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Causes for Respins
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IC/ASIC Designs Having One or More Re-spins by Type of Flaw
[Collett International Research 2005]



Conventional SoC Design Flow
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Proposed Patchable SoC Design Flow
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Proposed Patchable Hardware
Efficeum

offers behavioral-level programmability
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Partially-Programmable Circuit (PPC)
offers logic-level programmability
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offers logic level programmability
using a mixed gate/LUT circuit



Effice mEfficeum:
An Energy-Efficient Patchable AcceleratorAn Energy-Efficient Patchable Accelerator

For Post-Silicon Engineering Changes
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Energy Efficiency vs. Programmability

Energy Efficiency of 90nm OFDMEnergy Efficiency of 90nm OFDM
Fixed-function HW: 200GOPS/W
E b dd d P 4GOPS/W 50X!Embedded Proc.: 4GOPS/W        50X!
Laptop Proc.: 0.05GOPS/W    4,000X!

>100GOPS High Performance
1W P /Th l C i〜1W Power/Thermal Constraints

Energy efficiency (in [GOPS/W] or [J/op])Energy efficiency (in [GOPS/W] or [J/op])
 How much computation can be done in a given energy
 Sl i d th hi d b t t ffi i
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 Slowing down the chip reduces power but not efficiency



Fixed-Function Accelerator
 Achieves high energy efficiency by customization:
Hardwired controller → No reprogrammability
Highly-customized datapath → Low flexibility
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Proposed Patchable Accelerator
 Behavioral reprogrammability by control patching
 Increased flexibility by adding register file via data bus

Local 
Store
Local 
Store

Hardwired 
C t ll
Hardwired 
C t llRegReg RegReg RegReg PatchPatch

y y g g

StoreStore ControllerControllerReg
1

Reg
1

Reg
2

Reg
2

Reg
3

Reg
3 ・・・

Patch 
Logic
Patch 
Logic

Control

Sparse Interconnect NetworkSparse Interconnect Network

Control 
Bus

Sparse Interconnect NetworkSparse Interconnect Network

Data Bus

Comp-
arator
Comp-
arator

Multi-
plier

Multi-
plierALU2ALU2ALU1ALU1

・・・

Register Register 

Fujita Lab. – VLSI Design and Education Center - University of Tokyo

aratorarator plierplier g
File
g
File

11



Patch Logic
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Patching Example (1/2)
Scheduling Result of Initial Design
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Patching Example (2/2)
Scheduling Result After Engineering Change
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Patching-Based Post-Silicon ECO Flow
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Experimental Setup
Example: 8x8 IDCT
T h l F PDK 45Technology: FreePDK 45nm
Logic Synthesis: Synopsys Design Compiler Ultrag y y p y g p
High effort options with gated clock optimization

P&R Cadence SoC Enco nterP&R: Cadence SoC Encounter
Simulation: Synopsys VCSy p y
Power/timing analysis: Synopsys PrimeTime PX
Si l ti lt d f l l tiSimulation results are used for power calculation

Energy efficiencies (GOPS/W) are compared
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Energy Efficiency Comparison No Patching

Fully-Patched

6%

48%

89%

8x8 IDCT (FreePDK 45nm technology)
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( gy)
Offers a tradeoff between efficiency and programmability



Area & Performance Comparison
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Area Comparison
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Power Comparison
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(Technology: FreePDK 45nm (NCSU/Nangate), Operating Frequency: 200MHz)

Hardwired accelerator Efficeum



Incremental High Le el S nthesisIncremental High-Level Synthesis 
and Patch Compilationand Patch Compilation

For High-Level ECOg

Fujita Lab. – VLSI Design and Education Center - University of Tokyo 21



Conventional High-Level Synthesis
Several phases are applied separately
This prevents incremental synthesisThis prevents incremental synthesis
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Incremental High-Level Synthesis
 Each operation is scheduled and bound incrementally, 

and the hardware is enhanced accordingly
Incremental
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Patch Compilation
 Same as incremental synthesis, except the datapath

enhancement is not allowed (only FSM is enhanced)
Incremental
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Incremental Scheduling Procedure
Extension of Swing Modulo Scheduling for VLIW 

compilers [Llosa et al., PACT ‘96]p [ , ]
Conventional Scheduling

(Top Down)
Incremental Swing Scheduling

(Mix of Top Down & Bottom Up)
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Swing Scheduling Procedure
Mix of top-down and bottom-up scheduling

Phase 1: Bottom-Up
Scheduling of

Critical Path and

Phase 2: Top-Down 
Scheduling of

the Descendants of

Phase 3: Bottom-Up
Scheduling of

the Ancestors of
Their Ancestors Scheduled Operations Scheduled Operations 
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Incremental Step Insertion
A novel technique enabling incremental swing 

schedulingscheduling
During swing scheduling, a new control step is 

i d b h h d l d h d dinserted between the scheduled steps when needed

Step A

Step B

Step A

Step B

Step A

Step B
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Step DStep C Step D

Step E
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Incremental Binding Procedure
For each operation, all possible combinations of 

(resource registers) are examined(resource, registers) are examined
If no such binding is found, new interconnects 

b d i i d dbetween resource and registers are introduced
Enhanced
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Experimental Setup
The proposed method has been implemented in 

our high-level synthesis framework Cyneumour high level synthesis framework Cyneum
Incremental high-level synthesis
P t h il f Effi iPatch compiler for Efficieum

Example: 5 benchmark designs
C programs of about ~100 lines
Functions from IDCT ADPCM MPEGFunctions from IDCT, ADPCM, MPEG
Post-ECO examples are generated by random graph 

perturbation (next slide)perturbation (next slide)

Evaluated the quality of the method through the 

Fujita Lab. – VLSI Design and Education Center - University of Tokyo

patch size and compilation time
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Generating ECO Examples
The following  graph perturbations are randomly 

applied to CDFGapplied to CDFG

Perturbation 1: Opcode Change
Original CDFG

Perturbation 1: Opcode Change

Perturbation 2: Operand Change Perturbation 3: Introducing

Fujita Lab. – VLSI Design and Education Center - University of Tokyo 30

Perturbation 2: Operand Change Perturbation 3: Introducing
A New Operation



Evaluation of Patch Compiler
 For each benchmark, random CDFG perturbation is 

applied M times. For each M, 100 different post-ECOapplied M times.  For each M, 100 different post ECO 
designs are generated and then patches are compiled.
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PPC:
Increasing Yield Using

Partially Programmable CircuitsPartially-Programmable Circuits

A collaborative work with
fProf. Shigeru Yamashita (Ritsumeikan Univ.)
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Design For Yield
 At physical level, there are many techniques available 

for yield/defect tolerance enhancementfor yield/defect tolerance enhancement
 At logic level, the following techniques can be applied 

f h d lfor each module
 TMR: Voting
 DMR: If one module is defective, the other can be 

used
 Reconfigurable devices: synthesize not to use 

defective partsdefective parts 

Too much overhead in area and performance
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Objective of This Work
Enhance the defect tolerance by using a Partially-

Programmable Circuit (PPC)Programmable Circuit (PPC)
PPC is a hybrid LUT/gate circuit
To correct a single defect, full programmability such 

as FPGAs is unnecessary
A defective wire can be made redundant by 

reprogramming LUTs in PPCp g g

Propose a design methodology
S th i f PPCSynthesis of PPC
Where to put LUTs
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How to reprogram LUTs for defective wires
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PPC (Partially-Programmable Circuit)

Conventional

Non-Programmable Part
consisting of conventional gates
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Defect Correction in PPC
Find out that

a wire c is defectivea wire ci is defectiveConventional
gates

By reprogramming LUTs, the 
wire ci becomes redundant

LUT

wire ci becomes redundant

LUT

LUT
LUT

Call ci as Robust Connection (RC)
M
U
X LUT

i ( )
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PPC Example: Initial Circuit

P

Prim

LUT LUT
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N4rim
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puts
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 LUTs are used partially in the circuit
 There is no redundancy now
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PPC Example: Redundancy Addition 1

LUT LUT
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By adding this wire, some wires 
become Robust Connections (RCs)

RC: Wires which can become redundant by reprogramming LUTs
NRC: Wires which are not RCs
RC: Wires which can become redundant by reprogramming LUTs
NRC: Wires which are not RCs
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NRC: Wires which are not RCsNRC: Wires which are not RCs



PPC Example: Redundancy Addition 2
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PPC Example: Redundancy Addition 3
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PPC Example: Final Circuit
Since we assume a single defect, 
multiple redundant connections 
to an LUT are multiplexed

M
LUT LUTN3

p
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Colored wires: Robust Connection (RC)
Black wires: Non-Robust Connection (NRC)
Colored wires: Robust Connection (RC)
Black wires: Non-Robust Connection (NRC)
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Black wires: Non Robust Connection (NRC)Black wires: Non Robust Connection (NRC)



CSPF: Flexibility of Logic Circuits
Logic function
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SPFD: Flexibility of LUT Circuits
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Proposed Synthesis Method
Basic procedure

1 Perform a LUT mapping1. Perform a LUT mapping
2. Determine LUTs to keep
Needs a better heuristic
Reconvergence points, non-critical nodes

3. Perform a technology re-mapping
4 Adding redundant wires to LUTs4. Adding redundant wires to LUTs
How to find good wires?

fCurrently, wires are identified exhaustively

Fujita Lab. – VLSI Design and Education Center - University of Tokyo 44



Preliminary Experiments
1. Mapping to K-input LUTs (K=3,4,5)
2. Re-mapping with keeping LUTs at the outputs2. Re mapping with keeping LUTs at the outputs
3. For each LUT, if connecting a wire to the LUTs make another 
wire RC, then it is selected.  Terminate if the number of LUT ,
inputs is 6.
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Experimental Results
Circuit Stuck-at-0 Stuck-at-1

R b t N R b t N

#Connections which are robust to stuck-at-0/1

Robust Non-
Robust

Robust Non-
RobustOriginal Added Original Added

alu2 586 13 25 582 20 29

alu4 1093 28 92 1070 25 115

apex6 591 86 106 589 98 108

rot 421 161 218 411 172 228

too_large 472 15 256 453 9 275

d 1251 153 221 1318 213 154vda 1251 153 221 1318 213 154

C880 185 32 144 212 57 117

C1355 219 225 143 390 176 182219 225 143 390 176 182

C1908 626 37 66 599 36 93

C2670 710 59 176 704 66 182
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C3540 1500 63 210 1462 52 248


