S

- probabilistic (sub)theory of S in RCF

finite ∆Σ
ϕ ⊆ LRCF, such that ∆p

S
�RCF ϕ iff ∆ϕ

Σ �RCF ϕ

Proposition (Transference of SAT)

ϕ has a model in Mp iff hp(ϕ) ∧∆Σ
ϕ has a model in RX .

Theorem (SAT complexity lower-bound)

The SAT problem for S p is at least PSPACE and obtaining a
witness is at least EXPSPACE.

Proposition (Transference of weak completeness)

The axiomatization AX
p
S

def
= h−1

p (AXRCF +∆p
S
) is a sound and

weakly complete axiomatization for S p.
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2 - Exogenous Probabilization of Logics

Let ϕ ∈ L(p+g)

bf(ϕ) = {β1, . . . , βk} - base formulas in ϕ

atb(ϕ) = {(∧i∈Aβi)∧ (∧i 6∈A¬βi) : A ∈ 2k} - atomic fml. for ϕ

Γϕ,N is the set of all β ∈ atb(ϕ) such that �g (ϕ = [¬β])

let ψg = (⊓β∈Γϕ,N
[¬β]) and ψp = (⊓β∈Γϕ,N

(
∫
β = 0))

Let ϕg ∈ Lg and ϕp ∈ Lp.

Proposition

A formula (ϕg ⊓ ϕp) is satisfiable iff ϕg and (ϕp ⊓ ψp) are
satisfiable.

Theorem (Transference of SAT)

If the SAT problem is solvable in S , then it is solvable in S (p+g).
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2 - Exogenous Probabilization of Logics

Schema axiom: IN ([β] = (
∫
β = 1))

Theorem (Transference of weak completeness)

If S has a weakly complete axiomatization AXS , then

AX
(p+g)
S

def
= AX

p
S

+ AX
g
S

+ IN

is a weakly complete for S (p+g).

Theorem (small-model theorem)

Every ϕ satisfiable has a model (probability dist.) of 2× size(ϕ).

Theorem (SAT complexity lower-bound)

The SAT problem for S (p+g) is at least PSPACE and obtaining a
witness is at least EXPSPACE.



2 - Exogenous Probabilization of Logics

Algorithm 1: Sat
(p+g)
S

(ϕ)

Input: formula ϕ ∈ L(p+g)

Output: m = 〈M,P〉 (m 
(p+g) ϕ) or ∅ (No Model)

1 foreach ϕi = (ϕi,g ⊓ ϕi,p) molecule of ϕ do

2 foreach Γ ⊆ atb(ϕ) of size ≤ 2× Size(ϕ) do

3 M = ∅;
4 foreach β ∈ Γ do

5 mβ ←− SatS (β); M =M ∪ {mβ};
6 end

7 if M 6= ∅ and M 
g ϕi,g then

8 φ←− hp(ϕi,p ⊓ ψi,p);

9 δ ←− φ ∧∆Σ
φ (Γ);

10 η ←− SatRCF(δ);
11 if η 6= ∅ then return m = 〈M,Pη〉;

12 end

13 end

14 end

15 return ∅ (No Model);



EPPL - Probabilistic propositional logic

Let Λ be a countable set of propositional symbols.

Definition (EPPL)

SEPPL(Λ) = 〈LEPPL(Λ),MEPPL,EPPL〉:

set of formulas LEPPL(Λ) is

β ::= α 8 (¬β) 8 (β⇒ β)

t ::= r 8
∫
β 8 (t+ t) 8 (t.t)

ϕ ::= [β] 8 (t < t) 8 (∼ϕ) 8 (ϕ = ϕ)

with α ∈ Λ and r ∈ Alg(R);

Let {Xα : Ω→ 2}α∈Λ be a stochastic process over 〈Ω,F ,P〉.

X(¬β) = 1−Xβ ;

X(β1⇒β2) = max{1−Xβ1
,Xβ2

}.



EPPL - Semantics

Definition (EPPL (cont.))

the class of modelsMEPPL are the tuples m = 〈S,F ,P,X〉
such that X := {Xα : S → 2}α∈Λ is a stochastic process over
〈S,F ,P〉;

the satisfaction relation EPPL is defined by:

[[r]]m = r;
[[
∫
β]]m = P(Xβ = 1)

[[t1 + t2]]m = [[t1]]m + [[t2]]m;
[[t1.t2]]m = [[t1]]m.[[t2]]m;

m EPPL [β] iff Xβ(s) = 1 for all s ∈ S;
m EPPL (t1 < t2) iff [[t1]]m < [[t2]]m;
m EPPL (∼ϕ) iff m 6EPPL ϕ;
m EPPL (ϕ1 = ϕ2) iff m 6EPPL ϕ1 or m EPPL ϕ2,

for m ∈ MEPPL and ϕ ∈ LEPPL(Λ).



title

Theorem (equivalence)

SEPPL(Λ) ≅S S
(p+g)
CPL (Λ).

Corollary (weak completeness)

The axiomatization AX
(p+g)
CPL is weakly complete and sound for the

satisfaction system SEPPL(Λ).

Theorem (SAT complexity)

The SAT problem for EPPL is PSPACE, and providing a witness (a
model) is EXPSPACE.

Theorem (model-checking complexity)

It takes O(|ϕ| × |S|) time to decide if an EPPL model
m = 〈S,P,X〉 satisfies ϕ.



EPPL - SAT

Algorithm 2: SAT (ϕ)

Input: formula ϕ ∈ L(p+g)(Λ)

Output: m = 〈M,P〉 (m 
(p+g)
CPL ϕ) or ∅ (No Model)

1 foreach ϕi = (ϕi,g ⊓ ϕi,p) molecule of ϕ do

2 foreach M ⊆ 2Λ(ϕ) of size(M) ≤ 2× Size(ϕi) do

3 if M 
g ϕi,g then

4 φ←− hp(ϕi,p ⊓ ψi,p);
5 ψ ←− φ ∧∆Σ

φ (M);

6 η ←− SatRCF(ψ);
7 if η 6= ∅ then return m = 〈M,Pη〉;

8 end

9 end

10 end

11 return ∅ (No Model);



EPPL - Axiomatization

AXEPPL is

G1 ⊢EPPL [β] for all valid β ∈ LCPL(Λ);

G2 ⊢EPPL ([β1⇒ β2] = ([β1] = [β2]));

IN ⊢EPPL ([β] = (
∫
β = 1)) ;

EqN ⊢EPPL (
∫
¬β = 1−

∫
β);

EqP ⊢EPPL (
∫
β ≥ 0) ;

EqA ⊢EPPL (
∫
(β1 ∨ β2) =

∫
β1 +

∫
β2 −

∫
(β1 ∧ β2));

RCF ⊢EPPL ϕ

if hp(ϕ) ∧ (∧r∈alg(ϕ)ϕr(xr)) is a valid formula in the real
closed fields - RCF;

MP ϕ1, (ϕ1 = ϕ2) ⊢EPPL ϕ2.



EPPL - Application: Faulty Hardware
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∫
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(α5⇔ α3 ∨ α4) > 0.99)⊓[(α6⇔¬α5)]



EPPL - Application: Faulty Hardware

α1
α2 α4

α3

α5
α6

Figure: AND-OR-INVERTER (AOI21)

implementation:

(
∫
(α4⇔ α1 ∧ α2) > 0.97)⊓(

∫
(α5⇔ α3 ∨ α4) > 0.99)⊓[(α6⇔¬α5)]

specification:

(
∫
α6⇔¬(α3 ∨ (α1 ∧ α2)) ≥ 0.98)



EPPL - Application: Boolean Probabilistic Programs

1) x = rand();

2) y = rand();

3) y = x ∨ y;

4) if (x) {

5) x = ¬ x;

6) else

7) x = x ∨ y; }

ϕP = (
∫
αx1 = 0.5) ⊓ (

∫
αy1 = 0.5)⊓

⊓[αy2⇔ αx1 ∨ αy1] ⊓ [αx3⇔¬αx2]⊓

⊓[αx4⇔ (αx2 ∨ αy2)]⊓

⊓[αx5⇔ (αx2?αx3 : αx4)]

Table: Translation to EPPL formula

ϕsaf = ((
∫
αx1 ≤ 0.5) ⊓ (

∫
αx2 ≤ 0.5) ⊓ . . . ⊓ (

∫
αx5 ≤ 0.5))



EPPL - Application: Boolean Probabilistic Programs

1) x = rand();

2) y = rand();

3) y = x ∨ y;

4) if (x) {

5) x = ¬ x;

6) else

7) x = x ∨ y; }

ϕP = (
∫
αx1 = 0.5) ⊓ (

∫
αy1 = 0.5)⊓

⊓[αy2⇔ αx1 ∨ αy1] ⊓ [αx3⇔¬αx2]⊓

⊓[αx4⇔ (αx2 ∨ αy2)]⊓

⊓[αx5⇔ (αx2?αx3 : αx4)]

Table: Translation to EPPL formula

ϕsaf = ((
∫
αx1 ≤ 0.5) ⊓ (

∫
αx2 ≤ 0.5) ⊓ . . . ⊓ (

∫
αx5 ≤ 0.5))

SAT ((ϕP ⊓ ∼ϕsaf )) =?



PTL- Probabilistic LTL

Let Λ be a countable set of propositional symbols.

Definition (PTL)

The probabilistic temporal logic (PTL) over Λ, is the system
SPTL(Λ) = 〈LPTL(Λ),MPTL,PTL〉 where LPTL(Λ) is

β ::= α 8 (¬β) 8 (β⇒ β) 8 (Xβ) 8 (βUβ)

t ::= r 8 (
∫
β) 8 (t+ t) 8 (t.t)

ϕ ::= [β] 8 (t ≤ t) 8 (∼ϕ) 8 (ϕ = ϕ)

with α ∈ Λ, and r ∈ alg(R);

{Xα : S → 2}α∈Λ is extended to a stochastic process over
〈Sω,F ,P〉 (sequence space of a Markov chain).

X(Xβ)(π) = Xβ(π
(1))

X(β1Uβ2)(π) = Xβ2
(π) +X(¬β2)(π).Xβ1

(π).X(β1Uβ2)(π
(1))



PTL- Semantics

Definition (PTL (cont.))

MPTL is the class of tuples m = 〈S,P, µ, V 〉 where 〈S,P, µ〉 is
a Markov chain and V : S → 2Λ;

PTL is defined by

[[r]]m = r;
[[
∫
β]]m = P(Xβ = 1);

[[t1 + t2]]m = [[t1]]m + [[t2]]m;
[[t1.t2]]m = [[t1]]m.[[t2]]m;

m PTL [β] iff Km LTL β;
m PTL (t1 < t2) iff [[t1]]m < [[t2]]m;
m PTL (∼ϕ) iff m 6PTL ϕ;
m PTL (ϕ1 = ϕ2) iff m 6PTL ϕ1 or m PTL ϕ2,

for m ∈ MPTL and ϕ ∈ LPTL(Λ).



PTL- SAT

Proposition (Exogenous weak equivalent)

SPTL(Λ) ≅
w
S S

(p+g)
LTL (Λ).

Corollary (Transference of weak completeness)

The axiomatization

AX
(p+g)
LTL

def
= AX

g
LTL + AX

p
LTL + IN

is a sound and weakly complete axiomatization for SPTL(Λ).

Theorem (Transference of SAT)

The SAT problem for PTL is PSPACE and obtaining a witness
(model) is EXPSPACE.



Temporal EPPL

Definition (CTPL)

Consider the system

SCTPL(Λ) = 〈LCTPL(Λ),MCTPL,CTPL〉,

LCTPL(Λ) is

ϕ := β 8 (¬ϕ) 8 (ϕ⇒ ϕ) 8 (AXϕ) 8 (A(ϕUϕ)) 8 (AGϕ)

with β ∈ LEPPL(Λ);

MCTPL is the class of tuples m = 〈S,R, V : S →MEPPL〉,
where 〈S,R〉 is a Kripke frame;

CTPL is defined by

m, s CTPL β iff V (s) EPPL β;
... (as in CTL)



Temporal EPPL

SCTL(Λ
′)

SCPL(Λ
′)

h1

OO

h2

// SEPPL(Λ)

Proposition (Equivalence)

S(h1⇒h2) ≅S SCTPL(Λ).

Theorem (Transference of weak completeness)

The axiomatization AXCTL + h1(h
−1
2 (AXEPPL)) is weakly complete

and sound for SCTPL(Λ).

Theorem (SAT complexity)

The satisfaction problem for CTPL is 2EXPTIME.



Future work

Future Work:

study exogenous combination as a generic tool to
analyze heterogeneous systems (cyber-physical systems):

automatic methods to combine systems;
generalize Nelson-Oppen combination procedure;
reuse of SAT and model-checking procedures (tools).

investigate Craig’s interpolation on probabilistic logics;

developed non-Hilbert calculus for probabilistic logics
(to applied in verification by rewriting)


