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Motivation

Synthetic Biology is * Bioremediation
A) the design and construction of new biological parts, devices, and systems, and ° Blosensmg
B) the re-design of existing, natural biological systems for useful purposes. * Nanofabrication

* Therapeutics
* Biofabrication
* Biocomputing

http://syntheticbiology.org/

Biochemical circuit
*@mg"lzz:
0-'-| 0 _: '@mmg)
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Examples: toggle switch (Gardner 2000), oscillator (Elowitz 2000), logical gates (Weiss
2002), sensing and communication mechanisms (Weiss 2000), pulse generator (Basu 2004).



Degradation

Clean the environment
from oil polution with
our alkane degrading
bacteria.
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Motivation

EW 2010

Synthetic
Biology

Team Freiburg presents a functional, modular
Virus Construction Kit for specifically targeting
and killing tumor cells.

iGEM Freiburg 2010



Motivation

NSF CCF-0432070: "Collaborative Research: Rational Design of Synthetic Gene Networks using
Formal Analysis of Hybrid Systems”

Aim: tune the parameters of a set of existing synthetic circuits such that all possible
behaviors of the circuits satisfy a given specification

ae —l aTc YFP
1 1 < low > high
 [ew ] [ [ea ] > [~ ] > high < low
pllaclq) P,(tet-01) p(lac)
Specification:

if aTc < low, then eventually always YFP > high, and if aTc > high, then eventually always YFP < low



Motivation

ONR MURTI: Utilizing Synthetic Biology to Create Programmable Micro-Bio-Robots
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Motivation

L@& ONR MURTI: Utilizing Synthetic Biology to Create Programmable Micro-Bio-Robots

One specific aim: from a set of available parts, construct a circuit satisfying a given
specification

Registry of Standard Biological Parts

z m http://partsregistry.org/

Specification: 100 ya /\ /\
Eventually, the concentration of eyfp starts oscillating

between values above 100 and below 10, i.e., 10

. v Voo
Always eventually eyfp > 100 and always eventually

eyfp < 10"




Motivation

Lgi ONR MURTI: Utilizing Synthetic Biology to Create Programmable Micro-Bio-Robots

1. In silico construction of all biologically feasible circuits

Registry of Standard Biological Parts
http://partsregistry.org/

http://biobricks.org/ http://www.clothocad.org/

BioBricks Clotho
Knight, 2003 Densmore et al., 2009

IDlac ‘
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Motivation

» ¥ ONR MURTI: Utilizing Synthetic Biology to Create Programmable Micro-Bio-Robots

2. For each circuit, using the available information on the kinetic parameters
and/or experimental data, check the satisfaction of the specification for a
mathematical model of the circuit

Rate of I
’w expression I
tetR >—1 eyfp from P, q 012

Ltet 01 PMR 012) I

cl
Rbs calculator

http://www.voigtlab.ucsf.edu/software/
"Always eventually eyfp > 100 and

always eventually eyfp < 10" Protein decay rates ExPASy

http://ca.expasy.org/

!

Mathematical model

!

Verification




Approach

Draw inspiration from formal analysis (verification)

if aTc < low, then eventually always YFP >

"Is deadlock ever possible?" hiah and i )
le a ,and if aTc > high, then eventuall
Specification "If a request is received, make sure it is al\%ays YEP < low J Y

eventually granted.”

101

Process

eltime; aTe
op count: "): 41 —_

aiimrcioos po aec, ® er ] ® aa ] ™ e

) = pllaclq) P,(tet-01) pllac)




Approach

Draw inspiration from formal analysis (verification)

if aTc < low, then eventually always YFP >

"Is deadlock ever possible?” high and if aTc > high. the
ipe an , , then eventuall
Specification "If a request is received, make sure it is al\%ays YEP < low J /

eventually granted.”

Model checking
(SPIN, NuSMV)

Model

101

Process

ime,deltime;
aTe
loop count: "): [ |
unk) ;
cime;
i CLOCKS_PER_SEC;
oops, tics %1d, time

=] [ =]

pllaclq) P,(tet-01) pllac)




Approach

Draw inspiration from formal analysis (verification)

"Is deadlock ever possible?"”
"If a request is received, make sure it is
eventually granted.”

Specification

Model checking
(SPIN, NuSMV)

Model

#include<time.h>

Process

if aTc < low, then eventually always YFP >
high, and if aTc > high, then eventually
always YFP < low

? * Analysis / control

x=f(x,u)

101

aTe
411; L

=] [ =]

pllaclq) P,(tet-01) pllac)
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1) LTL verification and control for finite systems
2) PWA Systems

3) Verification of PWA Systems

4) Parameter Synthesis for PWA Systems

5) LTL Control of PWA Systems
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LTL Verification and Control for Finite Systems

Transition systems with finitely many states and actions
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LTL Verification and Control for Finite Systems

Transition systems with finitely many states and actions

Observation
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D-D: deterministic fully observable transition system
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LTL Verification and Control for Finite Systems

Transition systems with finitely many states and actions
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N-D: nondeterministic fully observable transition system



LTL Verification and Control for Finite Systems

Transition systems with finitely many states and actions

u, T, ,TT, u7
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P-D: Markov Decision Process (MDP)
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LTL Verification and Control for Finite Systems

Transition systems with finitely many states and actions
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LTL Verification and Control for Finite Systems

Transition systems with finitely many states and actions

In this talk:
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LTL Verification and Control for Finite Systems

Linear Temporal Logic (LTL)

Syntax

ome  od(mg Amy) (m, vm,)Um,

eventually

Semantics

Run (trajectory): q,>Gu>Gs>Gs»---
Word: Jv, Jt, Jt; JT,

T, T, IT,
Language: the set of all words




LTL Verification and Control for Finite Systems

Given a fransition system and an LTL formula over its set of propositions, check if

the language of the transition system starting from all initial s
formula.

mt,Urn, FALSE

tates satisfies the

SPIN, NuSMV, ..



LTL Verification and Control for Finite Systems

Given a transition system and an LTL formula over its set of propositions, find a set
of initial states and a control strategy for all initial states such that the produced
language of the transition system satisfies the formula.




LTL Verification and Control for Finite Systems

Given a transition system and an LTL formula over its set of propositions, find a set
of initial states and a control strategy for all initial states such that the produced
language of the transition system satisfies the formula.

f state

State feedback
control automaton

&:>con‘rr'ol

- for deterministic systems the solution is a simple adaptation of LTL model checking
algorithms

* for nondeterministic systems the solution is based on Buchi and Rabin games
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Piecewise Affine (PWA) Systems

Syntax

Trt+1 = Ajxg + Biug + b
Tr € X ur € U

A € P
B, € PP le L
blEPlb

All the sets are polyhedral subsets of Euclidean spaces of appropriate dimensions.



Piecewise Affine (PWA) Systems

= Ajxi + Brug, + b
ur € U

Semantics

I = {p17p27p37p4}




Piecewise Affine (PWA) Systems

Semantics

Tr+1 = Ajxg + Biug + b
Tr € X ur € U

I = {p17p27p37p4}

Word:

P4 P2 P1 P1 P1
P2 P2 P2 P2

Can be checked against the satisfaction of LTL formulae over 11



Piecewise Affine (PWA) Systems

Why PWA systems?

* PWA systems can approximate nonlinear systems with arbitrary accuracy [Lin and
Unbehauen, 1992].

* Under mild assumptions, PWA systems are equivalent with several other classes of
hybrid systems, including mixed logical dynamical (MLD), linear complementarity (LC),

extended linear complementarity (ELC), and maxmin-plus-scaling (MMPS) systems
[Heemels et al., 2001, Geyer et al., 2003].

* There exist tools for the identification of PWA systems from experimental data
[Paoletti, Juloski, Ferrari-Trecate, Vidal, 2007]

Inducer
concentrations

Fluorescent
signal
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[Repressor 1 Reporter &
”" <

>

E.Coli Cell



Piecewise Affine (PWA) Systems

Why PWA systems?

« Specific classes of PWA models can be directly derived from first principles

(a) Constitutive promoter

(b) Regulated promoter

:"))]) c B; .z-g("‘].- -+ 1) = ”9"'9(-]".) + _"-)’p. :"7)1) = Bp(‘l‘g')

* PWA systems admit finite quotients and can be formally analyzed / controlled
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Verification of PWA Systems with Fixed Parameters

Problem formulation: Find the largest subset of X' such that all
trajectories originating there satisfy an LTL formula ¢ over L while
always staying inside X’



Verification of PWA Systems with Fixed Parameters

Tr+1 = Az + by
Tr € X [ e L

Embed the PWA system into
an infinite deterministic
transition system 1. with set
of observations L U {Out}




Verification of PWA Systems with Fixed Parameters

Construct the observational equivalence quotient 1./~




Verification of PWA Systems with Fixed Parameters

Construct the observational equivalence quotient 1./~

(X, X"E—, _if and only if Post, (con(X))(con(X") = D
Postp. is computable

Postr, (con(X;)) = A1 X, + b



Verification of PWA Systems with Fixed Parameters

Construct the observational equivalence quotient 1./~

<
) o)

Post . (con(X,)) =4, X, +b, Te/N is hondeterministic

Post, (con(X,)) = 4, X, + D,
(X, X')e—,_ if and onlyif Post, (con(X)) Ncon(X') = D



Verification of PWA Systems with Fixed Parameters

Solve the problem on T,/

LTL f la “>O7”
T/~ simulates T, ormula “&

1) solve the problemon T/~

2) map the solution to 7, -> satisfying region for 7. but not the largest



Verification of PWA Systems with Fixed Parameters

Solve the problem on T,/

if T/~ was a bisimulation quotient LTL formula L7

solving the problem on Te/N is equivalent to solving it on 1



Verification of PWA Systems with Fixed Parameters

Bisimulation algorithm

Algorithm 1 ~=BISIMULATION(7 ): Coarsest bisimulation ~ of 7
1: Initialize ~ with observational equivalence
while there exist X, X' € @/ such that ) C con(X)NPrez(con(X’)) C con(X)
do
3:  Construct state Xy such that con(Xy) := con(X) (" Pres(con(X’));
4:  Construct state X such that con(Xy) := con(X) \ Prer(con(X"));
50 Q= Q) \AXTULX,, Xo:
6: end while
7: return ~;

[N}




Verification of PWA Systems with Fixed Parameters

Can the bisimulation algorithm be used to solve the problem?

Algorithm 1 ~=BISIMULATION(7): Coarsest bisimulation ~ of 7

—_

. Initialize ~ with observational equivalence
2: while there exist X, X’ € 9/ such that ) C con(X)NPrez(con(X")) C con(X)
do
Construct state X such that con(Xy) := con(X) () Prer(con(X’));
Construct state Xy such that con(Xy) := con(X) \ Prez(con(X"));

3

4

b Qf~ = Q[ NAXTULXL Xa}; Construct and model
6

7

check the quotient

5. end while®
: return ~;

A. Chutinan and B. H. Krogh, “Verification of infinite-state dynamic systems using approximate quotient transition systems,”
IEEE Transactions on automatic control, vol. 46, no. 9, pp. 1401-1410, 2001.



Verification of PWA Systems with Fixed Parameters

In principle, yes.

con(Xl) N Prer, (CO?’L(X5) Algorithm 1 ~=BISIMULATION(7 ): Coarsest bisimulation ~ of 7°

1: Initialize ~ with observational equivalence
CO?I(X1> M PTGTe (CO?I(X4) while there exist X, X' € @/ such that ) C con(X)NPrez(con(X’)) C con(X)

do

[N}

3:  Construct state Xy such that|con(Xy) := con(X) () Pres(con(X"));
4:  Construct state Xj such that con(Xy) := con(X) \ Prez(con(X"));
con(X1) O Prer(con(X2) 0 ) 720 N XU o
4 e or Construct and model
6: end while™ .
7. return ~- check the quotient
: return ~;

con(X;,) N Pre(con(X;,)) = X;, N Al_ll(con(XZQ) — by,)



Verification of PWA Systems with Fixed Parameters

A better approach

con(X1) N Prer, (con(Xy) LTL formula “&O7”

1) Expand the satisfying region
2) Do not refine satisfying regions
3) Construct satisfying sets for both the LTL formula and its negation

SlmUITGneOUSIY Yordanov, B., Batt, G., and Belta, C., ECC ‘07

Yordanov, B. and Belta, C., IEEE Trans. Autom. Control, 2010



Verification of PWA Systems with Fixed Parameters

A better approach

LTL formula “>7”

This procedure might terminate when the bisimulation algorithm does not -
the idea of formula guided refinement (formula equivalent quotients).

Yordanov, B., Tumova, J., Belta, C., Cerna, |., and Barnat, J., CDC ‘10



Verification of PWA Systems with Fixed Parameters

Example: toggle switch - model with fixed parameters

OLI(R>80 /AR,<20)
R, - .:.I:_TL> OO(R<40 AR,>50)
P, P,

Gardner et al., 2000
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Verification of PWA Systems with Fixed Parameters

Example: toggle switch - model with fixed parameters

ST no

P, P,

OLI(R>80 /AR,<20) OLI(R<40 AR>50)

100

90

80

70

60

50

40

30

20

10

0
0 10 20 : 100
14 sec R

Matlab tool: “FaPAS”
(hyness.bu.edu/software)




Verification of PWA Systems with Additive Uncertainty

leL}

X = Ujer Xy

Problem formulation: Find the largest subset of X' such that all
trajectories originating there satisfy an LTL formula ¢ over L while
always staying inside X’



Verification of PWA Systems with Additive Uncertainty

Construct the observational equivalence quotient 1./~

(X, X"E—, _if and only if Post, (con(X))(con(X") = D

Postr, is still computable and therefore T /., is computable

POStTe (COn(Xl)) = A X; + Plb



Verification of PWA Systems with Additive Uncertainty

Refinement

con(X1) N Prep, (con(Xs)
con(X1) N Prer, (con(Xy) Pre is still computable

con(X1) N Prep. (con(Xs) con(X1,) N Prer, (con(X,) = A (con(Xi,) — B))

The only difference from the fixed parameter case is that there will be more states and more
transitions (nondeterminism) in the quotient at each step of the refinement



Verification of PWA Systems with Uncertain Parameters

Tri1 = Ajxg + b
xr € X AZEPZA bZEPlb e L

X = Ujer Xy

Problem formulation: Find the largest subset of X' such that all
trajectories originating there satisfy an LTL formula ¢ over L while
always staying inside X’

Yordanov, B. and Belta, C., ACC ‘08

Yordanov, B. and Belta, C., IEEE Trans. Autom. Control, 2010



Verification of PWA Systems with Uncertain Parameters

Construct an over-approximation of the observational equivalence quotient 7./

(X, X"e—, _if and only if Post, (con(X))(con(X"') = &
Postr, is not computable and therefore T/~ is not computable
An over-aproximation Postr, (con(X;)) = hull({A; X, | A € V(P)}) + P? is computable
An over-aproximation T', /_, of T, /., is computable



Verification of PWA Systems with Uncertain Parameters

Refinement

Pre is not computable and any partition scheme that does not capture the dynamics can
be used, e.qg., quad-tree partition.



Verification of PWA Systems

Example: toggle switch - model with uncertain parameters

1% 70
parameter
noise

100

90
80
10% °
60

parameter
. < 50
noise 0

(R,>80 A\ R,<20)

............

...................

“FaPAS” % 0 20 3:0

(hyness.bu.edu/software) 11 min

40 50 60 70 80 20 100

<

3 min

(R,<40 A R,>50)

30 40 50 60 70 80 90 100




Verification of PWA Systems

Example: repressilator

0.02

(K (Rs>60)A\<>(R;<30))

Concentration
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Elowitz and Leibler, 2000
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Verification of PWA Systems

Example: repressilator
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Fixed parameters: 1% parameter noise:

99.8% of state space was satisfying 69% of state space was satisfying
Computation time was 11 min Computation time was 3 h

Matlab tool: “FaPAS”
(hyness.bu.edu/software)



Verification of PWA Systems

Example: selection of devices built from parts
Parts list

f )
903.84 ; : s
| | aTc : :
OCPL,e,_m i i (&PLMO] i i
I I 25 100
\ > terR 1% m P Liet-01 tetR J
0.013045 i
| I:)>»(R-o12)
lacl Pp.c C
0.014094 0.015013
\
4000
Py (r-012)
I I 4.3 | ;
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Verification of PWA Systems

Example: selection of devices built from parts
Biologically feasible devices

aTc aTc
tetR m tetR cl lacl
I:)Iac

Pyr-012) Pliet-o1 Plac Plieto1 P;L(R-o1 2)

aTc alc
tetR lacl tetR cl
P P P

P
lac Ltet-O1 ~(R-012) Ltet-O1

a0 —-LI?E>
P

I:)}.(R-O12) lac




Verification of PWA Systems

Example: selection of devices built from parts

Selection of possible repressilators

MR-012)

PLte'[ O1

PIac

aTc

tetR

F)Ltet-O1

cl

lacl

P}»(R-O1 2)

[(1(<> (c1<1000) /A<> (c1>20000))

[1(<> (lacl<1000) A< (lacl>250000))

Satisfying | Violating Time Satisfying | Violating | Time
Without aTc| 0% 100% | 2.5 sec 0% 99.96% | 1.5 sec
With aTc 0% 99.8% | 1.5sec 0% 99.96% [ 1.5sec




Verification of PWA Systems

Example: selection of devices built from parts
Selection of possible toggle switches

alc —
I:)Iac I:>Ltet-O1

[]((lacl>60000) A\ (tetR<250))
Y

Satisfying | Violating Time

Without aTc 0% 100% 1.5 sec

With aTc 0% 100% 1.0 sec




Verification of PWA Systems

Example: selection of devices built from parts
Selection of possible toggle switches

alc 3
P}‘(R-O1 2) PLtet-O1
<>D ((cI>60000) A (tetR<500)) <>D ((c1<250) /\ (tetR>300000))

Satisfying | Violating Time Satisfying | Violating | Time

Without aTc 0% 100% 1.0 sec 100% 0% 4 sec

With aTc 99.9% | 0% 1.0 sec 0% 99.9% | 1.0sec




Outline

1) LTL verification and control for finite systems
2) PWA Systems

3) Verification of PWA Systems

4) Parameter Synthesis for PWA Systems

5) LTL Control of PWA Systems



Parameter Synthesis for PWA Systems

Problem formulation

Given a LTL formula ¢ over linear predicates in the state, find a subset of the parameter
sets, such that all trajectories of the system satisfy the formula.

Xew1 = A X +Dy5 xy EXI\
A4,€p’
b, EP’

/

PA,(p C PA
Pb,(p g Pb

Initial Set X, = X, U X,



Parameter Synthesis for PWA Systems

Approach

« Embed PWA system into T, B

- Construct an over-approximation T/ of Tc/~

* While there exist violating runs in T,/
* Trim T'. /. to remove a transition of a violating run
* Limit the parameter values in the PWA to ensure the removal of the
transition

* End While

*Result: T,/

The language of the obtained PWA is included in the language of Tf/N

E. Clarke, A. Fehnker, Z. Han, B. Krogh, J. Ouaknine, O. Stursberg, and M. Theobald, “Abstraction and counterexample-
guided refinement in model checking of hybrid systems,” International Journal of Foundations of Computer Science, vol. 14,

no. 4, pp. 583-604, 2003.

Frehse, Jha, Krogh. A Counterexample-Guided Approach to Parameter Synthesis for Linear Hybrid Automata. In HSCC
2008

Yordanov, B. and Belta, C., HSCC ‘08



Parameter Synthesis for PWA Systems

Counterexample - guided transition elimination

® @

N

‘® ® ® ®

® ® 5
ch;‘ )o

When a transition is removed, the set of parameters of the PWA system is restricted

1) Other transitions might be disabled as a side effect

2) Some states might become blocking - the transitions to these states need to removed as
well by further restricting the parameters of the PWA system

_ Pp=00X
Te/~




Parameter Synthesis for PWA Systems

Satisfying quotients tree

Non-satisfying finite quotients that generate further counterexamples

Finite quotients with blocking initial states
(no more counterexamples can be generated but the formula is not satisfied)

Satisfying finite quotients without any reachable blocking states




Parameter Synthesis for PWA Systems

Parameter sets disabling transitions in T, /.

Let pX:#X; denote the set of all parameters for which Post(X;) N X; =0

Removing a transition means restricting the parameters to pXi7X;
PXi7*Xi is not computable

An under-approximation PX:7>X; can be computed




Parameter Synthesis for PWA Systems

Example

X Satisfying Quotient
100
90 \
80
l ml 70 G 41“ 116
—_— ————— 60 t h%
Gene 1 Gene 2
£ 50 7 e \
40-”/
X X
a0 ﬁﬁ *‘65 11 15
20
(p - o [] X 10 X /14 110 11"
."1 D 1 1 11’ L 119 ' 1113
0 p 20 30 40 50 60 70 80 90 100
TI'2 X




Parameter Synthesis for PWA Systems

Example

10 ~

8 —

6 5 XZ

;Z b\'TQ

4 R a, a C

i / X, =Ax, +c, A= o e= Y,
3 a, a, c,

o

Vare:s
SR %{ ' M’?’k V
' NN . \g a, €[0.8,1],a, E[-0.55,-0.05],
/a><\

. <,/” a, €[0.05,0.55],a, €[0.8,1],
) Pt ~_ ¢, E[-11],¢, E[-1,1],
-8 S
/

-10
-10 -8 -6 -4 -2 0 2 4 6 8 10

%

Specification: "Keep surveying all regions except 5, which should never be
visited", i.e., "always (eventually 1 and eventually 2 ... and eventually 4 and
eventually 6 ... and eventually 9) and always not 5. Do not go out of the
[-10,10] x [-10 10] rectangle."



Parameter Synthesis for PWA Systems

Example
Te/~
q2 e 10 >~
| ONgss="—
4 "Lh' 1 8
A AP AN
! ool T NA L
O SRS
‘*1 ' Bt =
P e ~
DK+
'lplo/-g 6 4 -zk’n 2 4 6 8 10
Q' Notes:

1) All states have self loops (omitted)
2) State 1,2,3,4,6,7,8,9 have transitions to Out (omitted)

63 Transitions total



Parameter Synthesis for PWA Systems

Example
Trimmed T/~

10
8 3
6 ) 2 L/
4 /f%% 8
S~ F h
3
. PN
-6 A%WHV s
-8
-10/
-10 -8 6 4 0 4 6 8 10

28 Transitions total



Parameter Synthesis for PWA Systems

Sets of parameters producing a bisimulation quotient
Let P*:~%i denote the set of all parameters for which Post(X;) C X,

PXi—~%i is computable

<>




Parameter Synthesis for PWA Systems

Parameter synthesis

L= A i

g |
10+ /
X Satisfying Quotient P =00 X ST 9/——

To ft ! X 15
)\

— ?/ \ xéA‘ .
0 i0 7l &0 90 100

100

]UD \ 20 1/
vl 2
0f M, ' -
n 1
80 "I 0 0 3( 40 S0 70
70 <‘ *’112 1!6 -"-2 %)
60 1 . n . .
>/ Bisimulation Quotient
& S0 7 L7 \
40 u/
X X
a0 ﬁﬁ *\65 11 i5
20
A //'14 X 10 X4
1T1 D 1 A X” L 119 L 1113
0 p 20 30 40 50 60 70 80 90 100
.rr2 X




Outline

1) LTL verification and control for finite systems
2) PWA Systems

3) Verification of PWA Systems

4) Parameter Synthesis for PWA Systems

5) LTL Control of PWA Systems



LTL Control of PWA Systems

Problem formulation

Find a set of initial states and a state-feedback control strategy such that all the
trajectories of the system satisfy an arbitrary LTL formula over linear predicates
over the states.

Tr+1 = Ajxg + Biug + b
T € X ur € U [ e L




Approach

LTL Control of PWA Systems

Input: PWA System

Embedding

Embedding Transition System /

l State abstraction

Quotient Transition System 1% /.

l Input abstraction

Control Transition System T

Input: LTL Formula

ItI12dstar

A 4

Deterministic Rabin Automaton 7%

—» Product Automaton P [«——

lGame solution

Control strategy for 7

lAdaptation for PWA

Output: Control strategy for PWA




LTL Control of PWA Systems

State abstraction




LTL Control of PWA Systems

State abstraction




LTL Control of PWA Systems

State abstraction




LTL Control of PWA Systems

Control abstraction




LTL Control of PWA Systems

Control abstraction




LTL Control of PWA Systems

Control abstraction




LTL Control of PWA Systems

Control abstraction
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LTL Control of PWA Systems

Control abstraction

{(X,,X,}
@UX134 ______ @ U}{()fl Xy, X5,X4}

s
*
.
.



LTL Control of PWA Systems

Finite control transition system

1 Compu’re states (state equivalence classes)
2: For each state:
2.1. Compu’re inpu‘rs (input equivalence classes)
2.2: Remove inputs that are "too small”
2.3: Keep only "most deterministic” inputs
3: Generate control strategy for control TS
4. Adapt the control strategy to the PWA system
(language inclusion)

The finite control transition system 7
can be constructed using polyhedral
operations only.

Yordanov, B. and Belta, C., CDC ‘09

Tumova, J., Yordanov, B., Belta, C., Cerna, I., and Barnat, J., CDC ‘10
Yordanov, B. and Belta, C., Accepted in IEEE Trans. Autom. Control, 2011




LTL Control of PWA Systems

Example: Buchi game

100
90

O = QX1 N QX9 A OXor N QX3

&0

60

Mﬁomoter 2 | Promoter> Repressor 1 'gReporter 13 40t
30
:

36 states .
4115 nonempty input regions
-3182 input regions were “large enough” (limi+=0.05)
260 input regions induce deterministic transitions only
(do not lead to a solution from any state - no solution can be found if
the game is avoided!!)
691 "most deterministic” input regions were included
(control strategies were found from all 36 states)




Example: Buchi game

LTL Control of PWA Systems

¢ = QX1 A QX1 A OXar A O Xsg
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Xy ]
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6,27,28)
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LTL Control of PWA Systems

Improving the solution: stuttering phenomena

* For nondeterministic transitions in the control
transition system that contain self-loops, the
adversary can use the self-loop to win the game.

« We can characterize the input sets that are
stuttering (quarantee to leave the region in finitely
many steps)

» Stuttering inputs can be used in the game




LTL Control of PWA Systems

Example: Rabin game

Mmmoter 2 | Promoter 1

Repressr 1 [S

Matlab tool: “conPAS”
(hyness.bu.edu/software)

100

90+

30

70

60

50

40

30F

20

10

0

OO10 ADO=(17 v 18 v 19 v 20)

10 24 34 -
\ 2 22 - -
l| L\ 21 23
-
9 \ 53\ 35
1 \
N
6 8\
\ 0 N\
[ ]
5 v 29 |81
e
2 \4 14 16 26 |28
®1 3 & 13 15 %6 | 2%
1] 10 20 30 50 70 30 90

If stuttering is not accounted for, only 10 is a
satisfying initial region.

100
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