How to make a logic probabilistic?

Pedro Baltazar

SQIG - IT, Lisbon - Portugal

pedro.baltazar@ist.utl.pt

CMU, CMACS Seminar - January 14th, 2010

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- D. Henriques, M. Biscaia, P. Baltazar, and P. Mateus,
 Probabilistic quantified linear temporal logic: Model checking,
 SAT and complete Hilbert calculus.
 submitted for publication.
- P. Baltazar and P. Mateus.
 Temporalization of probabilistic propositional logic.
 LFCS 2009, LNCS, 2009.
- P. Baltazar, P. Mateus, R. Nagarajan, and N. Papanikolaou.
 Exogenous probabilistic computation tree logic.
 Electronic Notes in Theoretical Computer Science, 190(3) : 95–110, 2007.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - の々で

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - 釣��

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - の々で

◆□ > ◆□ > ◆三 > ◆三 > 三 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 − のへで

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

non-probabilistic	probabilistic
 Propositional logic Modal logic, CTL, LTL First-order theories: Presburger arithmetic Pointer logic . 	 PCTL and PCTL* Continuous stochastic logic
Separation logic	
 Duration calculus 	
 Metric temporal logic 	
 Differential dynamic logic . 	

1 Exogenous Combination of Logics

- Probabilization of Logics:
 - (generic) SAT
 - completeness
- 3 Examples:
 - EPPL Probabilistic propositional logic

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- PTL Probabilistic temporal logic
- CTPL Temporal EPPL

Definition (Satisfaction system)

Let \mathcal{L} be a set of <u>formulas</u>, \mathcal{M} a class of <u>models</u> and $\Vdash \subseteq \mathcal{M} \times \mathcal{L}$ a <u>satisfaction</u> relation.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

The tuple $\mathscr{S} = \langle \mathcal{L}, \mathcal{M}, \Vdash \rangle$ is a satisfaction system.

Definition (Satisfaction system)

Let \mathcal{L} be a set of <u>formulas</u>, \mathcal{M} a class of <u>models</u> and $\Vdash \subseteq \mathcal{M} \times \mathcal{L}$ a <u>satisfaction</u> relation. The turbe $\mathscr{M} = \langle \mathcal{L}, \mathcal{M} \parallel \rangle$ is a satisfaction system.

The tuple $\mathscr{S} = \langle \mathcal{L}, \mathcal{M}, \Vdash \rangle$ is a satisfaction system.

Definition (Morphism and weak morphism)

A morphism $h: \mathscr{S} \to \mathscr{S}'$ is a pair $\langle \overline{h}, \underline{h} \rangle$, with

 $\overline{h}: \mathcal{L} \to \mathcal{L}' \quad \text{and} \quad \underline{h}: \mathcal{M}' \to 2^{\mathcal{M}}$

morphism: for all $m \in \underline{h}(m')$, $m \Vdash \varphi$ iff $m' \Vdash' \overline{h}(\varphi)$

Definition (Satisfaction system)

Let \mathcal{L} be a set of <u>formulas</u>, \mathcal{M} a class of <u>models</u> and $\Vdash \subseteq \mathcal{M} \times \mathcal{L}$ a <u>satisfaction</u> relation.

The tuple $\mathscr{S} = \langle \mathcal{L}, \mathcal{M}, \Vdash \rangle$ is a satisfaction system.

Definition (Morphism and weak morphism)

A morphism $h: \mathscr{S} \to \mathscr{S}'$ is a pair $\langle \overline{h}, \underline{h} \rangle$, with

$$\overline{h}: \mathcal{L} \to \mathcal{L}' \quad \text{ and } \quad \underline{h}: \mathcal{M}' \to 2^{\mathcal{M}}$$

morphism:for all $m \in \underline{h}(m')$, $m \Vdash \varphi$ iff $m' \Vdash' \overline{h}(\varphi)$ weak morphism:exists $m \in \underline{h}(m')$, $m \Vdash \varphi$ iff $m' \Vdash' \overline{h}(\varphi)$

for all $\varphi \in \mathcal{L}$ and for all $m' \in \mathcal{M}_h \stackrel{def}{=} \{m' \in \mathcal{M}' : \underline{h}(m') \neq \emptyset\}.$

Definition ((Weak) equivalent systems)

 \mathscr{S} and \mathscr{S}' are (resp. weak) equivalent if there are (resp. weak) total morphisms $h:\mathscr{S}\to\mathscr{S}'$ and $h':\mathscr{S}'\to\mathscr{S}$ such that

 $\varphi \eqqcolon \overleftarrow{h}'(\overline{h}(\varphi)) \quad \text{ and } \quad \psi \eqqcolon \overline{h}(\overline{h}'(\psi)), \quad \text{ for } \varphi \in \mathcal{L}, \psi \in \mathcal{L}'.$

Denoted by

- equivalent, $\mathscr{S}_1 \cong_S \mathscr{S}_2$
- $\blacksquare \text{ weak equivalent, } \mathscr{S}_1 \cong^w_S \mathscr{S}_2$

Definition ((Weak) equivalent systems)

 \mathscr{S} and \mathscr{S}' are (resp. weak) equivalent if there are (resp. weak) total morphisms $h: \mathscr{S} \to \mathscr{S}'$ and $h': \mathscr{S}' \to \mathscr{S}$ such that

 $\varphi \eqqcolon \overleftarrow{h}'(\overline{h}(\varphi)) \quad \text{ and } \quad \psi \eqqcolon \overline{h}(\overline{h}'(\psi)), \quad \text{ for } \varphi \in \mathcal{L}, \psi \in \mathcal{L}'.$

Denoted by

- equivalent, $\mathscr{S}_1 \cong_S \mathscr{S}_2$
- \blacksquare weak equivalent, $\mathscr{S}_1\cong^w_S\mathscr{S}_2$

Proposition ($\langle \mathcal{L}, \mathcal{M}_1, \Vdash_1 \rangle \cong_S \langle \mathcal{L}, \mathcal{M}_2, \Vdash_2 \rangle$

 $\Gamma \vDash_1 \varphi$ iff $\Gamma \vDash_2 \varphi$.

Proposition ($\langle \mathcal{L}, \mathcal{M}_1, \Vdash_1 \rangle \cong^w_S \langle \mathcal{L}, \mathcal{M}_2, \Vdash_2 \rangle$

 $\vDash_1 \varphi \quad \textit{iff} \quad \vDash_2 \varphi.$

Let $h_1: \mathscr{S} \to \mathscr{S}_1$ and $h_2: \mathscr{S} \to \mathscr{S}_2$ be morphisms.

 $\begin{array}{c} \mathscr{S}_1 \\ \uparrow h_1 \\ \mathscr{S} \xrightarrow{h_2} \mathscr{S}_2 \end{array}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Let $h_1: \mathscr{S} \to \mathscr{S}_1$ and $h_2: \mathscr{S} \to \mathscr{S}_2$ be morphisms.

 $\textbf{Idea:} \ \mathscr{S}_1 \otimes \mathscr{S}_2 = \langle \mathcal{L}_1 \otimes \mathcal{L}_2, \mathcal{M}', \Vdash' \rangle, \text{ with } \mathcal{M}' \subseteq \mathcal{M}_1 \times \mathcal{M}_2$

Example (Parametrization)

$$\mathscr{S}_{(h_1 \Rightarrow h_2)} = \langle \mathcal{L}_1, \mathcal{M}_{(h_1 \Rightarrow h_2)}, \Vdash_1 \rangle,$$

where $\mathcal{M}_{(h_1 \Rightarrow h_2)} = \{ m \in \mathcal{M}_{h_1} : \underline{h}_1(m) \subseteq \underline{h}_2(\mathcal{M}_2) \}.$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ = 目 - のへで

Definition (probabilization + globalization)

The probabilization + globalization operator transforms $\langle \mathcal{L}, \mathcal{M}, \Vdash \rangle$ into the system $\mathscr{S}^{(p+g)} = \langle \mathcal{L}^{(p+g)}, \mathcal{M}^{(p+g)}, \Vdash^{(p+g)} \rangle$:

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

 $\begin{array}{lll} \mathcal{L}^{(p+g)} \text{ is } & (\text{with } \beta \in \mathcal{L} \text{ and } r \in Alg(\mathbb{R})) \\ t ::= r \llbracket & \int \beta \rrbracket & (t+t) \llbracket & (t.t) \\ \varphi ::= [\beta] \rrbracket & (t < t) \rrbracket & (\sim \varphi) \rrbracket & (\varphi \sqsupset \varphi); \end{array}$

Definition (probabilization + globalization)

The probabilization + globalization operator transforms $\langle \mathcal{L}, \mathcal{M}, \Vdash \rangle$ into the system $\mathscr{S}^{(p+g)} = \langle \mathcal{L}^{(p+g)}, \mathcal{M}^{(p+g)}, \Vdash^{(p+g)} \rangle$:

- $\begin{array}{ll} \mathcal{L}^{(p+g)} \text{ is } & (\text{with } \beta \in \mathcal{L} \text{ and } r \in Alg(\mathbb{R})) \\ t ::= r \llbracket \int \beta \ \llbracket \ (t+t) \ \llbracket \ (t.t) \\ \varphi ::= [\beta] \ \llbracket \ (t < t) \ \llbracket \ (\sim \varphi) \ \llbracket \ (\varphi \sqsupset \varphi); \end{array}$
- $\mathcal{M}^{(p+g)}$ is the class of all $m = \langle S, \mathcal{F}, \mathbf{P}, V \rangle$, where $\langle S, \mathcal{F}, \mathbf{P} \rangle$ is a probability space, and $V : S \to \mathcal{M}$ is a *measurable* valuation, *i.e.* $V^{-1}[\beta] \stackrel{def}{=} \{s \in S : V(s) \Vdash \beta\} \in \mathcal{F};$

Definition (probabilization + globalization)

The probabilization + globalization operator transforms $\langle \mathcal{L}, \mathcal{M}, \Vdash \rangle$ into the system $\mathscr{S}^{(p+g)} = \langle \mathcal{L}^{(p+g)}, \mathcal{M}^{(p+g)}, \Vdash^{(p+g)} \rangle$:

- $\begin{array}{lll} \mathcal{L}^{(p+g)} \text{ is } & (\text{with } \beta \in \mathcal{L} \text{ and } r \in Alg(\mathbb{R})) \\ t ::= r \llbracket \int \beta \llbracket (t+t) \rrbracket (t.t) \\ \varphi ::= [\beta] \llbracket (t < t) \rrbracket (\sim \varphi) \llbracket (\varphi \sqsupset \varphi); \end{array}$
- $\mathcal{M}^{(p+g)}$ is the class of all $m = \langle S, \mathcal{F}, \mathbf{P}, V \rangle$, where $\langle S, \mathcal{F}, \mathbf{P} \rangle$ is a probability space, and $V : S \to \mathcal{M}$ is a *measurable* valuation, *i.e.* $V^{-1}[\beta] \stackrel{def}{=} \{s \in S : V(s) \Vdash \beta\} \in \mathcal{F};$
- the satisfaction relation $\Vdash^{(p+g)}$ is given by • $\llbracket \int \beta \rrbracket_m = \mathbf{P}(V^{-1}[\beta])$ • $m \Vdash^{(p+g)} [\beta]$ iff $V(S) \Vdash \beta$; (...)

weak morphism $h_p : \mathscr{S}^p \to \mathscr{S}_{\mathsf{RCF}}(\{x_\beta : \beta \in \mathcal{L}\} \cup X_{alg} \cup X)$ $\blacktriangle \Delta^p_{\mathscr{C}}$ - probabilistic (sub)theory of \mathscr{S} in RCF

 $\Delta_{\mathcal{G}}$ - probabilistic (sub)theory of \mathcal{G} in its

weak morphism $h_p: \mathscr{S}^p \to \mathscr{S}_{\mathsf{RCF}}(\{x_\beta : \beta \in \mathcal{L}\} \cup X_{alg} \cup X)$

• $\Delta^p_{\mathscr{S}}$ - probabilistic (sub)theory of \mathscr{S} in RCF

 $\blacksquare \text{ finite } \Delta^{\Sigma}_{\varphi} \subseteq \mathcal{L}_{\mathsf{RCF}} \text{, such that } \Delta^{p}_{\mathscr{S}} \vDash_{\mathsf{RCF}} \varphi \text{ iff } \Delta^{\varphi}_{\Sigma} \vDash_{\mathsf{RCF}} \varphi$

weak morphism $h_p: \mathscr{S}^p \to \mathscr{S}_{\mathsf{RCF}}(\{x_\beta : \beta \in \mathcal{L}\} \cup X_{alg} \cup X)$

• $\Delta^p_{\mathscr{S}}$ - probabilistic (sub)theory of \mathscr{S} in RCF

 $\blacksquare \text{ finite } \Delta^{\Sigma}_{\varphi} \subseteq \mathcal{L}_{\mathsf{RCF}} \text{, such that } \Delta^{p}_{\mathscr{S}} \vDash_{\mathsf{RCF}} \varphi \text{ iff } \Delta^{\varphi}_{\Sigma} \vDash_{\mathsf{RCF}} \varphi$

weak morphism $h_p: \mathscr{S}^p \to \mathscr{S}_{\mathsf{RCF}}(\{x_\beta : \beta \in \mathcal{L}\} \cup X_{alg} \cup X)$

• $\Delta^p_{\mathscr{S}}$ - probabilistic (sub)theory of \mathscr{S} in RCF

 $\blacksquare \text{ finite } \Delta^{\Sigma}_{\varphi} \subseteq \mathcal{L}_{\mathsf{RCF}} \text{, such that } \Delta^{p}_{\mathscr{S}} \vDash_{\mathsf{RCF}} \varphi \text{ iff } \Delta^{\varphi}_{\Sigma} \vDash_{\mathsf{RCF}} \varphi$

Proposition (Transference of SAT)

 φ has a model in \mathcal{M}^p iff $\overline{h}_p(\varphi) \wedge \Delta_{\varphi}^{\Sigma}$ has a model in \mathbb{R}^X .

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()

weak morphism $h_p : \mathscr{S}^p \to \mathscr{S}_{\mathsf{RCF}}(\{x_\beta : \beta \in \mathcal{L}\} \cup X_{alg} \cup X)$

•
$$\Delta^p_{\mathscr{S}}$$
 - probabilistic (sub)theory of \mathscr{S} in RCF

 $\blacksquare \text{ finite } \Delta^{\Sigma}_{\varphi} \subseteq \mathcal{L}_{\mathsf{RCF}} \text{, such that } \Delta^{p}_{\mathscr{S}} \vDash_{\mathsf{RCF}} \varphi \text{ iff } \Delta^{\varphi}_{\Sigma} \vDash_{\mathsf{RCF}} \varphi$

Proposition (Transference of SAT)

 φ has a model in \mathcal{M}^p iff $\overline{h}_p(\varphi) \wedge \Delta_{\varphi}^{\Sigma}$ has a model in \mathbb{R}^X .

Theorem (SAT complexity lower-bound)

The SAT problem for \mathscr{S}^p is at least PSPACE and obtaining a witness is at least EXPSPACE.

Proposition (Transference of weak completeness)

The axiomatization $\mathbb{AX}_{\mathscr{S}}^{p} \stackrel{def}{=} h_{p}^{-1}(\mathbb{AX}_{\mathsf{RCF}} + \Delta_{\mathscr{S}}^{p})$ is a sound and weakly complete axiomatization for \mathscr{S}^{p} .

(日) (中) (日) (日) (日) (日) (日)

Let $\varphi \in \mathcal{L}^{(p+g)}$ $\mathbf{I} bf(\varphi) = \{\beta_1, \dots, \beta_k\}$ - base formulas in φ

Let $\varphi \in \mathcal{L}^{(p+g)}$ **•** $bf(\varphi) = \{\beta_1, \dots, \beta_k\}$ - base formulas in φ **•** $atb(\varphi) = \{(\wedge_{i \in A} \beta_i) \land (\wedge_{i \notin A} \neg \beta_i) : A \in 2^k\}$ - atomic fml. for φ

Let $\varphi \in \mathcal{L}^{(p+g)}$

• $bf(\varphi) = \{\beta_1, \dots, \beta_k\}$ - base formulas in φ

• $atb(\varphi) = \{(\wedge_{i \in A} \beta_i) \land (\wedge_{i \notin A} \neg \beta_i) : A \in 2^k\}$ - atomic fml. for φ

・ロト ・ 日 ・ モート ・ 田 ・ うへの

• $\Gamma_{\varphi,N}$ is the set of all $\beta \in atb(\varphi)$ such that $\models^g (\varphi \sqsupset [\neg\beta])$

Let $\varphi \in \mathcal{L}^{(p+g)}$ **a** $bf(\varphi) = \{\beta_1, \dots, \beta_k\}$ - base formulas in φ **a** $atb(\varphi) = \{(\wedge_{i \in A} \beta_i) \land (\wedge_{i \notin A} \neg \beta_i) : A \in 2^k\}$ - atomic fml. for φ **b** $\Gamma_{\varphi,N}$ is the set of all $\beta \in atb(\varphi)$ such that $\models^g (\varphi \sqsupset [\neg\beta])$

• let $\psi_g = (\prod_{\beta \in \Gamma_{\alpha,N}} [\neg \beta])$ and $\psi_p = (\prod_{\beta \in \Gamma_{\alpha,N}} (\int \beta = 0))$

Let $\varphi \in \mathcal{L}^{(p+g)}$ **a** $bf(\varphi) = \{\beta_1, \dots, \beta_k\}$ - base formulas in φ **a** $atb(\varphi) = \{(\wedge_{i \in A} \beta_i) \land (\wedge_{i \notin A} \neg \beta_i) : A \in 2^k\}$ - atomic fml. for φ **b** $\Gamma_{\varphi,N}$ is the set of all $\beta \in atb(\varphi)$ such that $\models^g (\varphi \sqsupset [\neg\beta])$

• let $\psi_g = (\prod_{\beta \in \Gamma_{\alpha,N}} [\neg \beta])$ and $\psi_p = (\prod_{\beta \in \Gamma_{\alpha,N}} (\int \beta = 0))$

Let
$$\varphi \in \mathcal{L}^{(p+g)}$$

a $bf(\varphi) = \{\beta_1, \dots, \beta_k\}$ - base formulas in φ
a $atb(\varphi) = \{(\wedge_{i \in A} \beta_i) \land (\wedge_{i \notin A} \neg \beta_i) : A \in 2^k\}$ - atomic fml. for φ
b $\Gamma_{\varphi,N}$ is the set of all $\beta \in atb(\varphi)$ such that $\models^g (\varphi \sqsupset [\neg\beta])$
b let $\psi_g = (\sqcap_{\beta \in \Gamma_{\varphi,N}} [\neg\beta])$ and $\psi_p = (\sqcap_{\beta \in \Gamma_{\varphi,N}} (\int \beta = 0))$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ の Q @

Let
$$\varphi^g \in \mathcal{L}^g$$
 and $\varphi^p \in \mathcal{L}^p$.

Proposition

A formula $(\varphi^g \sqcap \varphi^p)$ is satisfiable iff φ^g and $(\varphi^p \sqcap \psi_p)$ are satisfiable.

Let
$$\varphi \in \mathcal{L}^{(p+g)}$$

a $bf(\varphi) = \{\beta_1, \dots, \beta_k\}$ - base formulas in φ
a $atb(\varphi) = \{(\wedge_{i \in A} \beta_i) \land (\wedge_{i \notin A} \neg \beta_i) : A \in 2^k\}$ - atomic fml. for φ
b $\Gamma_{\varphi,N}$ is the set of all $\beta \in atb(\varphi)$ such that $\models^g (\varphi \sqsupset [\neg\beta])$
b let $\psi_g = (\sqcap_{\beta \in \Gamma_{\varphi,N}} [\neg\beta])$ and $\psi_p = (\sqcap_{\beta \in \Gamma_{\varphi,N}} (\int \beta = 0))$

Let
$$\varphi^g \in \mathcal{L}^g$$
 and $\varphi^p \in \mathcal{L}^p$.

Proposition

A formula $(\varphi^g \sqcap \varphi^p)$ is satisfiable iff φ^g and $(\varphi^p \sqcap \psi_p)$ are satisfiable.

Theorem (Transference of SAT)

If the SAT problem is solvable in \mathscr{S} , then it is solvable in $\mathscr{S}^{(p+g)}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Schema axiom: IN $([\beta] \sqsupset (\int \beta = 1))$

Schema axiom: IN
$$([\beta] \supseteq (\int \beta = 1))$$

Theorem (Transference of weak completeness)

If ${\mathscr S}$ has a weakly complete axiomatization ${\mathbb A}{\mathbb X}_{{\mathscr S}},$ then

$$\mathbb{AX}_{\mathscr{S}}^{(p+g)} \stackrel{def}{=} \mathbb{AX}_{\mathscr{S}}^{p} + \mathbb{AX}_{\mathscr{S}}^{g} + \mathbf{IN}$$

is a weakly complete for $\mathscr{S}^{(p+g)}$.

Theorem (small-model theorem)

Every φ satisfiable has a model (probability dist.) of $2 \times size(\varphi)$.

Theorem (SAT complexity lower-bound)

The SAT problem for $\mathscr{S}^{(p+g)}$ is at least PSPACE and obtaining a witness is at least EXPSPACE.

Algorithm 1: $Sat^{(p+g)}_{\varphi}(\varphi)$ **Input**: formula $\varphi \in \mathcal{L}^{(p+g)}$ **Output**: $m = \langle M, \mathbf{P} \rangle$ ($m \Vdash^{(p+g)} \varphi$) or \emptyset (No Model) foreach $\varphi_i = (\varphi_{i,a} \sqcap \varphi_{i,p})$ molecule of φ do foreach $\Gamma \subseteq atb(\varphi)$ of size $\leq 2 \times Size(\varphi)$ do 2 $M = \emptyset$: 3 foreach $\beta \in \Gamma$ do 4 $m_{\beta} \longleftarrow Sat_{\mathscr{C}}(\beta); M = M \cup \{m_{\beta}\};$ 5 end 6 if $M \neq \emptyset$ and $M \Vdash^g \varphi_{i,g}$ then 7 $\begin{array}{c}
\phi \longleftarrow \overline{h}_p(\varphi_{i,p} \sqcap \psi_{i,p}); \\
\delta \longleftarrow \phi \land \Delta_{\phi}^{\Sigma}(\Gamma);
\end{array}$ 8 9 $\eta \leftarrow Sat_{\mathsf{RCF}}(\delta);$ 10 if $\eta \neq \emptyset$ then return $m = \langle M, \mathbf{P}_n \rangle$; 11 end 12 end 13 14 end 15 return Ø (No Model);

Let Λ be a countable set of propositional symbols.

Definition (EPPL)

$$\mathscr{S}_{\mathsf{EPPL}}(\Lambda) = \langle \mathcal{L}_{\mathsf{EPPL}}(\Lambda), \mathcal{M}_{\mathsf{EPPL}}, \Vdash_{\mathsf{EPPL}} \rangle:$$

$$\blacksquare \text{ set of formulas } \mathcal{L}_{\mathsf{EPPL}}(\Lambda) \text{ is }$$

• set of formulas
$$\mathcal{L}_{EPPL}(\Lambda)$$
 is

$$\begin{split} \beta &::= \alpha \begin{bmatrix} (\neg \beta) \end{bmatrix} (\beta \Rightarrow \beta) \\ t &::= r \begin{bmatrix} \int \beta \end{bmatrix} (t+t) \begin{bmatrix} (t,t) \\ (\sim \varphi) \end{bmatrix} (t < t) \end{split}$$

with $\alpha \in \Lambda$ and $r \in Alg(\mathbb{R})$;

Let $\{X_{\alpha}: \Omega \to 2\}_{\alpha \in \Lambda}$ be a stochastic process over $\langle \Omega, \mathcal{F}, \mathbf{P} \rangle$. $\blacksquare X_{(\neg\beta)} = 1 - X_{\beta};$ $\blacksquare X_{(\beta_1 \Rightarrow \beta_2)} = max\{1 - X_{\beta_1}, X_{\beta_2}\}.$

Definition (EPPL (cont.))

• the class of <u>models</u> $\mathcal{M}_{\text{EPPL}}$ are the tuples $m = \langle S, \mathcal{F}, \mathbf{P}, \mathbf{X} \rangle$ such that $\mathbf{X} := \{X_{\alpha} : S \to 2\}_{\alpha \in \Lambda}$ is a stochastic process over $\langle S, \mathcal{F}, \mathbf{P} \rangle$;

• the <u>satisfaction</u> relation \Vdash_{EPPL} is defined by:

Theorem (equivalence)

 $\mathscr{S}_{\mathrm{EPPL}}(\Lambda) \cong_{S} \mathscr{S}_{\mathrm{CPL}}^{(p+g)}(\Lambda).$

Corollary (weak completeness)

The axiomatization $\mathbb{AX}_{CPL}^{(p+g)}$ is weakly complete and sound for the satisfaction system $\mathscr{S}_{EPPL}(\Lambda)$.

Theorem (SAT complexity)

The SAT problem for EPPL is PSPACE, and providing a witness (a model) is EXPSPACE.

Theorem (model-checking complexity)

It takes $O(|\varphi| \times |S|)$ time to decide if an EPPL model $m = \langle S, \mathbf{P}, \mathbf{X} \rangle$ satisfies φ .

EPPL - SAT

Algorithm 2: $SAT(\varphi)$

Input: formula $\varphi \in \mathcal{L}^{(p+g)}(\Lambda)$ **Output**: $m = \langle M, \mathbf{P} \rangle$ $(m \Vdash_{\mathsf{CPI}}^{(p+g)} \varphi)$ or \emptyset (No Model) 1 foreach $\varphi_i = (\varphi_{i,q} \sqcap \varphi_{i,p})$ molecule of φ do foreach $M \subseteq 2^{\Lambda(\varphi)}$ of $size(M) \leq 2 \times Size(\varphi_i)$ do 2 if $M \Vdash^{g} \varphi_{i,q}$ then 3 $\begin{array}{c} \phi \longleftarrow \overline{h}_{p}(\varphi_{i,p} \sqcap \psi_{i,p}); \\ \psi \longleftarrow \phi \land \Delta_{\phi}^{\Sigma}(M); \end{array}$ 4 5 $\begin{array}{c} \varphi \leftarrow \varphi \wedge \underline{-}_{\phi} (\dots), \\ \eta \leftarrow Sat_{\mathsf{RCF}}(\psi); \\ \text{if } \eta \neq \emptyset \text{ then return } m = \langle M, \mathbf{P}_{\eta} \rangle; \end{array}$ 6 7 8 end 9 end 10 end 11 return \emptyset (No Model);

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ のへで

 $\mathbb{AX}_{\text{EPPL}}$ is

$$\begin{array}{l} \mathbf{G1} \vdash_{\mathsf{EPPL}} [\beta] \quad \text{for all valid } \beta \in \mathcal{L}_{\mathsf{CPL}}(\Lambda); \\ \mathbf{G2} \vdash_{\mathsf{EPPL}} ([\beta_1 \Rightarrow \beta_2] \sqsupset ([\beta_1] \sqsupset [\beta_2])); \\ \mathbf{IN} \vdash_{\mathsf{EPPL}} ([\beta] \sqsupset (\int \beta = 1)) ; \\ \mathbf{EqN} \vdash_{\mathsf{EPPL}} (\int \gamma \beta = 1 - \int \beta); \\ \mathbf{EqP} \vdash_{\mathsf{EPPL}} (\int \beta \ge 0) ; \\ \mathbf{EqA} \vdash_{\mathsf{EPPL}} (\int (\beta_1 \lor \beta_2) = \int \beta_1 + \int \beta_2 - \int (\beta_1 \land \beta_2)); \\ \mathbf{RCF} \vdash_{\mathsf{EPPL}} \varphi \end{array}$$

if $\overline{h}_p(\varphi) \wedge (\wedge_{r \in alg(\varphi)} \varphi_r(x_r))$ is a valid formula in the real closed fields - RCF;

▲□▶ ▲課▶ ▲理▶ ★理▶ = 目 - の��

$$\mathsf{MP} \ \varphi_1, (\varphi_1 \sqsupset \varphi_2) \vdash_{\mathsf{EPPL}} \varphi_2.$$

Figure: AND-OR-INVERTER (AOI21)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

implementation:

 $(\int (\alpha_4 \Leftrightarrow \alpha_1 \land \alpha_2) > 0.97) \sqcap (\int (\alpha_5 \Leftrightarrow \alpha_3 \lor \alpha_4) > 0.99) \sqcap [(\alpha_6 \Leftrightarrow \neg \alpha_5)]$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

implementation:

 $(\int (\alpha_4 \Leftrightarrow \alpha_1 \land \alpha_2) > 0.97) \sqcap (\int (\alpha_5 \Leftrightarrow \alpha_3 \lor \alpha_4) > 0.99) \sqcap [(\alpha_6 \Leftrightarrow \neg \alpha_5)]$

specification:

$$\left(\int \alpha_6 \Leftrightarrow \neg(\alpha_3 \lor (\alpha_1 \land \alpha_2)) \ge 0.98\right)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

1)
$$\mathbf{x} = \operatorname{rand}();$$

2) $\mathbf{y} = \operatorname{rand}();$
3) $\mathbf{y} = \mathbf{x} \lor \mathbf{y};$
4) if (x) {
5) $\mathbf{x} = \neg \mathbf{x};$
6) else
7) $\mathbf{x} = \mathbf{x} \lor \mathbf{y};$ }
 $| [\alpha_{x2} \Leftrightarrow \alpha_{x1} \lor \alpha_{y1}] \sqcap [\alpha_{x3} \Leftrightarrow \neg \alpha_{x2}] \sqcap [\alpha_{x4} \Leftrightarrow (\alpha_{x2} \lor \alpha_{y2})] \sqcap [\alpha_{x3} \Leftrightarrow \neg \alpha_{x2}] \sqcap [\alpha_{x4} \Leftrightarrow (\alpha_{x2} \lor \alpha_{y2})] \sqcap [\alpha_{x5} \Leftrightarrow (\alpha_{x2}?\alpha_{x3}: \alpha_{x4})]$

Table: Translation to EPPL formula $\varphi_{saf} = ((\int \alpha_{x1} \le 0.5) \sqcap (\int \alpha_{x2} \le 0.5) \sqcap \ldots \sqcap (\int \alpha_{x5} \le 0.5))$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

1)
$$\mathbf{x} = \operatorname{rand}();$$

2) $\mathbf{y} = \operatorname{rand}();$
3) $\mathbf{y} = \mathbf{x} \lor \mathbf{y};$
4) if (x) {
5) $\mathbf{x} = \neg \mathbf{x};$
6) else
7) $\mathbf{x} = \mathbf{x} \lor \mathbf{y};$ }
 $| \Box[\alpha_{x2} \Leftrightarrow \alpha_{x1} \lor \alpha_{y1}] \Box [\alpha_{x3} \Leftrightarrow \neg \alpha_{x2}] \Box \Box [\alpha_{x4} \Leftrightarrow (\alpha_{x2} \lor \alpha_{y2})] \Box \Box [\alpha_{x5} \Leftrightarrow (\alpha_{x2}?\alpha_{x3}: \alpha_{x4})]$

Table: Translation to EPPL formula $\varphi_{saf} = \left(\left(\int \alpha_{x1} \le 0.5 \right) \sqcap \left(\int \alpha_{x2} \le 0.5 \right) \sqcap \ldots \sqcap \left(\int \alpha_{x5} \le 0.5 \right) \right)$ $SAT((\varphi_P \sqcap \sim \varphi_{saf})) = ?$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで

PTL- Probabilistic LTL

Let Λ be a countable set of propositional symbols.

Definition (PTL)

The probabilistic temporal logic (PTL) over Λ , is the system $\mathscr{S}_{\mathsf{PTL}}(\Lambda) = \langle \mathcal{L}_{\mathsf{PTL}}(\Lambda), \mathcal{M}_{\mathsf{PTL}}, \Vdash_{\mathsf{PTL}} \rangle$ where $\mathcal{L}_{\mathsf{PTL}}(\Lambda)$ is

$$\begin{split} \beta &::= \alpha \begin{bmatrix} & (\neg \beta) \end{bmatrix} & (\beta \Rightarrow \beta) \begin{bmatrix} & (\mathsf{X}\beta) \end{bmatrix} & (\beta \mathsf{U}\beta) \\ t &::= r \begin{bmatrix} & (\int \beta) \end{bmatrix} & (t+t) \end{bmatrix} & (t.t) \\ \varphi &::= [\beta] \begin{bmatrix} & (t \le t) \end{bmatrix} & (\sim \varphi) \end{bmatrix} & (\varphi \sqsupset \varphi) \end{split}$$

with $\alpha \in \Lambda$, and $r \in alg(\mathbb{R})$;

 $\{X_{\alpha}: S \to 2\}_{\alpha \in \Lambda}$ is extended to a stochastic process over $\langle S^{\omega}, \mathcal{F}, \mathbf{P} \rangle$ (sequence space of a Markov chain).

$$X_{(\mathsf{X}\beta)}(\pi) = X_{\beta}(\pi^{(1)})$$
$$X_{(\beta_1 \cup \beta_2)}(\pi) = X_{\beta_2}(\pi) + X_{(\neg \beta_2)}(\pi) \cdot X_{\beta_1}(\pi) \cdot X_{(\beta_1 \cup \beta_2)}(\pi^{(1)})$$

(日) (中) (日) (日) (日) (日) (日)

Definition (PTL (cont.))

• $\mathcal{M}_{\mathsf{PTL}}$ is the class of tuples $m = \langle S, P, \mu, V \rangle$ where $\langle S, P, \mu \rangle$ is a Markov chain and $V : S \to 2^{\Lambda}$;

•
$$\mathbb{H}_{\mathsf{PTL}} \text{ is defined by}$$
•
$$[\![r]\!]_m = r;$$
•
$$[\![f\beta]\!]_m = \mathbf{P}(X_\beta = 1);$$
•
$$[\![t_1 + t_2]\!]_m = [\![t_1]\!]_m + [\![t_2]\!]_m;$$
•
$$[\![t_1 . t_2]\!]_m = [\![t_1]\!]_m . [\![t_2]\!]_m;$$
•
$$m \Vdash_{\mathsf{PTL}} [\beta] \text{ iff } K_m \Vdash_{\mathsf{LTL}} \beta;$$
•
$$m \Vdash_{\mathsf{PTL}} [\beta] \text{ iff } K_m \Vdash_{\mathsf{LTL}} \beta;$$
•
$$m \Vdash_{\mathsf{PTL}} (t_1 < t_2) \text{ iff } [\![t_1]\!]_m < [\![t_2]\!]_m;$$
•
$$m \Vdash_{\mathsf{PTL}} (\sim \varphi) \text{ iff } m \nvDash_{\mathsf{PTL}} \varphi;$$
•
$$m \Vdash_{\mathsf{PTL}} (\varphi_1 \sqsupset \varphi_2) \text{ iff } m \nvDash_{\mathsf{PTL}} \varphi_1 \text{ or } m \Vdash_{\mathsf{PTL}} \varphi_2,$$
for
$$m \in \mathcal{M}_{\mathsf{PTI}} \text{ and } \varphi \in \mathcal{L}_{\mathsf{PTI}} (\Lambda).$$

Proposition (Exogenous weak equivalent)

 $\mathscr{S}_{\mathsf{PTL}}(\Lambda) \cong^w_S \mathscr{S}^{(p+g)}_{\mathsf{LTL}}(\Lambda).$

Corollary (Transference of weak completeness)

The axiomatization

$$\mathbb{AX}_{LTL}^{(p+g)} \stackrel{def}{=} \mathbb{AX}_{LTL}^{g} + \mathbb{AX}_{LTL}^{p} + \mathbf{IN}$$

is a sound and weakly complete axiomatization for $\mathscr{S}_{PTL}(\Lambda)$.

Theorem (Transference of SAT)

The SAT problem for PTL is PSPACE and obtaining a witness (model) is EXPSPACE.

Definition (CTPL)

Consider the system

$$\begin{aligned} \mathscr{S}_{\mathsf{CTPL}}(\Lambda) &= \langle \mathcal{L}_{\mathsf{CTPL}}(\Lambda), \mathcal{M}_{\mathsf{CTPL}}, \Vdash_{\mathsf{CTPL}} \rangle, \\ \bullet \ \mathcal{L}_{\mathsf{CTPL}}(\Lambda) \text{ is} \\ \bullet \ \varphi &:= \beta \ [\ (\neg \varphi) \ [\ (\varphi \Rightarrow \varphi) \ [\ (\mathsf{AX}\varphi) \ [\ (\mathsf{A}(\varphi \mathsf{U}\varphi)) \ [\ (\mathsf{AG}\varphi) \\ \text{with} \ \beta \in \mathcal{L}_{\mathsf{EPPL}}(\Lambda); \end{aligned}$$

• \mathcal{M}_{CTPL} is the class of tuples $m = \langle S, R, V : S \to \mathcal{M}_{EPPL} \rangle$, where $\langle S, R \rangle$ is a Kripke frame;

 $\blacksquare \Vdash_{\mathsf{CTPL}} \text{ is defined by}$ $\blacksquare m, s \Vdash_{\mathsf{CTPL}} \beta \text{ iff } V(s) \Vdash_{\mathtt{EPPL}} \beta;$ $\blacksquare \dots \text{ (as in CTL)}$

$$\begin{array}{c} \mathscr{S}_{\mathsf{CTL}}(\Lambda') \\ \uparrow \\ h_1 \\ \mathscr{S}_{\mathsf{CPL}}(\Lambda') \xrightarrow{} \\ & & & \\ \end{array} \\ \mathcal{S}_{\mathsf{EPPL}}(\Lambda) \end{array}$$

Proposition (Equivalence)

$$\mathscr{S}_{(h_1 \Rightarrow h_2)} \cong_S \mathscr{S}_{CTPL}(\Lambda).$$

Theorem (Transference of weak completeness)

The axiomatization $\mathbb{AX}_{CTL} + h_1(h_2^{-1}(\mathbb{AX}_{EPPL}))$ is weakly complete and sound for $\mathscr{S}_{CTPL}(\Lambda)$.

Theorem (SAT complexity)

The satisfaction problem for CTPL is 2EXPTIME.

Future Work:

- study exogenous combination as a generic tool to analyze heterogeneous systems (cyber-physical systems):
 - <u>automatic</u> methods to combine systems;
 - generalize Nelson-Oppen combination procedure;
 - reuse of SAT and model-checking procedures (tools).
- investigate Craig's interpolation on probabilistic logics;
- developed non-Hilbert calculus for probabilistic logics (to applied in verification by rewriting)

(日) (中) (日) (日) (日) (日) (日)