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Outline

SpaceEx Verification Platform

SpaceEx Reachability Algorithm
– Time Elapse Computation with Support Functions

– Transition Successors Mixing Support Functions and Polyhedra

– Fixpoint Algorithm: Clustering & Containment

Examples
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SpaceEx Verification Platform

Platform for developing verification algorithms
– Analysis Core (90kloc C++)

– Model Editor

– Web Interface

Provides data structures, operators, infrastructure
– proprietary polyhedra library

– number type is templated (substitute your own)

– interfaces to linear programming solvers (GLPK,PPL), Parma 
Polyhedra Library, ode solvers (CVODES)

Open Source: spaceex.imag.fr
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SpaceEx Model Editor

Networks of Hybrid Automata

–templates

–hierarchy
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SpaceEx Web Interface

Browser-based GUI

–2D/3D output

–runs remotely
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SpaceEx Reachability Algorithms

Support Function Algo

–many continuous variables

–low discrete complexity

PHAVer

–constant dynamics (LHA)

–formally sound and exact

Simulation

–nonlinear dynamics

–based on CVODE
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linear differential equations

can be highly nondeterministic :

– additive “inputs” u,w model continuous disturbances (noise etc.)

– uncertain switching regions

– uncertain switch result

Hybrid Automata with Affine Dynamics
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Reachability of Hybrid Automata

reachability is hard for continuous dynamics
– complex, nonconvex sets

even harder for hybrid dynamics
– involves reachability of continuous dynamics

– plus event detection over a dense domain

approximations needed

Key: find approximation that is 
efficient but accurate for a large 
number of continuous variables

Key: find approximation that is 
efficient but accurate for a large 
number of continuous variables



9

Outline

SpaceEx Verification Platform
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– Fixpoint Algorithm: Clustering & Containment
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Time Elapse with Affine Dynamics

Affine Flow
– nondeterministic affine differential equation:

Solve with superposition principle
– disregard inputs: “autonomous dynamics”

– add inputs afterwards
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Linear Dynamics

“Autonomous” part of the dynamics:

Known solutions:
– analytic solution in continuous time

– explicit solution at discrete points in time 
(up to arbitrary accuracy)

Approach for Reachability:
– Compute reachable states over finite time: Reach[0,T](XIni)

– Use time-discretization, but with care!

ẋ = Ax, x ∈ Rn
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Time-Discretization for an Initial Point

Analytic solution:

Explicit solution in discretized time (recursive):
x0 = xIni
xk+1 = eAδxk

x(t) = eAtxIni

2δ 3δδ0

x0
x1

x2

x3

t

x(t)

multiplication with const. matrix eAδ

= linear transform

x(δ(k + 1)) = eAδx(δk)

• with t = δk :
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Time-Discretization for an Initial Set

Explicit solution in 
discretized time

Acceptable solution for purely continuous systems
– x(t) is in ǫ(δ)-neighborhood of some Xk

Unacceptable for hybrid systems
– discrete transitions might “fire” between sampling times

– if transitions are “missed,” x(t) not in ǫ(δ)-neighborhood 

2δ 3δδ0

X0

X1

X2

X3

t

X0 = XIni

Xk+1 = eAδXk

Reach[0,3δ](XIni)
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One can miss jumps
– intersection with guard set

Time Discretization for Hybrid Systems

guard

flowpipe sets in 
discretized time

X1
X2

jump not visible 
in discretization
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Bouncing Ball

– In other examples this error might not be as obvious…

X90= ∅
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Goal:
– Compute sequence Ωk over bounded time [0,Nδ] such that:

Approach:
– Refine Ωk by recurrence:

– Condition for Ω:

Reachability by Time-Discretization

Reach[0,Nδ](XIni) ⊆ Ω0 ∪ Ω1 ∪ . . . ∪ ΩN

2δ 3δδ0 t

Reach[0,3δ](XIni)

Ω0

Ω1

Ω2

Ωk+1 = eAδΩk

Reach[0,δ](XIni) ⊆ Ω0



17

Nondeterministic Affine Dynamics

Let’s include the effect of inputs:

– variables x,…,xn, inputs u,…,up

Input u models nondeterminism
– disturbances etc.

– can be used for overapproximating nonlinear dynamics
(U = bounds of approximation error)
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Nondeterministic Affine Dynamics

Superposition Principle

2δ 3δδ0 t

Reach[0,3δ](XIni)

influence of inputs

autonomous
dynamics

influence of
inputs
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Set overapproximation of input influence
– How far can the input “push” the system in δ time?

– from Taylor series expansion

Operators:
– Minkowski Sum:

– Symmetric Bounding Box: 

– Linear Transform

Nondeterministic Affine Dynamics

A⊕B = {a+ b | a ∈ A, b ∈ B}

(error bound)

(matrix)

(input influence set)
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Nondeterministic Affine Dynamics

Recurrence equation with influence of inputs

Still needed:
– approximation of the

initial time step with Ω0

– called “approximation model”

2δ 3δδ0 t

Ω0

Ω1

Ω2
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Approximation Models – Prev. Work

convex hull constraints 
+ bloat with ∼∼∼∼ e||A||δ

Asarin, Dang et al., HSCC 2000

error large and uniform

exponential cost

bloat last set with ∼∼∼∼ e||A||δ

+ convex hull 
Le Guernic, Girard, CAV 2009

error large and uniform

efficient for high dimensions 

X0 Xδ X0 Xδ
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intersect forward and 
backward approximations 

without inputs:
exact at tttt=0=0=0=0 and tttt====δδδδ

approximate set for each tttt

+ bloat with ∼∼∼∼ eabs(A)δAX0

error small and non-uniform
thanks to math tricks

New Approximation Model

Ωt

X0 XδX0 Xδ
Xt
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New Approximation Model

for each tttt: overapproximate Reach[[[[tttt,,,,tttt]]]] with ΩΩΩΩtttt

linear interpolation between X0 and Xδ = eAδ X0

error bound from Taylor approximation 
around t = 0 and around t = δ

Taylor approximation of inputs with error bound
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New Approximation Model

overapproximate Reach[[[[0000,,,, δδδδ]]]] with convex hull
of time instant approximations

error terms: symmetric bounding boxes
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New Approximation Model

overapproximate Reach[[[[0000,,,, δδδδ]]]] with convex hull
of time instant approximations

smaller overall error with math tricks
– Taylor approx. of interpolation error

– bound remainder with absolute value sum instead of matrix norm



26

New Approximation Model

What Set Representation to Use?

Polyhedra

Operators Constraints Vertices Zonotopes Support F.

Convex hull -- + -- ++

Linear transform +/- ++ ++ ++

Minkowski sum -- -- ++ ++
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Representing of Convex Sets

Approximation with Supporting Halfspaces
– given template directions = outer polyhedral approximation

axis (± xi)
⇓

bounding box
2n facets

octagonal (± xi ± xj)
⇓

bounding polytope 
2n2 facets

all directions
⇓

exact set
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Representation of Convex Sets

Support Function
– direction → position of supporting halfspace

– exact set representation

Implemented as function objects
– applying an operator creates

new function object

0

d

P
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Computing with Support Functions

Needed operations are simple 

– Linear Transform:

– Minkowski sum:

– Convex hull: 

Implement as function objects
– can add more directions at any time

C. Le Guernic, A.Girard. Reachability analysis of hybrid systems using 
support functions. CAV’09
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New Approximation Model

Efficiently computable with support functions

chull of union ⇒ max

intersection of 
axis aligned boxes
⇒ solution of pw linear function
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Efficiently computable with support functions

– maximize piecewise quadratic scalar function
for each template direction

New Approximation Model

quadratic term

solution for intersection of 
axis aligned boxes
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New Approximation Model

Error bounds for each template direction dddd

– used to choose time steps

Error incurred with each application of time elapse  
operator
– transition successor computation will void this bound for 

subsequent steps
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Extension to Variable Time Steps

adapt to error

different time scale for each direction
– new approximation model can interpolate

cost: recompute matrix eAδ

– cache matrix

X0

x

t2 t3t10 t

Ω0

Ω1

Ω2
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Intersection with Invariant

Polyhedra

Operators Constraints Vertices Zonotopes Support F.

Convex hull -- + -- ++

Affine transform +/- ++ ++ ++

Minkowski sum -- -- ++ ++

Intersection ++ -- -- -
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Switching Set Representations

Classic example: 
Convex hull of polyhedra in constraint form
– constraint form → vertex form: exponential cost

– compute convex hull in vertex form (union of vertices)

– vertex form → constraint form: exponential cost

Polyhedron →→→→ Support Function
– cheap & exact: solve a linear program

Support function →→→→ Polyhedron
– cheap, but overapproximative

– to bound Hausdorff distance: exponential # of template directions
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Computing Time Elapse

Linear Map

Minkowski Sum Invariant Intersection

Convex Hull

Support Functions Polyhedra

overapprox.

Initial Set Initial Set
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SpaceEx Verification Platform

SpaceEx Approximation Algorithm
– Time Elapse Computation with Support Functions

– Transition Successors Mixing Support Functions and Polyhedra

– Fixpoint Algorithm: Clustering & Containment

Examples
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Computing Transition Successors

Intersection with guard
– use outer poly approximation

Linear map &
Minkowski sum
– with polyhedra if invertible

(map regular, input set a point)

– otherwise use support functions

Intersection with target invariant
– use outer poly approximation

x ≥ 0

bounce

x = 0 ∧ v < 0
v := −cv

freefall

ẋ = v

v̇ = −g

x = x0

v = 0

guard

reset
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Computing Transition Successors

Linear Map

Minkowski Sum

Invariant Intersection

Guard Intersection

Support Functions Polyhedra

overapprox.

Linear Map

Minkowski Sum

map 
reversible

irreversible
exact (LP)
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SpaceEx Approximation Algorithm
– Time Elapse Computation with Support Functions

– Transition Successors Mixing Support Functions and Polyhedra

– Fixpoint Algorithm: Clustering & Containment
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Fixpoint Computation

Standard fixpoint algorithm
– Alternate time elapse and transition successor computation

– Stop if new states are contained in old states

Problem: flowpipe = union of many sets
– number of flowpipes may explode with exploration depth

– containment very difficult on unions

Solution: 
– reduce number after jump through clustering

– use sufficient conditions for containment

– nested depth of support function calls is limited due to outer poly.
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Clustering

After discrete jump, every convex set spawns a new 
flowpipe

Reduce number 
to avoid explosion

How many sets?

Bound approximation 
error

guard
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Clustering – Template Hull

Template Hull 
= Outer polyhedron for template directoins

guard

template hull up to 
given error bound

⇒⇒⇒⇒ low number of sets

small error
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Clustering

Even a low number of sets might be still too much

guard

2 sets ⇒⇒⇒⇒ possibly
2k sets at iteration k

cluster again using
convex hull

⇒⇒⇒⇒ 1 set, good accuracy
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Transition Successors with Clustering

Support Functions Polyhedra

Invariant Intersectionoverapprox.

Linear Map

Minkowski Sum

Guard Intersection

Linear Map

Minkowski Sum

map 
reversible

irreversibleexact (LP)

Convex Hull

Template Hull

after intersection because
contained in convex invariant
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Sufficient Conditions for Containment

“Cheap” containment

– pairwise comparison

– comparison only with initial set 
of flowpipe

Clustering helps

– delays containment one 
iteration if clustering to a 
single set
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Summary: 
Reachability Fixpoint Algorithm

Invariant Intersection

Support Functions Polyhedra

Time Elapse

Initial Set

Invariant/Guard Intersection

Convex Hull Clustering

Transition SuccessorsTransition Successors

Containment Check
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Outline

SpaceEx Verification Platform

SpaceEx Approximation Algorithm
– Time Elapse Computation with Support Functions

– Transition Successors Mixing Support Functions and Polyhedra

– Fixpoint Algorithm: Clustering & Containment

Examples
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Example 1: 
Filtered Switched Oscillator

Switched oscillator
– 2 continuous variables

– 4 discrete states

– similar to many circuits
(Buck converters,…)

plus linear filter
– m continuous variables

– dampens output signal

affine dynamics
– total 2 + m continuous variables



50

Filtered Switched Oscillator

Low number of directions sufficient?
– here: 6 state variables

12 box constraints
(axis directions)

72 octagonal constraints
(± xi ± xj)
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Example 1: Switched Oscillator

Connecting Filter Components
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Example 1: Switched Oscillator

Low number of direction sufficent
– here: 6 state variables

12 box constraints
(axis directions)

72 octagonal constraints
(± xi ± xj)
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first jump has 57 sets ⇒⇒⇒⇒ impossible w/o clustering

Template Hull and Convex Hull 
Clustering

11.5 sec 3.6 sec

3.4 sec 8.2 sec
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Example 1: Switched Oscillator

Scalable:
– fixpoint reached in O(nm2) time

– box constraints: O(n3) 

– octagonal constraints: O(n5) 

Clustering necessary
– 57 sets take first jump

– combination of template and convex hull:
compromise in speed and accuracy

�� �� � �� �� �� � �� �� � � �� �� � � � �� �
� � � � � � � � � �

number of variables n

ru
nt

im
e 

[s
]
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Example 2: Chaotic Circuit

piecewise linear Rössler-like circuit
Pisarchik, Jaimes-Reátegui. ICCSDS’05

added nondet. disturbances

3 variables, hard!



56

Example 2: Controlled Helicopter

28-dim model of a Westland Lynx helicopter
– 8-dim model of flight dynamics

– 20-dim continuous H∞ controller for disturbance rejection

– stiff, highly coupled dynamics

S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and Design. John Wiley & Sons, 2005.

Photo by Andrew P Clarke
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Example 2: Controlled Helicopter

Reachability for uncertain initial states:
– old approx.: 200s error large
– new approx.: 24s error < 0.025
– variable time step: 14s error < 0.025

(without interpolation)

S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and Design. John Wiley & Sons, 2005.

vertical
speed

1 simulation
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Example 2: Controlled Helicopter

Reachability for uncertain initial states:
– old approx.: 200s error large
– new approx.: 24s error < 0.025
– variable time step: 14s error < 0.025

(without interpolation)

S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and Design. John Wiley & Sons, 2005.

vertical
speed

100 simulations
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Example 2: Controlled Helicopter

Reachability for uncertain initial states:
– old approx.: 200s error large
– new approx.: 24s error < 0.025
– variable time step: 14s error < 0.025

(without interpolation)

S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and Design. John Wiley & Sons, 2005.

vertical
speed

1000 simulations
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Example 2: Controlled Helicopter

Reachability for uncertain initial states:
– old approx.: 200s error large
– new approx.: 24s error < 0.025
– variable time step: 14s error < 0.025

(without interpolation)

S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and Design. John Wiley & Sons, 2005.

vertical
speed

1000 simulations

Corresponds to 
228 corner case simulations

Corresponds to 
228 corner case simulations
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Max error per template direction per time elapse:

Example 2: Controlled Helicopter

Time Step

previous approach

new approximation

model
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Max error per template direction:

Example 2: Controlled Helicopter

Time Step

previous approach

new approximation
model

100x bigger time step 
for same error
100x bigger time step 
for same error



63

Example 2: Controlled Helicopter

Comparing two controllers 
under nondeterministic disturbances
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Conclusions

SpaceEx Verification Platform
– available at spaceex.imag.fr

– tutorial with solutions for course work

Scalable reachability for piecewise affine dynamics
– fixpoint computation with 200+ variables

Algorithmic improvements
– approximation improved significantly

– switching set representations for best efficiency

– variable time step with error bounds
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Ongoing Work

Precise Intersection
– reduce error by finding 

template directions

Nonlinear Systems
– linearize with sliding window

Tool Download: 
spaceex.imag.fr
Tool Download: 
spaceex.imag.fr
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