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SpaceEx Verification Platform

e Platform for developing verification algorithms
— Analysis Core (90kloc C++)
— Model Editor
— Web Interface

e Provides data structures, operators, infrastructure
— proprietary polyhedra library
— number type is templated (substitute your own)

— interfaces to linear programming solvers (GLPK,PPL), Parma
Polyhedra Library, ode solvers (CVODEYS)

e Open Source: spaceex.imag.fr



SpacekEx Model Editor

A0 F SpaceEx — Model Editor (0.8.385) - dam_model_27052011.xml

e penTs e | untimed_user_template_2 X | timed_user_template_1 x weather_template X i spillway_template x height2vol_template X i workout_total X
%% workout_total I =

= -info-
2\} height2vol_template parsm
£ spillway_template
2\} weather_templat

transition

synchronization label

open
£ timed_user_template_. hlp . SoRn close
£ timed_user_for_3 i D:—_dv hZ<=h -
£3 untimed_user_templat & D<=dv guard
3 untimed_user for 3 h<=hclose
T3 total_outflow_templat helose<=h<=h2 helbsae—higmha & dv<=0
2\} deterministic_weather. =
close r
£ update_dh |
£ dam_template =iz |
B9 SUTL Bodve=0 : & dv<=0 i assignment
_______ open
5% suT2 fis=hcloge h3<=h
55 SUT3 Gose close  &dv<=0 _d
[ SUT4 h<=hclose & D==dv
8 dv<=0 h<=hclose
ste fdv<=0
st4
hclose<=h<=106.5 hclose<=h<=h5 A [ timedr

open open | Apply
hs<=h h4==h
& O==dv B O<=dv

Ne'[VVOI’kS Of Hybrld AutOmata ..................................................................................................................................................................................................................

—templates

—hierarchy




SpacekEx Web Interface

S p a C e E X State Space Explorer Home

Model Spadfication Options Output Advanced Console

Iteration 6...

Model editor Download Tteration 7...
Model file T Iteration 8...
:] Iteration 9...

Configuration file Load| | Save Iteration 10...

About SpaceEx Documentation

8 sym states passed, 1 waiting 0.457s

9 sym states passed, 1 waiting 0.941s

10 sym states passed, 1 waiting 0.434s

11 sym states passed, 1 waiting 0.9365
12 sym states passed, 1 waiting 0.457s

-

1]

Tteration 11... 13 sym states passed, 1 waiting 0.928s5 [
User nput fle - e e Tteration 12... 14 sym states passed, 1 waiting 0.455s
B Iteration 13... 14 sym states passed, 0 waiting 0.917s
Examples (@) Bouncing Ball {.xi, .cfa) Found fixpoint after 14 iterations.

_/ Timed Bouncing Ball { , Cfa)

Computing reachable states done after 10.058s

= Output of reachable states... 0.823s

" Nondet. Bouncing Ball {.«ml, .cfa)
) girde (i, .cfa) Graphics

Run SpaceEx Downloads

Reporis

11.05s5 elapsed
20516KB memory
SpacebEx output file : output (v

Contact

! Fittered Oscillator 6 (o, .cfg)
- ! Fittered Oscillator 18 (.« .cfa)
0 Fittered Oscillator 34 (.« .cfa)

A filtered oscillator.

Same as the G-variable filtered osdllator, but with a higher order filter,
With 34.state variables, an analysis with octagonal constraints is no
longer practical, since this requires 2*3442=2312 constraints to be
computed at every time step. The analysis with 2%34=68 box
constraints remains cheap.

Browser-based GUI
—2D/3D output

—runs remotely




SpaceEx Reachabillity Algorithms

. )

Support Function Algo
—many continuous variables
—low discrete complexity

\

PHAVer

—constant dynamics (LHA)
—formally sound and exact

\

Simulation

—nonlinear dynamics
—based on CVODE




Hybrid Automata with Affine Dynamics

z e 06
Tz := Rx +w '
weWw

z=Aix+u
xeli, uel;

req x:A2x—|—u —02Ff

x;:R/x+w ZUEIQ,UEUQ —047—

we W :
el

-08 —-06 —-04 —-02 00 02 04 06 08
X

e linear differential equations

e can be highly nondeterministic
— additive “inputs” u,w model continuous disturbances (noise etc.)
— uncertain switching regions

— uncertain switch result



Reachability of Hybrid Automata

e reachabillity is hard for continuous dynamics

— complex, nonconvex sets

e even harder for hybrid dynamics
— involves reachability of continuous dynamics

— plus event detection over a dense domain

e approximations needed

Key: find approximation that is
efficlent but accurate fora large

\number of continuous variables y




Outline

e SpaceEx Verification Platform



Time Elapse with Affine Dynamics

e Affine Flow

— nondeterministic affine differential equation:

T =Ax +u, withu e U
e Solve with superposition principle

— disregard inputs: “autonomous dynamics”

— add inputs afterwards

10



Linear Dynamics

e “Autonomous” part of the dynamics:

x=Ax, xe€R"

e Known solutions:
— analytic solution in continuous time

— explicit solution at discrete points in time
(up to arbitrary accuracy)

e Approach for Reachability:
— Compute reachable states over finite time: Reachy, y(X,;)

— Use time-discretization, but with care!

11



Time-Discretization for an Initial Point

e Analytic solution:  z(t) = eAtz,; .
x(t
o With ¢ = 6k : s
Lo
r(6(k+1) = eMx(fk) To| 11

e EXplicit solution in discretized time (recursive):

Zo LIni

eAd g,

Lk+1

N multiplication with const. matrix e4?
= linear transform

12



Time-Discretization for an Initial Set

e EXplicit solution in
discretized time

Xo = X
X1 = ePXy

e Acceptable solution for purely continuous systems
— z(t) is in €(6)-neighborhood of some X,

e Unacceptable for hybrid systems
— discrete transitions might “fire” between sampling times
— if transitions are “missed,” z(t) not in ¢(§)-neighborhood

13



Time Discretization for Hybrid Systems

e One can mMiss jumps

— intersection with guard set

jump not visible
in discretization
guard

f|owp|pe sets in
discretized time

14



Bouncing Ball

//////j
/ /// ////// ‘///// 2

o
\Xgoz 0

— In other examples this error might not be as obvious...
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Reachabillity by Time-Discretization

e Goal:
— Compute sequence Q, over bounded time [0,/N§] such that:
Reach[O,N(g] (X]nz) g Qo U Ql Uu...U QN

e Approach:
— Refine Q, by recurrence: N Q,
Qk+1 = eA(SQk

— Condition for Q_:
Reach(o 5)(X1ni) € Qo

16



Nondeterministic Affine Dynamics

e Let’s include the effect of inputs:
r=Arx+u, xR uelU

— variables z,...,z,, Inputs u,,...,u,

e |Input v models nondeterminism

— disturbances etc.

— can be used for overapproximating nonlinear dynamics
(U = bounds of approximation error)

17



Nondeterministic Affine Dynamics

e Superposition Principle

¢
x(t) = e2z(0) —|—/ e~ y(r)dr
\/_/ — 0 - /

autonomous influence of
dynamics inputs

/ __ influence of inputs

[: T~ Reach[o,%] (X 1)

| | | |
0 J 20 30 t

18



Nondeterministic Affine Dynamics

e Set overapproximation of input influence
— How far can the input “push” the system in ¢ time?

— from Taylor series expansion
U =0U P &y (input influence set)
Ey = (Py O (AU)) (error bound)
Oy = |A|7? (24 — T — 5| A]) (matrix)
e Operators:
— Minkowski Sum: A B={a+b|ac A, be B}

— Symmetric Bounding Box: [ (-) !
— Linear Transform T

diit

—

19



Nondeterministic Affine Dynamics

e Recurrence equation with influence of inputs

Q1 = e v

e Still needed:

— approximation of the
initial time step with Q,

— called “approximation model”

20



Approximation Models — Prev. Work

e convex hull constraints e bloat last set with ~ ellb
+ bloat with ~ ellAlb + convex hull

e error large and uniform e error large and uniform
e exponential cost e efficient for high dimensions

21



New Approximation Model

e approximate set for each ¢ e intersect forward and
+ bloat with ~ e2Ps(40 A X, backward approximations

e error small and non-uniform e without inputs:
thanks to math tricks exact at t=0 and t=4§

22



New Approximation Model

e for each t: overapproximate Reach,with Q,
Qt e (1 — %)XO @ %6514%0

N J
Y

linear interpolation between X, and X; = e”’ X,

®((E3N(1—£)EY)

N J
Y

error bound from Taylor approximation
around ¢t = 0and around t = ¢

DtU D g—zgqf

N J
Y

Taylor approximation of inputs with error bound

23



New Approximation Model

e overapproximate Reach, 5 with convex hull
of time instant approximations

9[075] = ChuH(UOSt§5 Qt)

e error terms: symmetric bounding boxes
5*(960,5) = (P2(]4],0) B (42X)) .

Eq (X, 8) = B (D2(]A],0) B (A%’ X))
Eu(U,0) = B(%(\AI,& L1 (AU)) .
Dy(A,6) = A2 (24 — 1 — 6 A)

24



New Approximation Model

e overapproximate Reach, 5 with convex hull
of time instant approximations

9[075] = ChuH(UOSt§5 Qt)

e smaller overall error with math tricks

— Taylor approx. of interpolation error

— bound remainder with absolute value sum instead of matrix norm

25



New Approximation Model

e What Set Representation to Use?

Polyhedra
Operators Constraints Vertices Zonotopes Support F.
Convex hull -- + - ++
Linear transform +/- ++ ++ ++
Minkowski sum -- - ++ 4

26



Representing of Convex Sets

e Approximation with Supporting Halfspaces

— given template directions = outer polyhedral approximation

& @ @

axis (+ x) octagonal (£ x * x) all directions
J Y Y
bounding box bounding polytope exact set
2n facets 2n? facets

27



Representation of Convex Sets

e Support Function
— direction — position of supporting halfspace

— exact set representation

e Implemented as function objects

— applying an operator creates
new function object

0‘\‘ pp(d) = max,cpdlx

28



Computing with Support Functions

e Needed operations are simple

— Linear Transform: pap(d) = pp(Ald)
— Minkowski sum:  ppgo(d) = pp(d) + pg(d)

— Convex hull: Peruti(P,Q)(d) = max(pp(d), po(d))

e Implement as function objects

— can add more directions at any time

C. Le Guernic, A.Girard. Reachability analysis of hybrid systems using
support functions. CAV’'09 29



New Approximation Model

e Efficiently computable with support functions

Q[O,5] = ChU.ll U0§t§5 ((1 — %)XO b §€5AXO

\

_ chull of union = max
(L€ N (1 —£)ET)
S

iIntersection of
axis aligned boxes
DU D g—zgq,) = solution of pw linear function

30



New Approximation Model

e Efficiently computable with support functions

T
pee.s (d) = maxseqo ) { (1= $)pay (d) + pay (747 d)

+ 3 min(ge, (1— 2)e; )|di]
\

solution for intersection of
axis aligned boxes

+tou(d) + §5zpe, (d) |
guadratic term

— maximize piecewise gquadratic scalar function
for each template direction

31



New Approximation Model

e Error bounds for each template direction d

ew,w)(d) < pey (d) + p—as.u(d)
EQp0,5(Xo.u) (£) < max {P(Asgmu—x)gg)(d)

— €fo,1]
+>\2P5\p(u,5) (d) + Ap—AcI>2u(d)}-

— used to choose time steps

e Error incurred with each application of time elapse
operator

— transition successor computation will void this bound for
subsequent steps

32



Extension to Variable Time Steps

i

adapt to error

different time scale for each direction

— new approximation model can interpolate

cost: recompute matrix — e49

— cache matrix

33



Intersection with Invariant

Polyhedra
Operators Constraints Vertices Zonotopes Support F.
Convex hull -- + - ++
Affine transform +/- ++ ++ ++
Minkowski sum -- -- ++ F+

Intersection = - ;

34



Switching Set Representations

e Classic example:
Convex hull of polyhedra in constraint form

— constraint form — vertex form: exponential cost

— compute convex hull in vertex form (union of vertices)
— vertex form — constraint form: exponential cost

e Polyhedron — Support Function
— cheap & exact: solve a linear program

e Support function — Polyhedron

— cheap, but overapproximative

— to bound Hausdorff distance: exponential # of template directions

35



Computing Time Elapse

Support Functions

Initial Set

Convex Hull

Linear Map

Minkowski Sum

overapprox.

Polyhedra

Initial Set

Invariant Intersection

36



Outline

— Transition Successors Mixing Support Functions and Polyhedra
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Computing Transition Successors

e I[ntersection with guard

r = Ty
— use outer poly approximation l v="0
. freefall
e Linear map & z 2 0
Minkowski sum . "ig bounce _Quard
. . . =0Av <0
— with polyhedra if invertible ’ Y e _ch
(map regular, input set a point) reset

— otherwise use support functions

e [ntersection with target invariant

— use outer poly approximation

38



Computing Transition Successors

Support Functions Polyhedra

Guard Intersection

irreversible | map

exact (LP) reversible
Linear Map Linear Map
Minkowski Sum Minkowski Sum
overapprox. Invariant Intersection

39



Outline

— Fixpoint Algorithm: Clustering & Containment

40



Fixpoint Computation

e Standard fixpoint algorithm
— Alternate time elapse and transition successor computation

— Stop if new states are contained in old states

e Problem: flowpipe = union of many sets
— number of flowpipes may explode with exploration depth
— containment very difficult on unions

e Solution:
— reduce number after jump through clustering

— use sufficient conditions for containment

— nested depth of support function calls is limited due to outer poly.

41



Clustering

e After discrete jump, every convex set spawns a new

flowpipe
1.6
0.8+
e Reduce number
y to avoid explosion
- e How many sets?
0.4 e Bound approximation
error
0.2 - n
0.0 . | . | . | . | . | .
0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

42



Clustering — Template Hull

e Template Hull
= Quter polyhedron for template directoins

1.0

guard |
! | e template hull up to
given error bound

0.8+

0.6 -

= low number of sets

0.4+

,\small error

0.2

43



Clustering

Even a low number of sets might be still too much

1.0

0.8+

0.6 -

0.4+

0.2

0.0

guard

e 2 sets = possibly
2k sets at iteration k

e cluster again using
convex hull

= 1 set, good accuracy

44



Transition Successors with Clustering

Support Functions Polyhedra

Guard Intersection
irreversible | map

exact (LP)

reversible
Linear Map Linear Map
Minkowski Sum Minkowski Sum
Template Hull
overapprox. Invariant Intersection

Convex Hull

after intersection because
contained in convex invariant

45



Sufficient Conditions for Containment

e “Cheap” containment e
— pairwise comparison 0.41 hh5 .
L 'ﬂ\h{\ hE ¥ . : , i
— comparison only with initial set 021 %, X\ .
of flowpipe - Ny Ny
e Clustering helps ‘
_ -0.2} -
— delays containment one !
iteration if clustering to a -04f .
single set * |

6 L L . . . | L | L | L | L
-0.8-06-04-0.200 0.2 04 06 08 1.0

46



Support Functions

Time Elapse

Summary:
Reachability Fixpoint Algorithm

Polyhedra

Initial Set

Invariant/Guard Intersection

Transition Successors

Transition Successors

Convex Hull Clustering

Invariant Intersection

Containment Check

47



Outline

— Transition Successors Mixing Support Functions and Polyhedra
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Example 1.
Filtered Switched Oscillator

e Switched oscillator
— 2 continuous variables
— 4 discrete states

— similar to many circuits
(Buck converters,...)

e plus linear filter
— mcontinuous variables

— dampens output signal

e affine dynamics

— total 2 + m continuous variables

0.6 .

0.4+

0.2r

0.0

-0.2r

—0.4 1

P R R P Y IR
—0.8 —06 —0.4 —0.2 00 02 04 06 08
X

49



Filtered Switched Oscillator

e Low number of directions sufficient?

— here: 6 state variables

12 box constraints 72 octagonal constraints
(axis directions) (£ % £ %)

50



filter t =

Example 1: Switched Oscillator

e Connecting Filter Components

filter_2nd_order x

filter t x

Params

Params
L_In
E[}E_U ut ]7 is a filkar_£
[::{_internal ]:I— 0
#_Internal
-5
is a filkar &

¥_Internal

¥_out

-




Example 1: Switched Oscillator

e Low number of direction sufficent

— here: 6 state variables

12 box constraints 72 octagonal constraints
(axis directions) (£ % £ %)
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Template Hull and Convex
Clustering

jull

e first jump has 57 sets = impossible w/o clustering

11.5 sec

03 0z J4 L2 9l 92 L4 0B 03 0% 06 04 0 0D 02 03 B CE
(c) Constraint hull aggregation (d) Convex hull aggregation

3.6 sec

8.2 sec

53



Example 1: Switched Oscillator

e Scalable: 10000.0 -
— fixpoint reached in O(nm?) time - %00
— box constraints: O(n?) g 1000
— octagonal constraints: O(n?) S 100
1.0 1
e Clustering necessary 01
1 10 100 1000
— 57 sets take first jump number of variables n

— combination of template and convex hull:
compromise in speed and accuracy
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Example 2: Chaotic Circuit

e piecewise linear Rossler-like circuit

e added nondet. disturbances

e 3 variables, hard!
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Example 2: Controlled Helicopter

e 28-dim model of a Westland Lynx helicopter
— 8-dim model of flight dynamics
— 20-dim continuous Hoo controller for disturbance rejection

— stiff, highly coupled dynamics

S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and Design. John Wiley & Sons, 2005. 56



Example 2: Controlled Helicopter

e Reachability for uncertain initial states:

— old approx.: 200s error large
— New approx.: 24s  error < 0.025
— variable time step: 14s error < 0.025
(without interpolation)
0.6
0.4-— ] _ ,
f 1 simulation |
02 / i
vertical 3 O'OL/\/\/
speed - |
—0.27 :
—0.4;
—0.6- ‘ | ‘ ‘ ‘
0 5 10 15 20 25 30

t [s]

S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and Design. John Wiley & Sons, 2005.
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Example 2: Controlled Helicopter

e Reachability for uncertain initial states:

— old approx.: 200s error large
— New approx.: 24s  error < 0.025
— variable time step: 14s error < 0.025
(without interpolation)
0.6 | | |
0.4; X _

100 simulations

0.2 fzs)
vertical &
speed -
—0.2 ¥
_0‘4_, _
_06 1 1 1 | |
0 5 10 15 20 25 30
t [s]

S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and Design. John Wiley & Sons, 2005.
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Example 2: Controlled Helicopter

e Reachability for uncertain initial states:

— old approx.: 200s error large

— New approx.: 24s  error < 0.025

— variable time step: 14s  error < 0.025
(without interpolation)

0.6

1000 simulations

vertical <
speed -

10

15 20 25 30
t [s]

S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and Design. John Wiley & Sons, 2005
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vertical <
speed -

Example 2: Controlled Helicopter

e Reachability for uncertain initial states:
— old approx.:

200s error large
— New approx.: 24s  error < 0.025
— variable time step: 14s  error < 0.025
(without interpolation)

0.6

1000 simulations

il

Corresponds to
228 corner case simulations

10

15 20 25 30
t [s]

S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and Design. John Wiley & Sons, 2005.
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Example 2: Controlled Helicopter

e Max error per template direction per time elapse:

1,0E+24 _
previous approach
1,0E+17
1,0E+10
1,0E+03 new approximation
1,0E-04
0,0001 0,001 0,01 0,1 Time Step

61



Example 2: Controlled Helicopter

e Max error per template direction:

1,0E+24 _
previous approach

1,0E+17

1,0E+10

1,0E+03 new approximation
model

1,0E-04

0,0001 0,001 0,01 0,1 Time Step

100x bigger time step
for same error

62



Example 2: Controlled Helicopter

e Comparing two controllers
under nondeterministic disturbances

0.15 0.15
Qaf ; 01}
0.05 0.05
B )
§ 0 E 0
3 5
€ 008 o 0,05
% ¥
0.1 0.1
015 0.15F
-0.05 o 0.05 g 0.15 -0.04 -0.02 o Q.02 0.04 006 008 0.1 0.2
x2 (Roll Attitude) x1 (Pitch Attitude)
(a) Roll stabilization (b) Pitch stabilization
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Conclusions

e SpaceEx Verification Platform
— available at spaceex.imag.fr

— tutorial with solutions for course work

e Scalable reachability for piecewise affine dynamics

— fixpoint computation with 200+ variables

e Algorithmic improvements
— approximation improved significantly
— switching set representations for best efficiency
— variable time step with error bounds
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Ongoing Work

4

e Precise Intersection

— reduce error by finding
template directions Tool Download:

e Nonlinear Systems spaceex.imag.ir

— linearize with sliding window
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