Safety Analysis of Hybrid Systems with SpaceEx

VERIMAG

Goran Frehse, Alexandre Donzé, Scott Cotton, Rajarshi Ray, Olivier Lebeltel, Manish Goyal, Rodolfo Ripado, Thao Dang, Oded Maler Université Grenoble 1 Joseph Fourier / CNRS – Verimag, France

> Colas Le Guernic New York University CIMS

Antoine Girard Laboratoire Jean Kuntzmann, France

CMACS Seminar, Pittsburgh, PA, July 20, 2011

Outline

• SpaceEx Verification Platform

• SpaceEx Reachability Algorithm

- Time Elapse Computation with Support Functions
- Transition Successors Mixing Support Functions and Polyhedra
- Fixpoint Algorithm: Clustering & Containment

• Examples

SpaceEx Verification Platform

• Platform for developing verification algorithms

- Analysis Core (90kloc C++)
- Model Editor
- Web Interface

• Provides data structures, operators, infrastructure

- proprietary polyhedra library
- number type is templated (substitute your own)
- interfaces to linear programming solvers (GLPK, PPL), Parma Polyhedra Library, ode solvers (CVODES)
- Open Source: spaceex.imag.fr

SpaceEx Model Editor

SpaceEx Web Interface

SpaceEX State Space Explorer	Home About SpaceEx Documentation	Run SpaceEx Downloads Contact	
Model Specification Options Output Advanced	Console	Reports	
Model editor Download Model file Browse_ Configuration file Load User input file User file Examples Bouncing Ball (.xml, .cfg) Timed Bouncing Ball (.xml, .cfg) Timed Bouncing Ball (.xml, .cfg)	Iteration 6 8 sym states passed, 1 waiting 0.457s Iteration 7 9 sym states passed, 1 waiting 0.941s Iteration 8 10 sym states passed, 1 waiting 0.434s Iteration 9 11 sym states passed, 1 waiting 0.936s Iteration 10 12 sym states passed, 1 waiting 0.457s Iteration 11 13 sym states passed, 1 waiting 0.929s Iteration 12 14 sym states passed, 1 waiting 0.455s Iteration 13 14 sym states passed, 0 waiting 0.917s Found fixpoint after 14 iterations. Computing reachable states done after 10.058s Output of reachable states 0.823s	11.05s elapsed 29516KB memory SpaceEx output file : output (jvx).	
 Circle (.xml, .cfg) Filtered Oscillator 6 (.xml, .cfg) Filtered Oscillator 18 (.xml, .cfg) Filtered Oscillator 18 (.xml, .cfg) Filtered Oscillator 34 (.xml, .cfg) Filtered Oscillator 34 (.xml, .cfg) A filtered oscillator 34 (.xml, .cfg) The analysis with octagonal constraints is no longer practical, since this requires 2*34-2=2312 constraints to be computed at every time step. The analysis with 2*34=68 box constraints remains cheap. Browseer-baased GUU -2D/3D output -runs remotely	Graphics		

SpaceEx Reachability Algorithms

Support Function Algo

many continuous variableslow discrete complexity

PHAVer

-constant dynamics (LHA)

-formally sound and exact

Simulation

-nonlinear dynamics

-based on CVODE

Hybrid Automata with Affine Dynamics

• linear differential equations

- can be highly nondeterministic:
 - additive "inputs" u, w model continuous disturbances (noise etc.)
 - uncertain switching regions
 - uncertain switch result

Reachability of Hybrid Automata

• reachability is hard for continuous dynamics

- complex, nonconvex sets

• even harder for hybrid dynamics

- involves reachability of continuous dynamics
- plus event detection over a dense domain
- approximations needed

Key: find approximation that is efficient but accurate for a large number of continuous variables

Outline

• SpaceEx Verification Platform

- SpaceEx Approximation Algorithm
 - Time Elapse Computation with Support Functions
 - Transition Successors Mixing Support Functions and Polyhedra
 - Fixpoint Algorithm: Clustering & Containment
- Examples

Time Elapse with Affine Dynamics

• Affine Flow

- nondeterministic affine differential equation:

 $\dot{x} = Ax + u$, with $u \in U$

• Solve with superposition principle

- disregard inputs: "autonomous dynamics"
- add inputs afterwards

Linear Dynamics

• "Autonomous" part of the dynamics:

 $\dot{x} = Ax, \quad x \in \mathbb{R}^n$

• Known solutions:

- analytic solution in continuous time
- explicit solution at discrete points in time (up to arbitrary accuracy)

• Approach for Reachability:

- Compute reachable states over finite time: $Reach_{[0,T]}(X_{Ini})$
- Use time-discretization, but with care!

Time-Discretization for an Initial Point

- Analytic solution: $x(t) = e^{At}x_{Ini}$
 - with $t = \delta k$: $x(\delta(k+1)) = e^{A\delta}x(\delta k)$ x_{0} x_{1} x_{2} x_{1} x_{2} x_{1} x_{2} x_{3} x_{1} x_{2} x_{3} x_{2} x_{3} x_{4} x_{2} x_{3} x_{4} x_{2} x_{3} x_{4} x_{2} x_{3} x_{4} x_{5} x_{2} x_{4} x_{5} x_{5}
- Explicit solution in discretized time (recursive):

$$\begin{array}{rcl} x_0 &=& x_{Ini} \\ x_{k+1} &=& e^{A\delta} x_k \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$$

Time-Discretization for an Initial Set

- Acceptable solution for purely continuous systems
 - -x(t) is in $\epsilon(\delta)$ -neighborhood of some X_k
- Unacceptable for hybrid systems
 - discrete transitions might "fire" between sampling times
 - if transitions are "missed," x(t) not in $\epsilon(\delta)$ -neighborhood

Time Discretization for Hybrid Systems

• One can miss jumps

– In other examples this error might not be as obvious...

Reachability by Time-Discretization

• Goal:

- Compute sequence Ω_k over bounded time $[0, N\delta]$ such that: Reach $_{[0,N\delta]}(X_{Ini}) \subseteq \Omega_0 \cup \Omega_1 \cup \ldots \cup \Omega_N$

• Approach:

- Refine Ω_k by recurrence:

$$\Omega_{k+1} = e^{A\delta}\Omega_k$$

- Condition for Ω_{0} : Reach $_{[0,\delta]}(X_{Ini}) \subseteq \Omega_{0}$

• Let's include the effect of inputs:

 $\dot{x} = Ax + u, \quad x \in \mathbb{R}^n, u \in U$

- variables x_1, \ldots, x_n , inputs u_1, \ldots, u_p

• Input u models nondeterminism

- disturbances etc.
- can be used for overapproximating nonlinear dynamics (U = bounds of approximation error)

• Superposition Principle

18

• Set overapproximation of input influence

- How far can the input "push" the system in δ time?
- from Taylor series expansion

$$\begin{split} \Psi &= \delta U \bigoplus \mathcal{E}_{\Psi} & \text{(input influence set)} \\ \mathcal{E}_{\Psi} &= \boxdot \left(\Phi_{\Psi} \boxdot (A\mathcal{U}) \right) & \text{(error bound)} \\ \Phi_{\Psi} &= |A|^{-2} \left(e^{\delta |A|} - I - \delta |A| \right) & \text{(matrix)} \end{split}$$

• Operators:

- Minkowski Sum: $A \oplus B = \{a + b \mid a \in A, b \in B\}$
- Symmetric Bounding Box: $\Box(\cdot)$
- Linear Transform

• Recurrence equation with influence of inputs

 $\Omega_{k+1} = e^{A\delta}\Omega_k \oplus \Psi$

- Still needed:
 - approximation of the initial time step with Ω_0
 - called "approximation model"

Approximation Models – Prev. Work

• convex hull constraints + bloat with $\sim e^{||A||\delta}$

Asarin, Dang et al., HSCC 2000

- error large and uniform
- exponential cost

• bloat last set with $\sim e^{||A||\delta}$ + convex hull

Le Guernic, Girard, CAV 2009

- error large and uniform
- efficient for high dimensions

• approximate set for each t+ bloat with $\sim e^{\mathrm{abs}(A)\delta}AX_0$

 error small and non-uniform thanks to math tricks • intersect forward and backward approximations

• without inputs: exact at t=0 and $t=\delta$

• for each t: overapproximate Reach_[t,t] with Ω_t

$$\Omega_t = \underbrace{(1 - \frac{t}{\delta})\mathcal{X}_0 \oplus \frac{t}{\delta}e^{\delta A}\mathcal{X}_0}_{\frown}$$

linear interpolation between X_0 and $X_{\delta} = e^{A\delta} X_0$

$$\oplus \left(\frac{t}{\delta} \mathcal{E}_{\Omega}^{+} \cap (1 - \frac{t}{\delta}) \mathcal{E}_{\Omega}^{-} \right)$$

error bound from Taylor approximation around t = 0 and around $t = \delta$

$$\oplus t\mathcal{U}\oplus rac{t^2}{\delta^2}\mathcal{E}_{\Psi}$$

Taylor approximation of inputs with error bound

 overapproximate Reach_[0, δ] with convex hull of time instant approximations

 $\Omega_{[0,\delta]} = \operatorname{chull}(\bigcup_{0 \le t \le \delta} \Omega_t)$

• error terms: symmetric bounding boxes

$$\begin{split} \mathcal{E}_{\Omega}^{+}(\mathcal{X}_{0},\delta) &= \boxdot \left(\Phi_{2}(|A|,\delta) \boxdot \left(A^{2}\mathcal{X}_{0}\right) \right), \\ \mathcal{E}_{\Omega}^{-}(\mathcal{X}_{0},\delta) &= \boxdot \left(\Phi_{2}(|A|,\delta) \boxdot \left(A^{2}e^{\delta A}\mathcal{X}_{0}\right) \right), \\ \mathcal{E}_{\Psi}(\mathcal{U},\delta) &= \boxdot \left(\Phi_{2}(|A|,\delta) \boxdot \left(A\mathcal{U}\right) \right). \\ \Phi_{2}(A,\delta) &= A^{-2} \left(e^{\delta A} - I - \delta A\right) \end{split}$$

 overapproximate Reach_[0, δ] with convex hull of time instant approximations

 $\Omega_{[0,\delta]} = \operatorname{chull}(igcup_{0\leq t\leq \delta}\Omega_t)$

- smaller overall error with math tricks
 - Taylor approx. of interpolation error
 - bound remainder with absolute value sum instead of matrix norm

• What Set Representation to Use?

	Polyhedra			
Operators	Constraints	Vertices	Zonotopes	Support F.
Convex hull		+		++
Linear transform	+/-	++	++	++
Minkowski sum			++	++

Representing of Convex Sets

• Approximation with Supporting Halfspaces

– given template directions = outer polyhedral approximation

Representation of Convex Sets

• Support Function

- direction \rightarrow position of supporting halfspace
- exact set representation

• Implemented as function objects

 applying an operator creates new function object

Computing with Support Functions

• Needed operations are simple

- Linear Transform: $ho_{AP}(d) =
ho_P(A^T d)$

– Minkowski sum:
$$ho_{P\oplus Q}(d)=
ho_P(d)+
ho_Q(d)$$

- Convex hull: $ho_{chull(P,Q)}(d) = \max(
ho_P(d),
ho_Q(d))$

• Implement as function objects

- can add more directions at any time

C. Le Guernic, A.Girard. Reachability analysis of hybrid systems using support functions. CAV'09

• Efficiently computable with support functions

$$\begin{split} \Omega_{[0,\delta]} &= \operatorname{chull} \bigcup_{0 \leq t \leq \delta} \left((1 - \frac{t}{\delta}) \mathcal{X}_0 \oplus \frac{t}{\delta} e^{\delta A} \mathcal{X}_0 \\ &\oplus \left(\frac{t}{\delta} \mathcal{E}_{\Omega}^+ \cap (1 - \frac{t}{\delta}) \mathcal{E}_{\Omega}^- \right) & \text{chull of union} \Rightarrow \max \\ &\oplus t \mathcal{U} \oplus \frac{t^2}{\delta^2} \mathcal{E}_{\Psi} \right) & \text{intersection of} \\ &\oplus \text{solution of pw linear function} \end{split}$$

• Efficiently computable with support functions

$$\rho_{\Omega_{[0,\delta]}}(d) = \max_{t \in [0,\delta]} \left\{ (1 - \frac{t}{\delta}) \rho_{\mathcal{X}_0}(d) + \frac{t}{\delta} \rho_{\mathcal{X}_0}(e^{\delta A^T} d) \right\}$$

$$+\sum_{i=1}^n \min(\frac{t}{\delta}e_i^+, (1-\frac{t}{\delta})e_i^-)|d_i|$$

 solution for intersection of axis aligned boxes

$$+t
ho_{\mathcal{U}}(d)+rac{t^2}{\delta^2}
ho_{\mathcal{E}_{\Psi}}(d)\Big\}$$
 qu

- quadratic term
- maximize piecewise quadratic scalar function for each template direction

• Error bounds for each template direction d

$$arepsilon_{\Psi_{\delta}(\mathcal{U})}(d) \leq
ho_{\mathcal{E}_{\Psi}}(d) +
ho_{-A\Phi_{2}\mathcal{U}}(d) \ arepsilon_{\Omega_{[0,\delta]}}(\chi_{0},\mathcal{U})(\ell) \leq \max_{\lambda \in [0,1]} igg\{
ho_{\left(\lambda \mathcal{E}_{\Omega}^{+} \cap (1-\lambda) \mathcal{E}_{\Omega}^{-}
ight)}(d) \ + \lambda^{2}
ho_{\mathcal{E}_{\Psi}(\mathcal{U},\delta)}(d) + \lambda
ho_{-A\Phi_{2}\mathcal{U}}(d) igg\}.$$

- used to choose time steps
- Error incurred with each application of time elapse operator
 - transition successor computation will void this bound for subsequent steps

Extension to Variable Time Steps

- different time scale for each direction
 - new approximation model can interpolate
- cost: recompute matrix $e^{A\delta}$
 - cache matrix

Intersection with Invariant

	Polyhedra			
Operators	Constraints	Vertices	Zonotopes	Support F.
Convex hull		+		++
Affine transform	+/-	++	++	++
Minkowski sum			++	++
Intersection	++			-

Switching Set Representations

Classic example: Convex hull of polyhedra in constraint form

- constraint form \rightarrow vertex form: exponential cost
- compute convex hull in vertex form (union of vertices)
- vertex form \rightarrow constraint form: exponential cost
- Polyhedron \rightarrow Support Function
 - cheap & exact: solve a linear program
- Support function \rightarrow Polyhedron
 - cheap, but overapproximative
 - to bound Hausdorff distance: exponential # of template directions

Computing Time Elapse

Outline

- SpaceEx Verification Platform
- SpaceEx Approximation Algorithm
 - Time Elapse Computation with Support Functions
 - Transition Successors Mixing Support Functions and Polyhedra
 - Fixpoint Algorithm: Clustering & Containment
- Examples

Computing Transition Successors

• Intersection with guard

- use outer poly approximation
- Linear map & Minkowski sum
 - with polyhedra if invertible (map regular, input set a point)
 - otherwise use support functions

• Intersection with target invariant

- use outer poly approximation

Computing Transition Successors

Outline

- SpaceEx Verification Platform
- SpaceEx Approximation Algorithm
 - Time Elapse Computation with Support Functions
 - Transition Successors Mixing Support Functions and Polyhedra
 - Fixpoint Algorithm: Clustering & Containment
- Examples

Fixpoint Computation

• Standard fixpoint algorithm

- Alternate time elapse and transition successor computation
- Stop if new states are **contained** in old states

• **Problem: flowpipe = union of many sets**

- number of flowpipes may explode with exploration depth
- containment very difficult on unions

• Solution:

- reduce number after jump through clustering
- use sufficient conditions for containment
- nested depth of support function calls is limited due to outer poly.

Clustering

• After discrete jump, every convex set spawns a new flowpipe

- Reduce number to avoid explosion
- How many sets?
- Bound approximation error

Clustering – Template Hull

• Template Hull

= Outer polyhedron for template directoins

Clustering

• Even a low number of sets might be still too much

- 2 sets ⇒ possibly
 2^k sets at iteration k
- cluster again using convex hull
 - \Rightarrow 1 set, good accuracy

Transition Successors with Clustering

Sufficient Conditions for Containment

• "Cheap" containment

- pairwise comparison
- comparison only with initial set of flowpipe
- Clustering helps
 - delays containment one iteration if clustering to a single set

Summary: Reachability Fixpoint Algorithm

Outline

- SpaceEx Verification Platform
- SpaceEx Approximation Algorithm
 - Time Elapse Computation with Support Functions
 - Transition Successors Mixing Support Functions and Polyhedra
 - Fixpoint Algorithm: Clustering & Containment
- Examples

Example 1: Filtered Switched Oscillator

• Switched oscillator

- 2 continuous variables
- 4 discrete states
- similar to many circuits (Buck converters,...)
- plus linear filter
 - *m* continuous variables
 - dampens output signal

• affine dynamics

- total 2 + m continuous variables

Filtered Switched Oscillator

• Low number of directions sufficient?

- here: 6 state variables

Example 1: Switched Oscillator

• Connecting Filter Components

Example 1: Switched Oscillator

• Low number of direction sufficent

- here: 6 state variables

Template Hull and Convex Hull Clustering

• first jump has 57 sets \Rightarrow impossible w/o clustering

Example 1: Switched Oscillator

• Scalable:

- fixpoint reached in $O(nm^2)$ time
- box constraints: $O(n^3)$
- octagonal constraints: $O(n^5)$
- Clustering necessary
 - 57 sets take first jump
 - combination of template and convex hull: compromise in speed and accuracy

number of variables n

Example 2: Chaotic Circuit

- piecewise linear Rössler-like circuit Pisarchik, Jaimes-Reátegui. ICCSDS'05
- added nondet. disturbances

• 28-dim model of a Westland Lynx helicopter

- 8-dim model of flight dynamics
- 20-dim continuous $H\infty$ controller for disturbance rejection
- stiff, highly coupled dynamics

• Reachability for uncertain initial states:

S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and Design. John Wiley & Sons, 2005.

• Reachability for uncertain initial states:

S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and Design. John Wiley & Sons, 2005.

• Reachability for uncertain initial states:

S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and Design. John Wiley & Sons, 2005.

• Reachability for uncertain initial states:

S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and Design. John Wiley & Sons, 2005.

• Max error per template direction per time elapse:

• Max error per template direction:

• Comparing two controllers under nondeterministic disturbances

Conclusions

• SpaceEx Verification Platform

- available at spaceex.imag.fr
- tutorial with solutions for course work

• Scalable reachability for piecewise affine dynamics

- fixpoint computation with 200+ variables

• Algorithmic improvements

- approximation improved significantly
- switching set representations for best efficiency
- variable time step with error bounds

_

Ongoing Work

• Precise Intersection

- reduce error by finding template directions
- Nonlinear Systems
 - linearize with sliding window

Tool Download: spaceex.imag.fr

Bibliography

• Affine Dynamics

- E. Asarin, O. Bournez, T. Dang, and O. Maler. Approximate Reachability Analysis of Piecewise-Linear Dynamical Systems. HSCC'00
- A. Girard, C. Le Guernic, and O. Maler. Efficient computation of reachable sets of linear time-invariant systems with inputs. HSCC'06

• Support Function Reachability

- C. Le Guernic, A.Girard. Reachability analysis of hybrid systems using support functions. CAV'09
- G. Frehse et al. SpaceEx: Scalable Verification of Hybrid Systems. CAV'11