Post-Silicon Patchable Hardware

Masahiro Fujita

VLSI Design and Education Center (VDEC)
The University of Tokyo

July 2219, 2011




Respin Statistics (North America)

100%

80% . ,
Respin is becoming

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, mrefre quen t

60%

40%

First Silicon Success

20%

0%

1998 2000 2002 2004

[G. S. Spirakis, DATE 2006]

Fujita Lab. - VLSI Design and Education Center - University of Tokyo ¥ Z 8



Manufacturing Cost
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Causes for Respins

Logic/Function
Clock
Fast Path
Slow Path
Delay/Glitch
Power Logic and functional errors

Yield are the leading cause
Analog
Firmware
Mixed Signal
IR Drop

0% 20% 40% 60% 80% 100%

IC/ASIC Designs Having One or More Re-spins by Type of Flaw
[Collett International Research 2005]
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Conventional SoC Design Flow
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Proposed Patchable SoC Design Flow
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Proposed Patchable Hardware

Efficeum
offers behavioral-level programmability

using a patchable controller Custom Datapath

Patchable Controller
Hardwired 0
FSM

Partially-Programmable Circuit (PPC)
offers logic-level programmability
using a mixed gate/LUT circuit
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Efficeum:

An Energy-Efficient Patchable Accelerator
For Post-Silicon Engineering Changes

Fujita Lab. - VLSI Design and Education Center - University of Tokyo \DEC! $ 8



Energy Efficiency vs. Programmability

,/
,/
e

Energy Efficiency of 90nm OFDM
¢  Fixed-function HW: 200GOPS/W
‘. Embedded Proc.: 4GOPS/W  50X!

’ N\

*. Laptop Proc.: 0.05GOPS/W 4,000X!

Energy efficiency (in [GOPS/W] or [J/op])

B How much computation can be done in a given energy
¥ Slowing down the chip reduces power but not efficiency
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Fixed-Function Accelerator

B Achieves high energy efficiency by customization:
B Hardwired controller = No reprogrammability

® Highly-customized datapath — Low flexibility

Hardwired
Controller

Sparse Interconnect Network
A A

arator
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Proposed Patchable Accelerator

B Behavioral reprogrammability by control patching
M Increased flexibility by adding register file via data bus

Hardwired

Controller

11 v 11 v 1t f Control MO
Sparse Interconnect Network
IIRASR AR vy 1 v 1

Data Bus

Comp- Multi-
arator plier Register
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Patch Logic
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Patching Example (1/2)

Scheduling Result of Initial Design
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Patching Example (2/2)

Scheduling Result After Engineering Change
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| ®

J

1
I
J
| ©
2 B O 3 1 gy
F3 o
NG
@D SRERIEE:
]
I
X
G Xy @
' c v
. ‘) -t Dataflow graph
&9 After EC

- .y

\

Fujita Lab. - VLSI Design and Education Center - University of Tokyo I o 14



Patching-Based Post-Silicon ECO Flow
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Experimental Setup

M Example: 8x8 IDCT
M Technology: FreePDK 45nm

M Logic Synthesis: Synopsys Design Compiler Ultra
M High effort options with gated clock optimization

M P&R: Cadence SoC Encounter
B Simulation: Synopsys VCS

B Power/timing analysis: Synopsys PrimeTime PX
M Simulation results are used for power calculation

B Energy efficiencies (GOPS/W) are compared
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Energy Efficiency Comparison ==

B Fully-Patched
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8x8 IDCT (FreePDK 45nm technology)
Offers a tradeoff between efficiency and programmability
Fujita Lab. - VLSI Design and Education Center - University of Tokyo W C 17



Area & Performance Comparison
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Area Compariso
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Power Comparison
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Incremental High-Level Synthesis
and Patch Compilation
For High-Level ECO
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Conventional High-Level Synthesis

M Several phases are applied separately
B This prevents incremental synthesis

Allocation Scheduling Binding

Datapath FSM Datapath FSM
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Incremental High-Level Synthesis

B Each operation is scheduled and bound incrementally,
and the hardware is enhanced accordingly

Incremental Incremental
Scheduling & Binding Scheduling & Binding

Registers 3 Registers

FSM

FSM
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Patch Compilation

B Same as incremental synthesis, except the datapath
enhancement is not allowed (only FSM is enhanced)

Incremental Incremental
Scheduling & Binding Scheduling & Binding
i ie i - S )
o:iQ:id: T
Q:Q:=2:
< iE = »
Step1 (@ @ Step 1
swp2i @ T step2

FSM FSM
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Incremental Scheduling Procedure

M Extension of Swing Modulo Scheduling for VLIW
compilers [Llosa et al., PACT '96]

Conventional Scheduling Incremental Swing Scheduling
(Top Down) (Mix of Top Down & Bottom Up)

Scheduling Order

Shorter register

6 registers Very long Only 4 registers
lifetime

required register lifetime required

|
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Swing Scheduling Procedure
B Mix of top-down and bottom-up scheduling

Phase 1: Bottom-Up Phase 2: Top-Down Phase 3: Bottom-Up
Scheduling of Scheduling of Scheduling of
Critical Path and the Descendants of the Ancestors of
Their Ancestors Scheduled Operations Scheduled Operations
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Incremental Step Insertion

B A novel technique enabling incremental swing
scheduling

M During swing scheduling, a new control step is
inserted between the scheduled steps when needed

Step A
Step B

Step C
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Incremental Binding Procedure

M For each operation, all possible combinations of
(resource, registers) are examined

¥ f no such binding is found, new interconnects
between resource and registers are introduced

Enhanced
Datapath Datapath Datapath

Enhancement

—

Incremental
Scheduling & Binding

Register Register

no register-to-multiplier

A multiplier exists but
interconnect exists
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Experimental Setup

B The proposed method has been implemented in
our high-level synthesis framework Cyneum

B Incremental high-level synthesis

M Patch compiler for Efficieum

M Example: 5 benchmark designs

mC programs of about ~100 lines
BEiinct c'Fr A IDCT ADPC M I\APEC

_— UII\..LIUII.) IHHTUINL I T, ML LV, IV

B Post-ECO examples are generated by random graph

perturbation (next slide)

M Evaluated the quality of the method through the
patch size and compilation time

Fujita Lab. - VLSI Design and Education Center - University of Tokyo (X
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Generating ECO Examples

B The following graph perturbations are randomly

applied to CDFG q p

@

Perturbation 1: Opcode Change

Original CDFG

R\

)

Perturbation 2: Operand Change Perturbation 3: Introducing

A New Operation
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Evaluation of Patch Compiler

M For each benchmark, random CDFG perturbation is
applied M times. For each M, 100 different post-ECO

designs are generated and then patches are compiled.
30
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PPC:

Increasing Yield Using
Partially-Programmable Circuits

A collaborative work with
Prof. Shigeru Yamashita (Ritsumeikan Univ.)
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Design For Yield

B At physical level, there are many techniques available
for yield/defect tolerance enhancement

W Atlogic level, the following techniques can be applied
for each module

B TMR: Voting

B DMR: If one module is defective, the other can be
used

B Reconfigurable devices: synthesize not to use
defective parts

‘ Too much overhead in area and performance
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Objective of This Work

M Enhance the defect tolerance by using a Partially-
Programmable Circuit (PPC)
B PPCis a hybrid LUT/gate circuit

B To correct a single defect, full programmability such
as FPGAs is unnecessary

M A defective wire can be made redundant by
reprogramming LUTs in PPC
M Propose a design methodology

M Synthesis of PPC
Where to put LUTs

M How to reprogram LUTs for defective wires

Fujita Lab. - VLSI Design and Education Center - University of Tokyo (X%

34



PPC (Partially-Programmable Circuit)

Non-Programmable Part
i ind -T 7 7\ consisting of conventional gates
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'rProgrammabIe Part
1consisting of LUTs and MUXs
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Defect Correction in PPC

e -

Find out that
a wire ¢; is defective

$

By reprogramming LUTs, the
wire ¢; becomes redundant

$

Call c; as Robust Connection (RC)
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PPC Example: Initial Circuit

|
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LUT LUT
.\D\ N4
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B LUTs are used partially in the circuit
B Thereis noredundancy now
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PPC Example: Redundancy Addition 1
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By adding this wire, some wires
become Robust Connections (RCs)

RC: Wires which can become redundant by reprogramming LUTs
NRC: Wires which are not RCs
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PPC Example: Redundancy Addition 2
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PPC Example: Redundancy Addition 3
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PPC Example: Final Circuit

Since we assume a single defect,
multiple redundant connections
to an LUT are multiplexed

sinduj Alewd
sindinQ Alewd

v

Colored wires: Robust Connection (RC)
Black wires: Non-Robust Connection (NRC)
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CSPF: Flexibility of Logic Circuits

. (* 1 CSPF Logic function
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SPFD: Flexibility of LUT Circuits

1
~ < //' T~ 0 g1 '
e g 0 —So——
-~ 9. {‘/1 DO f

g1

-0 =0

/
1 1
\7\
4
/
/
z
I
—t O =k =

g,'s flexibility by SPFDs

11 0O
O 0 1 1
1 0 10
O 1 0 1

Fujita Lab. - VLSI Design and Education Center - University of Tokyo (X% o



Proposed Synthesis Method

M Basic procedure
1. Perform a LUT mapping
2. Determine LUTs to keep

B Needs a better heuristic
Reconvergence points, non-critical nodes

3. Perform a technology re-mapping

M How to find good wires?
M Currently, wires are identified exhaustively
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Preliminary Experiments

1. Mapping to K-input LUTs (K=3,4,5)
2. Re-mapping with keeping LUTs at the outputs

3. For each LUT, if connecting a wire to the LUTs make another
wire RC, then it is selected. Terminate if the number of LUT

v

inputs is 6.
T

1 = LUT
. :_> /D\D\
§ 1, ~ >LUT
s T ) p— ~
 — /N O

R - D

f _________
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Experimental Results

#Connections which are robust to stuck-at-0/1

alu4 1093 28 92 1070 25 115

rot 421 161 218 411 172 228

vda 1251 153 221 1318 213 154

C135 219 225 143 390 176 182




