
Marsha Chechik
Department of Computer Science

University of Toronto

CMU - April 2010

1

 Dependable software:
◦ that can justifiably be

depended upon, in safety-
and mission-critical settings

◦ main concern: prevent
catastrophes

BUT… I will not write software for
trains and nuclear power plants!

What is in it for me? “

 Tools that support effective analysis while
remaining easy to use

 And at the same time, are
◦ … fully automatic
◦ … (reasonably) easy to use
◦ … provide (measurable) guarantees
◦ … come with guidelines and methodologies to apply

effectively
◦ … apply to real software systems

Multi-Valued
logics + Model
Checking

Reasoning with partial
and inconsistent
information

Software
Model Checking

Checking behavioral
properties of programs

Understanding
Counterexamples

Understanding and
exploring results
of automated
analysis

Temporal Logic
Query Checking

Computer-aided model
exploration

Vacuity Detection

How to trust
automated analysis

Model
Management

Synthesis, merge,
analysis of structural
and behavioral models

Abstraction

General study of models
for representing abstractions

A simple research map

Domain-specificity:
Web services

Runtime monitoring and
recovery of web service
conversations

Domain-specificity:
automotive

Dealing with systems of
models

5

A software system designed to support interoperable machine-
to-machine interaction over a network. – W3C

 Loosely coupled, interaction through standardized interfaces
 Platform- and programming-language independent
 Communicating through XML messaging
 Together, form a Service-Oriented Architecture (SOA)

Company X Web Service

Company A

Company B

Web Service

Company C

Web Service
highly
distributed

6

 Enable automated verification during the
development of business process composition

 Ensure reliability and interoperability of the
workflow logic representing orchestration of web
services

 Determine how to specify behaviors and check if
system is consistent with this intended behavior

 Help debug web service-based business
processes to determine errors and weaknesses

 Web services are:
◦ Distributed (use different “partners”) + heavy reliance on

communication, via “infinite” queues
◦ Heterogeneous (written in different languages)
◦ Can change at run-time
◦ Often “run to completion” rather than having infinite

behaviour
◦ A service has access to its partners’ interfaces but not

code
◦ Partners can even be dynamically discovered

 Languages in the web world not very formal
◦ … and allow a lot of poorly understood capability

 Notion of correctness?
7

 Choices for web service analysis
◦ Static, dynamic

 BPEL – Business process integration language
 Monitoring of web services
◦ Properties: safety and liveness
◦ Monitoring automata

 Recovery
◦ Formalizing BPEL+compensation as a state machine
◦ Computation (and ranking) of recovery plans for safety

and liveness properties
 Evaluation + some lessons learns
 The bigger picture

8

 Language and methodology for specifying
properties

 Visualization and explanation of errors
 Helping user identify sources of errors

9

 BPEL: XML language for defining orchestrations
◦ Variable assignment
◦ Service invocation (“remote procedure call”)
◦ Conditional activities (internal vs. external choice)
◦ Sequential and parallel execution of services

10

 Customer enters travel request
◦ dates, travel location and car rental location (airport or

hotel)
 TBS generates proposed itinerary
◦ flight, hotel room and car rental
◦ also book shuttle to/from hotel if car rental location is

hotel
◦ no flights available – system prompts user for new travel

dates
 Customer books or cancels the itinerary
 Main web service workflow implemented in BPEL

11

12

Travel Booking System

1

1

13

 Compose individual web services
 Reason about correctness of the composition
 Problems
◦ unbounded message queues
 undecidable in general [Fu, Bultan, Su ‘04]
◦ code may not be available
◦ discovery and binding of services is usually dynamic

14

 No code - observe finite executions at runtime
 Examine behavioral compatibility
 Pros
◦ Can deal with dynamic binding
◦ Can be applied to complex systems

 Specifically for Web Services:
◦ Interaction is abstracted as a conversation between

peers
◦ Types of messages
 method invocations
 service requests/replies

15

Running
Service

Monitor

Translation

Event

Property
Specification

1. Property Specification:
 Sequence Diagrams
 Property Patterns
 Regular Expressions

2. Translation:
 User-specified props to FSAs

3. Analysis:
 Conformance Check

4. Interpretation:
 Visualization of deviations

Overall
• non-intrusive framework

(application is not aware it is being
monitored)

• On-line (monitoring as software
runs)

Analysis

Implemented on top of IBM
WebSphere Process Server

16

 Safety properties: negative scenarios that the system
should not be able to execute.

 Monitorable because they are falsified by a finite prefix of
execution trace.

Example:
◦ “Flight and hotel dates should match”
◦ Absence pattern combined with After scope
 The hotel and flight dates should not be different after the

hotel and flight have been booked
◦ Monitoring Automaton:

17

 Liveness properties: positive scenarios that the system
should be able to execute.

Example:
◦ “The car reservation request will eventually be fulfilled

regardless of the location chosen”
 Not monitorable on finite traces of reactive systems!
 Solution: Finitary Liveness
◦ check liveness only for terminating web services
◦ a finite trace satisfies a liveness property if it can

completely exhibit the liveness behaviour before
termination
◦ express as a bounded liveness property

18

 Liveness properties: positive scenarios that the system
should be able to execute.

Example:
◦ “The car reservation request will be fulfilled regardless of

the location chosen”
◦ Response pattern with a Global scope
 A car will be placed on hold, regardless of the rental location

picked by the user
◦ Monitoring Automaton

191

1Violating Scenario
1

2

4

3

5

7

9
8

6
8

4

 If a property fails, automatically generate a set of
possible recovery plans
◦ Exact number and length depend on user preferences

 User picks one
 Apply the plan, reset the monitors, continue

 Now, what is the meaning of recovery here?

20

21

 From violations of safety properties:
◦ Observed an undesired behaviour
◦ “Undo” enough of it so that an alternative behaviour can

be taken …
◦ … that would not longer be undesired

 From violations of liveness properties:
◦ Observed an undesired behaviour
◦ “Undo” enough of it so that al alternative behaviour can

be taken
◦ “Redo” the behaviour so that it becomes successful

 This is only possible if we can undo prev.
executed steps – compensation! 22

 BPEL: XML language for defining orchestrations
◦ Variable assignment
◦ Service invocation (“remote procedure call”)
◦ Conditional activities (internal vs. external choice)
◦ Sequential and parallel execution of services

 Compensation
◦ Goal: to reverse effects of previously executed activities
◦ Defined per activity and scope
◦ Intended to be executed “backwards”:
 compensate(a;b) = compensate(b);compensate(a)

◦ Example:

23

 Choices for web service analysis
◦ Static, dynamic

 BPEL – Business process integration language
 Monitoring of web services
◦ Properties: safety and liveness
◦ Monitoring automata

 Recovery
◦ Formalizing BPEL+compensation as a state machine
◦ Computation (and ranking) of recovery plans for safety

and liveness properties
 Evaluation + some lessons learns
 The bigger picture

24

• BPEL →LTSA translation:
LTSA tool + new

• Property translation:
new (incomplete)

• Goal links, change states:
python-automata + new

• BPEL engine:
WebSphere Process
Server (WPS)

• Monitoring:
WPS plugin

• Planner:
Blackbox

• Generation of multiple plans:
new, based on SAT-solver

• Plan ranking + Post-Processor:
new

Preprocessing Monitoring Recovery

25

 Operations formalized [Foster ‘06]:
◦ receive, reply, invoke, sequence, flow, while, if, pick,

assign, fault handling
 Modeling language: Labelled Trans. Systems (LTS)
 Tool support: LTSA

26

27

 Adding compensation for individual activities
◦ Compensation available once activity has been

completed successfully
◦ Unless specified otherwise, compensation applied in

inverse order of execution

28

Trace:
1. Receive input
2. Get car at airport
3. Hold car at airport
4. Hold hotel room
5. Update travel dates and

hold flight
6. Display itinerary
7. Book flight
8. Book hotel
9. Check date consistency

Monitor no longer in error state,
but only available event leads to
error state

81 - monitor not in error state:
option: cancel everything

Other option: continue
compensation
How far?

29

 Goal: it should be
possible for the system
to avoid executing same
error trace!

 Thus: undo error trace
till we reach a state from
which we can execute
an alternative path

 We call these change
states

?

?

30

 Definition: a change state is a state that can
potentially produce a branch in the control flow
of the application

 Branching BPEL activities:

31

while

if flow

pick

Internal choice, depends on state! External choice

Alternative execution order

 How can we affect an internal choice?
◦ Idempotent service calls: outcome completely

determined by input parameters
 So executing it twice does not change the outcome
◦ Non-idempotent service calls:
 Executing twice may give a different result
◦ Overapproximation: non-idempotent service calls can

affect internal choices…
 … but do not have to!

 So: what are change states?
◦ Non-idempotent service calls (user identified), pick and

flow activities
32

Trace:
1. Receive input
2. Hold hotel room
3. Hold flight (no date update)
4. Get car at hotel
5. Hold shuttle
6. No cars available at hotel
7. Display itinerary
8. Book hotel
9. Book car > TERMINATE

Intercept TERMINATE event

Goal: reach green monitor state

60 – try to get car at hotel again
51 – same, new shuttle
reservation
42 – try to get car at airport

33

34

?
?

?

 Get the monitor into a green
state (complete desired
behaviour)

 Compute cross-product
between application and
mixed monitor

 Goal links: cross-product
transitions (s, q) → (s’, q’)
◦ (,) → (,) means that

we have witnessed the desired
behaviour

 Moreover, reach a goal link
via a change state
◦ … to ensure a different

execution path

a

’a ’

• BPEL →LTSA translation:
LTSA tool + new

• Property translation:
new (incomplete)

• Goal links, change states:
python-automata + new

• BPEL engine:
WebSphere Process
Server (WPS)

• Monitoring:
WPS plugin

• Planner:
Blackbox

• Generation of multiple plans:
new, based on SAT-solver

• Plan ranking +
Post-Processor:

new

Preprocessing Monitoring Recovery

35

 Input:
◦ Properties
◦ BPEL with recovery mechanism
◦ Mechanism for recovery

 Preprocessing
◦ Properties -> monitors
◦ BPEL -> LTS
◦ Computation of goal links, change states

 Recovery
◦ Recovery for safety properties
◦ Recovery for liveness properties
 Generating a single plan
 Generating multiple plans

◦ Ranking, displaying, executing plans
 Evaluation
 Related work, conclusion and future work

36

 Convert LTS + violation to
a planning problem

 Goal links:
◦ go through a change state to

better chances of executing
an alternative path

 Planner attempts to find
the shortest path to one of
the goal links

domain

goal links

initial state
38

change states

Planning (PSPACE-complete)
 Planning Graphs [Blum and Furst ‘95]
◦ Avoid straightforward exploration of the state space graph
◦ Nodes: actions and propositions (arranged into alternate

levels)
◦ Edges:
 from a proposition to the actions for which it is a precondition
 from an action to the propositions it makes true or false

39

SAT-based planners translate planning graph into
CNF

40

props t=0 → actions t=1

actions t=1 → props t=1

initial state
goal state

etc.

 Given a plan to a goal state g,
◦ Remove g from the set of goal states
◦ Rerun the planner

 What about other plans to g?

41

Planning
domain

Planner

SAT instance

SAT solver

Converter

Plan: (a; b)

Satisfying
assignment

Planner used: Blackbox
42

¬prev plan ∧

Previous plans

43

Planning
domain

Planner

SAT instance

SAT solver

Converter

Plan: do nothing (no-op)

Satisfying
assignment

Planner used: Blackbox
43

Planner: expand
domain up to k steps

Max length k

Incremental
SAT solver

 Ranking plans is based on:
◦ Ranking of goal links
◦ Length of plans
◦ Cost of compensation for each plan

 Post processing:
◦ Goal: display plans on the level of BPEL
◦ Based on traceability between BPEL and LTS

 Plan execution:
◦ When compensation actions are executed, monitors

move backwards

44

45

• BPEL →LTSA translation:
LTSA tool + new

• Property translation:
new (incomplete)

• Goal links, change states:
python-automata + new

• BPEL engine:
WebSphere Process
Server (WPS)

• Monitoring:
WPS plugin

• Planner:
Blackbox

• Generation of multiple plans:
new, based on SAT-solver

• Plan ranking +
Post-Processor:

new

Preprocessing Monitoring Recovery

46

47

[Carzaniga et al. ’08]:
◦ full state space exploration
◦ manually created application models
◦ manually picked goal states

48

 Expected plans for TBS computed in first two
steps

 Steep jump in number of plans caused by
exploring alternatives far from the error
Can we use safety properties to avoid this
explosion?

 SAT instances become harder as we
increase k, so average time to compute a
plan also increases
Incremental SAT (k → k+1)?

 Scalability?
◦ TBS is more complex than other applications
◦ … but step k = 30 (68 plans) only took ∼ 60 s

 Runtime Monitoring – property specification
◦ [Mahbub and Spanoudakis ‘04]: event calculus
◦ [Baresi and Guinea ‘05]: service pre- and postconditions
◦ [Li et al. ‘06]: patterns (without nesting)
◦ [Pistore and Traverso ‘07]: global LTL properties

 Recovery mechanisms
◦ [Dobson ‘06]: add fault tolerance at compile time
◦ [Fugini and Mussi ’06]: predefined fault/repair registry
◦ [Ghezzi and Guinea ‘07]: BPEL exception handlers,

predefined recovery rules
◦ [Carzaniga et al. ‘08]: use existing redundancy

49

 Success: built a prototype of a user-guided runtime
monitoring and recovery framework for web-services
expressed in BPEL
◦ … Integrated with IBM Web Process Server

 Challenge: Compute fewer plans
◦ Use safety properties to decrease the number of “liveness”

plans computed
◦ Improve precision of change state computation
 Investigate “relevance” of change states w.r.t. a property
 Employ static analysis of LTSs
 “if all paths out a state definitely lead to an error, it is not a change

state”

 Challenge: Improve scalability of plan computation
◦ Reuse results of SAT solving for plans of length k for k+1

50

 Coming up with correctness properties
 Modeling data (e.g., NOT_SAME_DATE)
◦ Can specify “derived events” for monitoring
◦ So that monitors can register for them
◦ Unclear how to use in recovery

 Modeling compensation
 We model compensation by back arcs
 But BPEL compensation is much more general, perhaps

moving the system into a completely new state
 … especially if data is involved

 Developing this framework outside of IBM’s WebSphere,
for others to experiment with
◦ Dependency: event registry, intercepting events before

TERMINATE
◦ Chosen plan execution can be implemented using dynamic flows

[van der Aalst ‘05] 51

 Application of expected techniques to new
domains may lead to unexpected conclusions

 Interesting combination of engineering, software
engineering, modeling and verification challenges

 Enables verification experts make a big difference
to real state of practice

52

 Our work:
◦ [IEEE Transactions on Services Computing ‘09]
◦ Recent conference and book chapter submissions
◦ Patent being written

[Blum and Furst ‘95] A. Blum and M. Furst. “Fast planning through planning graph
analysis”. Artificial Intelligence, 90(1-2):281—300, 2005.

[Carzaniga et al. ‘08] A. Carzaniga, A. Gorla, M. Pezze. “Healing Web Applications
through Automatic Workarounds”. STTT, 10(6):493--502, 2008.

[Foster ‘06] H. Foster. A Rigorous Approach to Engineering Web Service
Compositions. Ph.D. thesis, Imperial College London, 2006

[Fu, Bultan, Su ‘04] X. Fu, T. Bultan and J. Su. “Conversation Protocols: A
Formalism for Specification and Verification of Reactive Electronic Services”.
Theoretical Computer Science, 328(1-2):19--37, 2004.

[van der Aalst ‘05] W. van der Aalst and M. Weske. “Case Handling: a New
Paradigm for Business Process Support”. Data Knowledge Engineering,
53(2):129--162, 2005. 53

 Web Service runtime monitoring and recovery
◦ Jocelyn Simmonds, Shoham Ben-David, Bill O’Farrell (IBM),

Yuan Gan, Shiva Nejati
 Model-checking, abstractions, vacuity,

counterexample analysis
◦ Arie Gurfinkel (SEI CMU), Ou Wei, Aws Albarghouthi, Benet

Devereux + many others!
 Model management
◦ Sebastian Uchitel (Imperial College + Univ. of Buenos

Aires), Shiva Nejati, Mehrdad Sabetzadeh, Rick Salay,
Steve Easterbrook, Michalis Famelis, folks at AT&T and
General Motors

54

Multi-Valued
logics + Model
Checking

Reasoning with partial
and inconsistent
information

Software
Model Checking

Checking behavioral
properties of programs

Understanding
Counterexamples

Understanding and
exploring results
of automated
analysis

Temporal Logic
Query Checking

Computer-aided model
exploration

Vacuity Detection

How to trust
automated analysis

Model
Management

Synthesis, merge,
analysis of structural
and behavioral models

Abstraction

General study of models
for representing abstractions

Domain-specificity:
Web services

Runtime monitoring and
recovery of web service
conversations

Domain-specificity:
automotive

Dealing with systems of
models

A simple research map

 Eliminate one of the major verification challenges:
coming up with the right level of abstraction for
tractable and precise analysis

 Interesting problems:
◦ “correct” refinements of models into code
◦ Dealing with change propagation, on model and on code

level
◦ And many other

56

57

[Mahbub and Spanoudakis ‘04] K. Mahbub and G. Spanoudakis. “A
Framework for Requirements Monitoring of Service-based Systems”. In
ICSOC ’04, 84--93, 2004.

[Baresi and Guinea ’05] L. Baresi and S. Guinea. “Towards Dynamic
Monitoring of WS-BPEL Processes”. In ICSOC ‘05, 269--282, 2005.

[Li et al. ‘06]: Z. Li, Y. Jin and J. Han. “A Runtime Monitoring and Validation
Framework for Web Service Interactions”. In ASWEC ’06, 70--79, 2006.

[Dobson ’06] G. Dobson. “Using WS-BPEL to Implement Software Fault
Tolerance for Web Services”. In EUROMICRO-SEAA ‘06, 126--133, 2006.

[Fugini and Mussi ’06] M. Fugini and E. Mussi. “Recovery of Faulty Web
Applications through Service Discovery”. In SMR-VLDB, 67--80, 2006.

[Pistore and Traverso ’07] M. Pistore and P. Traverso. “Assumption-Based
Composition and Monitoring of Web Services”. In Test and Analysis of Web
Services, 307--335, 2007.

[Ghezzi and Guinea ’07] C. Ghezzi and S. Guinea. “Run-Time Monitoring in
Service-Oriented Architectures”. In Test and Analysis of Web Services,
307--335, 2007.

58

 Expected plans
computed in first
two steps

 Steep jump in
number of plans
generated caused
by exploring
alternatives far
from the error

59

Can we use safety properties to avoid this explosion?
 SAT instances become harder as we increase k, so

average time to compute a plan also increases
Incremental SAT (k → k+1)?

	Modeling and Verification:�Runtime Monitoring and Recovery of Web Service Conversations
	Quality software
	What Software Engineers Need Are …
	Slide Number 4
	Web Services
	Support for Quality Web Service Applications: Goals
	Challenges of reasoning about web services
	What is in this talk?
	What is not in this talk?
	Business Process Execution Language
	Example: Travel Booking System (TBS)
	Slide Number 12
	Analyzing Correctness of Web Service Compositions: Statically
	 Analyzing Correctness of Web Service Compositions: Dynamically
	Our Runtime Monitoring Approach
	Monitoring Safety Properties
	Monitoring Liveness Properties
	Monitoring Liveness Properties
	Slide Number 19
	Goal of Recovery
	Goal
	Meaning of Recovery
	Business Process Execution Language
	What is in this talk?
	User-Guided Recovery
	Formalizing WS-BPEL
	Formalizing WS-BPEL
	Formalizing BPEL+compensation
	Recovery for safety �properties
	How far back should we go?
	Change States
	Change States
	Recovery for live-�ness properties
	Where should we go?
	User-Guided Recovery
	Recovery for web services - outline
	Generating Plans for Liveness Property Violations
	SAT Encoding of Planning Problem
	SAT Encoding of Planning Problem
	Generating Multiple Plans
	Opening the Planner Black Box
	Generating Multiple Plans
	Ranking Plans + Post Processing
	Summary: User-Guided Recovery
	Our Framework
	Evaluation
	Evaluation
	Related Work
	Summary and Challenges
	More Challenges
	Lessons Learned
	References
	Acknowledgements
	Slide Number 55
	More on Model Management
	Thank you!�Questions?
	Additional references
	Evaluation

