A Model Reference Adaptive Search Method for Global Optimization

Steve Marcus, University of Maryland, College Park http://www.isr.umd.edu/~marcus (based on joint work with Jiaqiao Hu and Michael Fu)

> Carnegie Mellon University October 22, 2010

Outline

- Problem Setting
- Instance-Based vs. Model-Based
- Model-Based Algorithms
 - Estimation of Distribution Algorithms (EDAs)
 - Cross-Entropy (CE) Method
 - Model Reference Adaptive Search (MRAS)
- Convergence of MRAS
- Numerical Examples
- Extension to Stochastic Optimization and MDPs
- A New Particle Filtering Framework (if time)

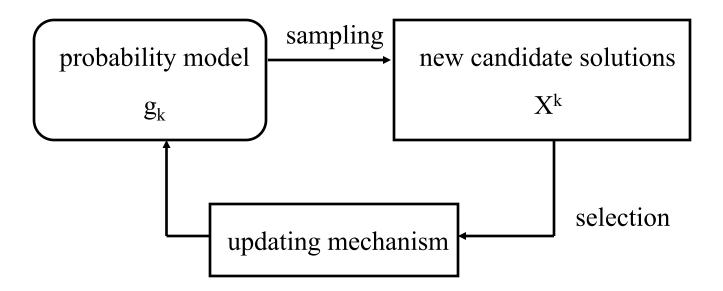
Problem Setting

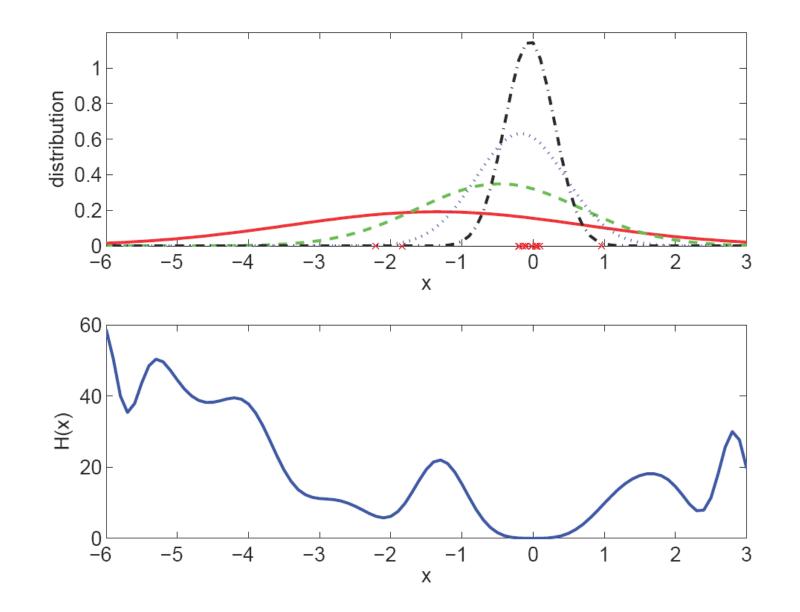
- Solution space $\chi \subseteq \Re^n$
 - continuous or discrete (combinatorial)
- Objective function $H(\cdot): \chi \to \Re$
- Objective: find optimal $x^* \in \chi$ such that $x^* \in \underset{x \in \chi}{\operatorname{arg\,min}} H(x)$
 - Assumptions: existence, uniqueness (but possibly many local minima)

Overview of Global Optimization Approaches

- Instance-based approaches: search for new solutions depends directly on previously generated solutions
 - simulated annealing (SA)
 - genetic algorithms (GAs)
 - tabu search
 - nested partitions

Main idea: new solutions generated via an intermediate probability model





Combinatorial Optimization Example: TSP

How do we formulate this problem to use a probability distribution?

- routing matrix of probability of arc i \rightarrow j.
 - Example: four cities
 - $\begin{bmatrix} 0 & 0.5 & 0.4 & 0.1 \end{bmatrix}$ $\begin{bmatrix} 0.2 & 0 & 0.6 & 0.2 \end{bmatrix}$
 - $\begin{bmatrix} 0.4 & 0.4 & 0 & 0.2 \end{bmatrix}$
 - [0.3 0.3 0.4 0]
- What is convergence?
 - single 1 in each row
 - single 1 in each column

Model-Based Methods

similarities to genetic algorithms

- uses a population
- selection process
- randomized algorithm, but uses "model" (distribution) instead of operators

- estimation of distribution algorithms (EDAs) Muhlenbein and Paas (1996); book by Larranaga and Lozano (2001) [other names, e.g., probabilistic model-building GAs]
- cross-entropy method (CE) Rubinstein (1997, 1999) (www.cemethod.org); book by Rubinstein and Kroese (2004)
- probability collectives (Wolpert 2004)
- model reference adaptive search (MRAS)

Model-Based Methods (continued)

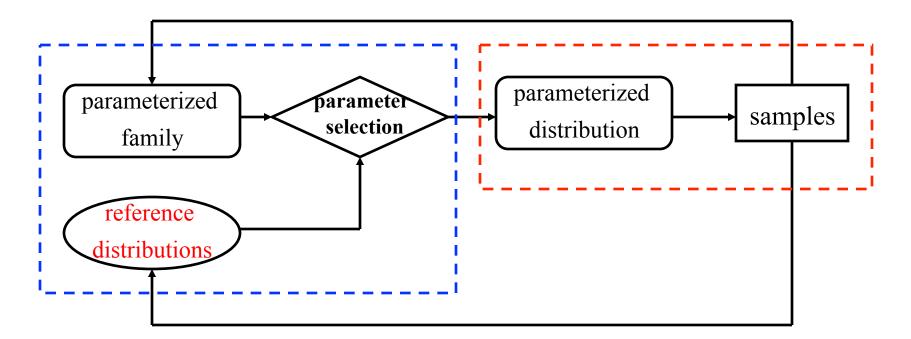
BIG QUESTION:

How to update distribution?

- traditional EDAs use an explicit construction, can be difficult & computationally expensive
- CE method uses single fixed target distribution (optimal importance sampling measure)
- MRAS approach: sequence of implicit model reference distributions

MRAS and CE Methods

• ALTERNATIVE: sample from a parameterized family of distributions, and update parameters by minimizing "distance" to desired distributions (reference distributions in MRAS)



- Main characteristics
 - Given sequence of reference distributions $\{g_k(\cdot)\}$
 - works with a family of parameterized probability distributions $\{f(\cdot, \theta)\}$ over the solution space
 - fundamental steps at iteration *k* :

* generate candidate solutions according to the current probability distribution $f(\cdot, \theta_k)$

* calculate θ_{k+1} using data collected in previous step to bias future search toward promising regions, by minimizing distance between $\{f(\cdot, \theta)\}$ and $g_{k+1}(\cdot)$

- Algorithm converges to optimal if $\{g_k(\cdot)\}$ does

• reference distribution construction: Next distribution obtained by tilting previous

$$g_{k+1}(x) = \frac{S(H(x))g_k(x)}{E_{g_k}[S(H(X))]}, \ \forall x \in \chi,$$

where S(.) is non-negative and strictly decreasing (increasing for max problems)

Properties: $E_{g_{k+1}}[S(H(X))] \ge E_{g_k}[S(H(X))],$ $\lim_{k \to \infty} E_{g_k}[S(H(X))] = S(H(x^*)).$

• selection parameter ρ determines the proportion of solutions used in updating θ_{k+1}

•
$$(1 - \rho)$$
-quantiles w.r.t. $f(\cdot, \theta_k)$
 $\gamma_{k+1} = \sup_{l} \{l : P_{\theta_k}(H(X) < l) \ge \rho\}$

• update
$$\theta_{k+1}$$
 as
 $\theta_{k+1} = \underset{\theta \in \Theta}{\operatorname{arg\,max}} \int_{x \in \chi} [S(H(x))]^k I\{H(x) < \gamma_{k+1}\} \ln f(x, \theta) dx$

Lemma: θ_{k+1} minimizes the Kullback-Leibler (KL) divergence between g_{k+1} and $f(\cdot, \theta)$, i.e.,

$$\theta_{k+1} = \arg\min_{\theta \in \Theta} D(g_{k+1} | f(\cdot, \theta)) := \arg\min_{\theta \in \Theta} E_{g_{k+1}} \left[\ln \frac{g_{k+1}(X)}{f(X, \theta)} \right], \text{ where}$$

$$g_{k+1}(x) = \frac{S(H(x))I_{\{H(x) < \gamma_{k+1}\}}g_k(x)}{E_{g_k}[S(H(X))I_{\{H(X) < \gamma_{k+1}\}}]}, \quad g_1(x) := \frac{I_{\{H(x) < \gamma_1\}}}{E_{\theta_0}[I_{\{H(X) < \gamma_1\}} / f(X, \theta_0)]}$$

Restriction to Natural Exponential Family (NEF)

- covers broad class of distributions
- closed-form solution for θ_{k+1}
- global convergence can be established under some mild regularity conditions

* multivariate Gaussian case

 $\lim_{k \to \infty} \mu_k = x^*, \quad \lim_{k \to \infty} \Sigma_k = 0_{n \times n}$ * independent univariate case $\lim_{k \to \infty} E_{\theta_k}[X] = x^*.$

- Changes from exact version
 - finite number of samples, say N_k , at each iteration
 - replace the true (1ρ) -quantiles by sample quantiles
 - replace the integrals (expected values) by sample averages
 - ρ_k adaptively decreasing and N_k adaptively increasing
- Global convergence can be established
 - multivariate normal case

$$\lim_{k \to \infty} \hat{\mu}_k = x^*, \text{ and } \lim_{k \to \infty} \hat{\Sigma}_k = 0_{n \times n} \quad \text{w.p.1.}$$

- independent univariate case

$$\lim_{k\to\infty} E_{\hat{\theta}_k}[X] = x^* \quad \text{w.p.1.}$$

Comparison of MRAS & CE

- MRAS provides general framework, and has general sequence of implicit reference models {g_k}. CE can be interpreted by defining appropriate {g_k}, but the sequence depends on {f(·,θ)}
- Global convergence results for MRAS use property of {g_k} convergence to optimal distribution, not in general true for CE
- both use parameterized distributions, KL divergence
- CE generally easier to implement; preliminary computational results indicate no clear dominance of either

Numerical Examples (deterministic problems)

Continuous optimization

* 20-D Rosenbrock function

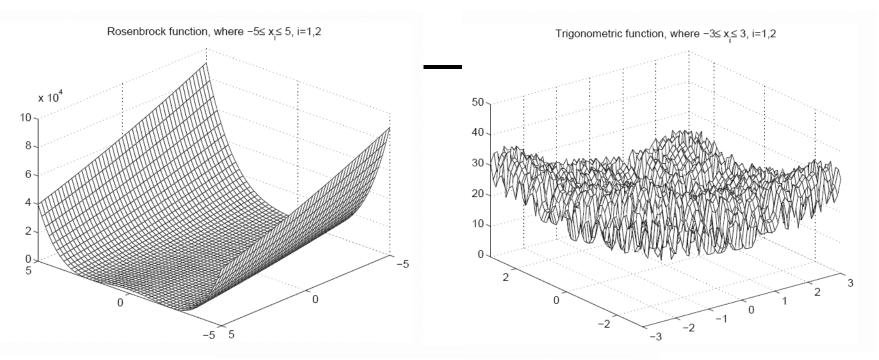
$$\sum_{i=1}^{19} 100(x_{i+1} - x_i^2)^2 + (x_i - 1)^2$$
* 20-D Trigonometric function

$$1 + \sum_{i=1}^{20} 8\sin^2(7(x_i - 0.9)^2) + 6\sin^2(14(x_i - 0.9)^2) + (x_i - 0.9)^2$$
* 20-D Pinter function

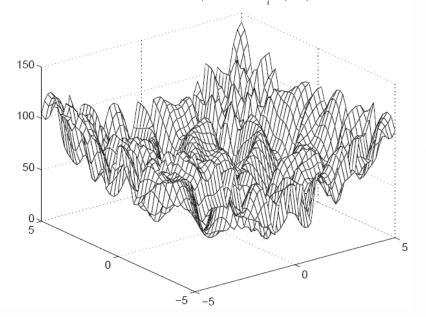
• Combinatorial optimization

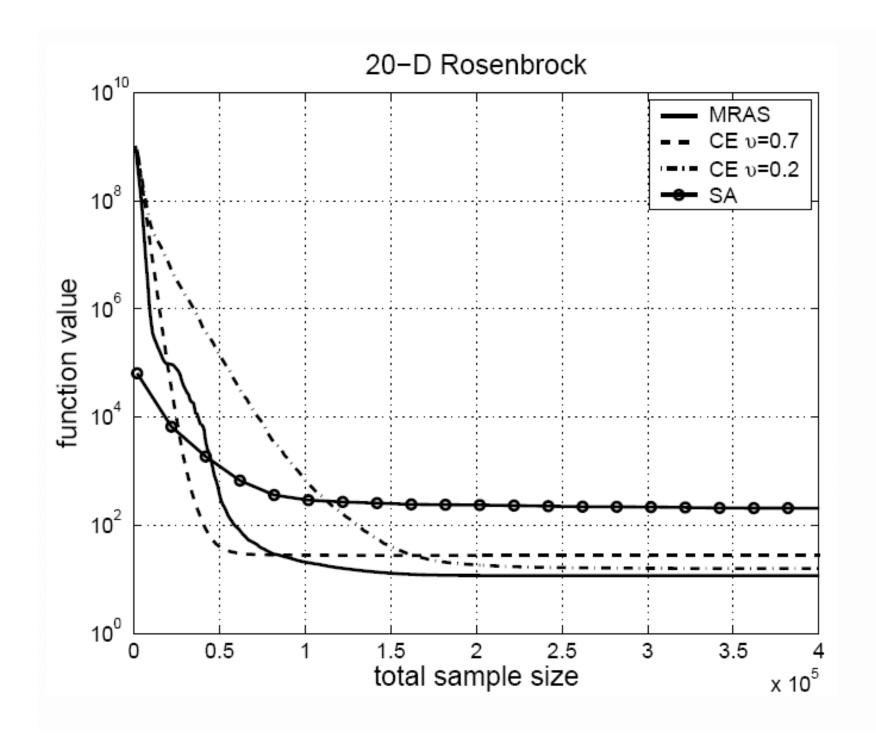
* various asymmetric traveling salesman problems (ATSP)

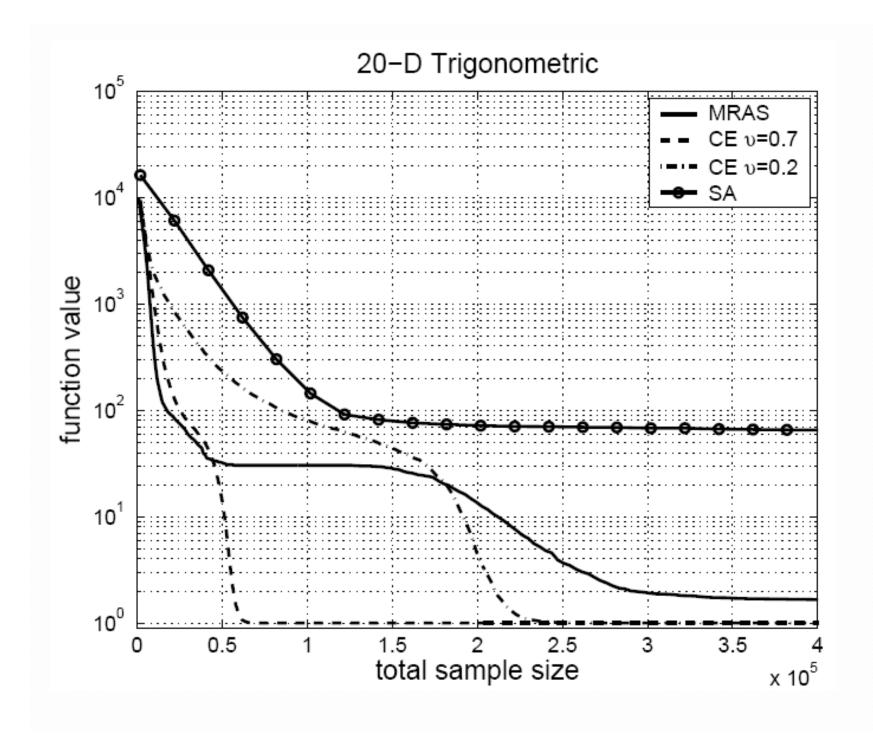
http://www.iwr.uniheidelberg.de/groups/comopt/software/TSPLIB95

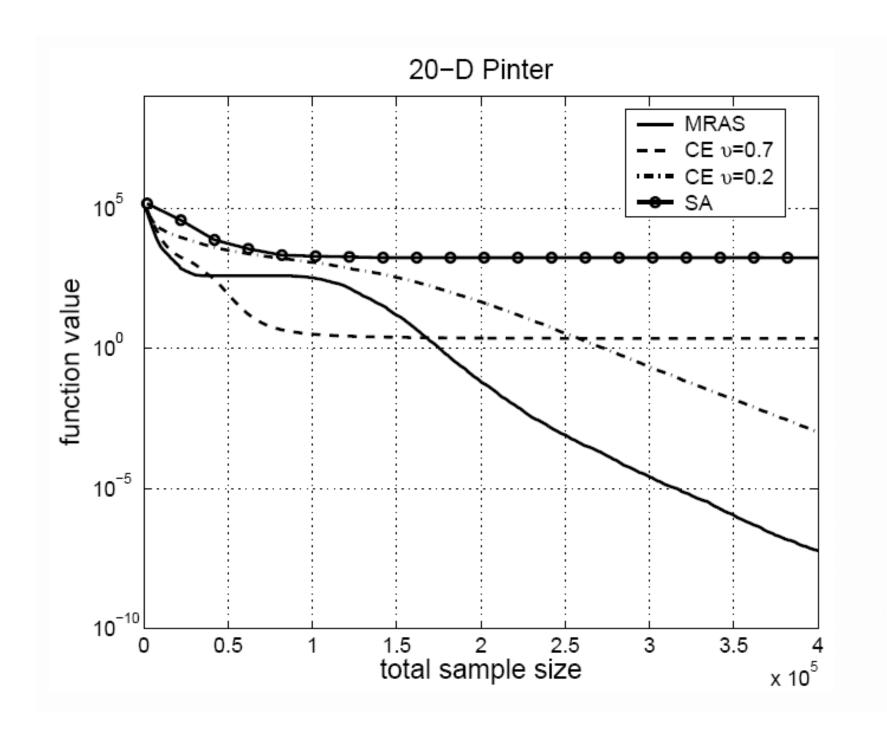


Pinter's function, where $-5 \le x \le 5$, i=1,2









Numerical Examples (deterministic problems)

- Numerical results for ATSPs
 - DISCRETE distribution (matrix: probability $i \rightarrow j$ on tour)
 - Good performance with modest number of tours generated
 - ft70 case: total number of admissible tours = $70! \approx 10^{100}$

f ile	N_c	$N_{avg.}$ (std err)	H*	H^{*}	H _{best}	δ_{avg} (std err)
ftv33	34	7.95e+4(3.25e+3)	1364	1286	1286	0.023(0.008)
ftv35	36	1.02e+5(3.08e+3)	1500	1475	1473	0.008(0.002)
ftv38	39	1.31e+5(4.90e+3)	1563	1530	1530	0.008(0.003)
p43	43	1.02e+5(4.67e+3)	5637	5620	5620	0.001(2.5e-4)
ry48p	48	2.62e+5(1.59e+4)	14810	14446	14422	0.012(0.003)
ft53	53	2.94e+5(1.58e+4)	7236	6973	6905	0.029(0.005)
ft70	70	4.73e+5(2.91e+4)	39751	38744	38673	0.017(0.003)

Extension to Stochastic Optimization

- Objective: find optimal $x^* \in \chi$ such that $x^* \in \underset{x \in \chi}{\operatorname{arg\,min}} E_{\omega}[H(x, \omega)]$
 - Assumptions: existence, uniqueness (but possibly many local minima)
- Idea: sample average approximation
 At each iteration k, approximate E_ω[H(x,ω)] by

$$\overline{H}_k(x) \coloneqq \frac{1}{M_k} \sum_{i=1}^{M_k} H_{i,k}(x),$$

where $H_{i,k}(x)$ are i.i.d. random observations at *x*.

• Key convergence issue

-
$$g_{k+1}(x) = \frac{S(\overline{H}_k(x))I_{\{\overline{H}_k(x)<\overline{\gamma}_{k+1}\}}g_k(x)}{E_{g_k}[S(\overline{H}_k(X))I_{\{\overline{H}_k(X)<\overline{\gamma}_{k+1}\}}]}$$
 may not converge.

- * $\overline{H}_k(x) \to E_{\omega}[H(x,\omega)]$, need $M_k \to \infty$ as $k \to \infty$
- * schedule of sample size M_k , restrictions on $S(\cdot)$.
- Practical efficiency
 - increase M_k adaptively, i.e., small M_k value initially, large M_k when precise estimates required
 - reuse of "good" samples for finite solution spaces

- X_t : inventory position in period t.
- D_t : the i.i.d exponential demand in period t
- *h* : per period per unit holding cost; *p*: demand lost penalty cost ; *c*: per unit ordering cost;
 K: fixed set-up cost

$$X_{t+1} = \begin{cases} S - D_{t+1} & X_t < s, \\ X_t - D_{t+1} & X_t \ge s. \end{cases}$$

• The objective is to minimize the long run average cost per period:

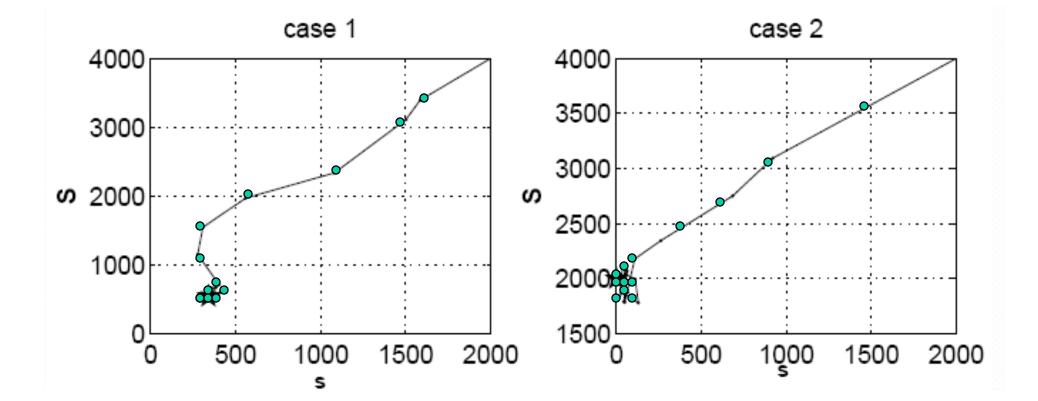
 $J_t(s,S) := \frac{1}{t} \sum_{i=1}^t \left[I\{X_i < s\}(K + c(S - X_i)) + hX_i^+ + pX_i^- \right].$

(s,S) Inventory Control Problem

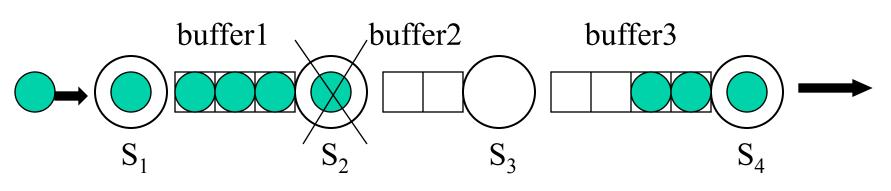
Case 1:
$$c = h = 1, p=10,$$

 $K=100, E[D]=200$

Case 2: *c* = *h* = 1, *p*=10, *K*=10000, E[*D*]=200



Buffer Allocation in Unreliable Production Lines



- Input:
 - μ_i : service rate of server *i*
 - $-f_i$: failure rate of server *i*
 - r_i : repair rate of server i
 - *n* : total number of buffers available
- Let n_i be the number of buffers allocated to S_i satisfying $\Sigma n_i = n$, the objective is to choose n_i to maximize the steady-state throughput

Buffer Allocation in Unreliable Production Lines

$$\mu_1 = 1, \ \mu_2 = 1.1, \ \mu_3 = 1.2, \ \mu_4 = 1.3, \ \mu_5 = 1.5,$$

 $f_i = 0.05$ and $r_i = 0.5$

n	$N_{avg}(std \ err)$	$\bar{T}(std \ err)$	\mathcal{T}^*
1	1.02e + 2(7.49)	0.523(6.79e-4)	0.521
2	1.29e + 2(14.8)	0.555(3.86e-4)	0.551
3	1.75e + 2(15.7)	0.587(4.57e-4)	0.582
4	2.51e + 2(25.9)	0.606(1.20e-3)	0.603
5	3.37e + 2(42.0)	0.626(6.57e-4)	0.621
6	4.69e + 2(55.2)	0.644(1.10e-3)	0.642
7	4.56e + 2(58.2)	0.659(1.10e-3)	0.659
8	4.45e + 2(54.9)	0.674(1.10e-3)	0.674
9	5.91e + 2(56.1)	0.689(1.39e-3)	0.689
10	5.29e + 2(54.0)	0.701(1.10e-3)	0.701

Extension to MDPs

- book published by Springer: Chang, Fu, Hu, Marcus Simulation-Based Approaches to Markov Decision Processes
 - optimization over policy space
 - population-based evolutionary algorithms (EPI/ERPS)

Filtering (with Enlu Zhou and M. Fu)

State equation

$$x_{k+1} = f(x_k, u_k), k = 0, 1, \ldots$$

Observation equation

$$y_k = h(x_k, v_k), k = 1, 2, ...$$

Filtering:
 Estimate b_k(x_k) = p(x_k|y_{0:k}).

Formulation as a Filtering Problem

$$x_k = x_{k-1}, k = 1, 2, ...,$$

 $y_k = H(x_k) - v_k, k = 0, 1, ...,$

where $x_k = x^*$ is the unobserved state, v_k has a p.d.f. $\varphi(\cdot)$.

- Interpretation: Observe the optimal function value
 y* = H(x*) with some noise.
- We expect by suitable choice of $\{y_k\}$

$$b_k(x_k) = p(x_k|y_{0:k}) \rightarrow \delta(x_k - x^*), a.s.$$

- Transition density $p(x_k|x_{k-1}) = \delta(x_k x_{k-1})$. Likelihood function $p(y_k|x_k) = \varphi(H(x_k) - y_k)$.
- Hence, the conditional density

$$b_k(x_k) = \frac{\varphi(H(x_k) - y_k)b_{k-1}(x_k)}{\int \varphi(H(x_{k-1}) - y_k)b_{k-1}(x_k)dx_k}.$$

 Interpretation: The conditional density is tuned by the performance of solutions at previous iteration.

Result: Using particle filtering (Monte Carlo simulation), EDAs, CE, MRAS can all be viewed in this framework.

Conclusions and Future Work

• Summary

- new general framework for problems with little structure
- guaranteed theoretical convergence
- good experimental performance

• Future Work

- incorporate known structure (e.g., local search)
- convergence rate, computational complexity
- more new algorithm instantiations in this framework
- more comparisons with other algorithms