UNIVERSITY OF

OXFORD

Automated Compositional
Verification for Probabilistic Systems

Marta Kwiatkowska

Oxford University Computing Laboratory

Joint work with: Gethin Norman, David Parker, Hongyang Qu, Lu Feng

- Analysis of systems exhibiting:
— probabilistic behaviour (e.g. randomisation, failures)

— nondeterminism (e.g. concurrency, underspecification)
— timed behaviour (e.g. delays, time-outs)

Probabilistic verification
— probabilistic automata, temporal logics, model checking

— emphasis on quantitative properties, e.g. “what is the
minimum probability of terminating within k time-units?”

- Aim: improve scalability of existing tools/techniques
— compositional approaches: assume-guarantee verification
— focus on efficient, fully-automated techniques

Overview

Compositional verification
— assume-guarantee reasoning
Probabilistic automata
— probabilistic safety properties
— multi-objective model checking
Probabilistic assume guarantee [TACAS’10]
— semantics, model checking, proof rules
— quantitative approaches
— implementation & results
- Automated generation of assumptions [QEST’10]
— L*-based learning loop
— implementation & results
Conclusions, current & future work

Compositional verification

- Goal: scalability through modular verification
— e.g. decide if M, || M, £ G
— by analysing M, and M, separately

- Assume-guarantee (AG) reasoning
— use assumptions A about the context of a component M

— (A) M (G) - “whenever M is part of a system that satisfies A,
then the system must also guarantee G”

— example of asymmetric (non-circular) AG rule:
(true) M, (A)
(A) M, (G)
(true) M, || M, (G)

[Pasareanu/Giannakopoulou/et al.]

AG rules for probabilistic systems

How to formulate AG rules (true) M, (A)
for probabilistic automata? (A) M, (G)

Questions: (true) M; || M, (G)

— What form do assumptions and guarantees take?

— What does (A) M (G) mean? How to check it?
— Any restriction on parallel composition M, || M,?
— Can we do this in a “quantitative” way?

— How do we generate suitable assumptions?

AG rules for probabilistic systems

How to formulate AG rules (true) M, (A)
for probabilistic automata? (A) M, (G)

Questions: (true) M; || M, (G)

— What form do assumptions and guarantees take?
. probabilistic safety properties

— What does (A) M (G) mean? How to check it?
. reduction to multi-objective probabilistic model checking

— Any restriction on parallel composition M, || M,?
. no: arbitrary parallel composition
— Can we do this in a “quantitative” way?
. yes: generate lower/upper bounds on probabilities
— How do we generate suitable assumptions?
. learning techniques (L* algorithm)

Overview

Compositional verification
— assume-guarantee reasoning
Probabilistic automata
— probabilistic safety properties
— multi-objective model checking
Probabilistic assume guarantee [TACAS’10]
— semantics, model checking, proof rules
— guantitative approaches
— implementation & results
- Automated generation of assumptions [QEST’10]
— L*-based learning loop
— implementation & results
Conclusions, current & future work

Probabilistic automata (PAS)

Model nondeterministic as well as probabilistic behaviour
— very similar to Markov decision processes (MDPs)

- A probabilistic automaton is a tuple M = (S, s, i, %y, Oy, L):
— S is the state space
— S € S is the initial state
— o, is the action alphabet
— Oy S S X oy X Dist(S) is the
transition probability relation

— L:S — 2A7 |abels states
with atomic propositions

warn

shutdown

Parallel composition: M, [| M,
— CSP style - synchronise over common actions
— (i.e. the intersection of their alphabets)

Property specifications for PAs

- To reason formally about PAs, we use adversaries

- An adversary o resolves nondeterminism in a PA M
— also called “scheduler”, “strategy”, “policy’, ...
— makes a (possibly randomised) choice, based on history

— induces probability measure Pr,,° over (infinite) paths

Property specifications (linear-time)
— specify some measurable property ¢ of paths
— we use either temporal logic (LTL) over state labels

. e.g. ¢err - “an error eventually occurs”
. e.g. O(reqg — ¢ack) - “req is always followed by ack”

— or automata over action labels (see later)
. e.g. deterministic finite automata (DFAs)

Model checking for PAs

Property specification: quantify over all adversaries
—e.g. MEP_J[d] & Pryod) = p for all adversaries o € Adv,
— corresponds to best-/worst-case behaviour analysis
— or in a more quantitative fashion:
— just compute e.g. Pry,™" () = inf { Pry,9 (d) | o € Adv,, }

Model checking: efficient algorithms exist
— for reachability, graph-based analysis + linear programming
— in practice, for scalability, often approximate (value iteration)
— for LTL, first construct an automaton-PA product

- And tool support is available
— e.g. PRISM, Liquor, RAPTURE
— (but scalability is always an issue)

Running example

- Two components, each a probabilistic automaton:
— M,: controller which shuts down devices (after warning first)
— M,: device to be shut down (may fail if no warning sent)

PA M, (“controller”) PA M, (“device”)

warn

shutdown shutdown ' shutdown

Running example

PA M, (“controller”) PA M, ("device”)

warn

shutdown shutdown shutdown

Parallel composition: M, || M,

warn shutdown

—— G55 o

system failure:
Pry,im, ™ (Oerr) = 0.02

Safety properties

Safety property: language of infinite words (over actions)
— characterised by a set of “bad prefixes” (or “finite violations”)
— i.e. finite words of which any extension violates the property

Regular safety property
— bad prefixes are represented by a regular language
— property A stored as deterministic finite automaton (DFA) A_,

l fail shutdown
.. _ warn, warn,
fail shutdown shutdown

“a fail action “warn occurs “at most 2 time steps
never occurs before shutdown” pass before termination”

Probabilistic safety properties

- A probabilistic safety property P_ [A] comprises
— a regular safety property A + a rational probability bound p
— “the probability of satisfying A must be at least p”
- M= P, [A] & PryA) = pforall o € Advy < Pry™n(A) >p

Examples:
— “warn occurs before shutdown with probability at least 0.8”
— “the probability of a failure occurring is at most 0.02”
— “probability of terminating within k time-steps is at least 0.75”

Model checking: Pry,mn(A) = 1 - PrM®AerrmaX(<>errA)
— where err, denotes “accept” states for DFA A
— i.e. construct (synchronous) PA-DFA product M®A

err

— then compute reachability probabilities on product PA

Running example

Does probabilistic safety property P_, ¢ [A] hold in M,?

PA M, (“controller”) A (‘warn occurs
before shutdown”)

warn shutdown

warn, ’ warn

shutdown shutdO\’/vn

Running example

Does probabilistic safety property P_, ¢ [A] hold in M,?

PA M, (“controller”) A (‘warn occurs
before shutdown”)

warn shutdown
warn, ' warn,
shutdown shutdown

err PrM]mln(A)

= 1 = Pry o, m(0erry)
=1-0.2

= 0.8

- M, & P.slAl

Multi-objective PA model checking

+ Consider multiple (linear-time) objectives for a PA M

— LTL formulae ¢,,...,®, and probability bounds ~,p,,...,~ P
— question: does there exist an adversary o € Adv,, such that:

Pry(d,) ~1p; A ... A Pry®(d,) ~ Py

Motivating example:
— Pry°(O(queue_size<10)) > 0.99 A Pry,°(¢flat_battery) < 0.01

Multi-objective PA model checking
— [Etessami/Kwiatkowska/Vardi/Yannakakis, TACAS'07]
— construct product of automata for M, ®,,...,o,
— then solve linear programming (LP) problem
— the resulting adversary o can obtained from LP solution
— note: o may be randomised (unlike the single objective case)

Multi-objective PA model checking

- Consider the objectives ¢D and ¢E in the PA below
— i.e. the probability of reaching either state D or E
— a (randomised) adversary resolves the choice between a/b/c

— increasing the probability of reaching one target decreases the
probability of reaching the other

choose a

/ / choose b

choose ¢

4

4 >
0.5 0.8 PI’(<> E)

| I

Multi-objective PA model checking

- Consider the objectives ¢D and ¢E in the PA below
— i.e. the probability of reaching either state D or E
— a (randomised) adversary resolves the choice between a/b/c

— increasing the probability of reaching one target decreases the
probability of reaching the other

0.5a,0.5b

'4

0.5a,0.5c

Considering also randomised adversaries...
— we obtain a Pareto curve, showing trade-off of optimal solutions

Compositional verification
— assume-guarantee reasoning
Probabilistic automata
— probabilistic safety properties
— multi-objective model checking
Probabilistic assume guarantee [TACAS’10]
— semantics, model checking, proof rules
— guantitative approaches
— implementation & results
Automated generation of assumptions [QEST’10]
— L*-based learning loop
— implementation & results
Conclusions, current & future work

Probabilistic assume guarantee

- Assume-guarantee triples (A)., M (G}ZpG where:
— M is a probabilistic automaton
- PZpA[A] and PZpG[G] are probabilistic safety properties

Informally:

— “whenever M is part of a system satisfying A with probability
at least p,, then the system is guaranteed to satisfy G with
probability at least p.”

Formally: (A)zp, M (G)-p.
=
VO € AdVye,) (P, ® (A) = pa = Pry,7(G) = pg)

— where M[w,] is M with its alphabet extended to include o,

Assume-guarantee model checking

- Checking whether (A)ZpA M <G>sz is true
— reduces to multi-objective model checking
— on the product PA M’ = M|, |®A,,,®G

err err

- More precisely:
— check no adv. of M satisfying Pr,,° (A)=p, but not Pr,,° (C)=p

(A)zpp M (G-,

—30’ € Advy (Pry.9 (Oerry) < 1-pa A Pry® (Oerre) > 1-p¢)

— solve via LP problem, i.e. in time polynomial in [M[-|A,, |G|

- Note: (true) M <G>ch denotes the absence of an assumption
— reduces to standard model checking (since a safety property)

An assume-guarantee rule

- The following asymmetric proof rule holds
— (symmetric = uses a single assumption about one component)

(true) My (A).,,
<A>sz IVIZ <G>zpc (ASYM)
(true) M, || M, (G).,_

- So, verifying M, [| M, & P=p.[G] requires:
— premise 1: M, = P=p, [A] (standard model checking)
— premise 2: (A)ZIOA M, (G)ZIOG (multi-objective model checking)

- Potentially much cheaper if |A| much smaller than |M,|

Running example

Does probabilistic safety property P_, o5 [G] hold in M, ||M,?

PA M, (“controller”) PA M, (“device”) G (“a fail action

nhever occurs”)
detect warn @

shutdown

shutdown shutdown :
l fail

@‘ fail @’ off ’

fail

Running example

Does probabilistic safety property P_, o5 [G] hold in M, ||M,?

PA M, (“controller”) PA M, (“device”) G (“a fail action

nhever occurs”)
detect warn @

shutdown

shutdown

@‘ fail @’ off ’

Use AG with assumption fail

(A). g about M,

A (“warn occurs

(true) M, (A).o s before shutdown”) shutdown
<A>20.8 MZ <G>20.98
(true) My [| My (G)..q 98 warh, warn,

shutdown shutdown

Running example

- Premise 1: Does M, = P_, ¢ [A] hold? (same as earlier ex.)

PA M, (“controller”) A (‘warn occurs
before shutdown”)

shutdown shutdown
Product PA M, ®A,,,
Pry,™"(A)
= 1 = Pry o, m(0erry)
=1-0.2
= 0.8

- M] = PzO.S [A]

Running example

-« Premise 2: Does (A).,s M, (G)., 95 hold?

G (“a fail action

PA M, (“device”) A (“warn occurs never occurs”)

warn before shutdown”)

b shutdown - <hutdown shutdown lfa”

Product PA
M’ = MZ[O(A]®Aerr®Gerr

Running example

Premise 2: Does (A).,s M, (G)., 95 hold?

warn shutdown
Product PA _ @

M’ = MZ[O(A]®Aerr®Gerr

1 an adversary of M, satisfying Pr,,° (A)>=0.8 but not Pr,,° (G)>0.98 ?
=

3 an an adversary of M’ with Pry,% (¢err,)<0.2 and Pr,° (Cerr:)>0.02 ?

To satisfy Pry,.9 (Oerr,)<0.2, adversary ¢’ must choose shutdown
in initial state with probability < 0.2, which means Pr,,° (0err-)<0.02

So, there is no such adversary and (A)_, s M, (G)_, o5 does hold

Other assume-guarantee rules

- Multiple assumptions:

(true) M] <A1""!Ak>2p] Pk
<A]""’Ak>2p] Pk MZ <G>ZDG

(true) M, [| M, (G).p,

. Circular rule:

(true) M (Ay).p,
<A2>2p2 M] <A1>zp]
<A1>zp1 MZ <G>sz

(true) My || M (G).p

Multiple components (chain)

(true) My (A)).p.
<A1>zp] MZ <A2>zp2

(A=p, My (G-
(true) M, || ... [| M, (G}ZIOG

A quantitative approach

For (non-compositional) probabilistic verification
— prefer quantitative properties: Pr,,™"(G), not M = PZIOG [G]
— can we do this for compositional verification?

Consider, for example, AG rule (ASym) (true) My (A)-p,

— thlS proves PrM]HMzmin(G) > pG i <A>Z|DA MZ <G>ZpG :
for certain values of p. | (true) My || M, (G).,_ i
— i.e. gives lower bound for Pry, y,™"(G) =---oomooim oo |

— for a fixed assumption A, we can compute the maximal lower
bound obtainable, through a simple adaption of the multi-
objective model checking problem

— we can also compute upper bounds using generated
adversaries as witnesses

— furthermore: can explore trade-offs in parameterised models
by approximating Pareto curves

Implementation + Case studies

Prototype extension of PRISM model checker
— already supports LTL for probabilistic automata
— automata can be encoded in modelling language

— added support for multi-objective LTL model checking, using
LP solvers (ECLiPSe/COIN-OR CBQ)

- Two large case studies
— randomised consensus algorithm (Aspnes & Herlihy)
. minimum probability consensus reached by round R
— Zeroconf network protocol
- maximum probability network configures incorrectly
. minimum probability network configured by time T

Experimental results

Case study Non-compositional Compositional
RS

3,2 1,418,545 18,971 40,542 29.6
Randomised _

consensus 3, 20 39,827,233 time-out 40,542 125.3

(3 processes) 4,2 150,487,585 78,955 141,168 376.1

[R,KI 4,20 2,028,200,209 mem-out 141,168 471.9

4 313,541 103.9 20,927 21.9

Zerﬁgonf 6 811,290 2752 40,258 54.8

8 1,892,952 592.2 66,436 107.6

2,10 65,567 46.3 62,188 89.0

ZeroConf 2,14 106,177 63.1 101,313 170.8

time-bounded
K, T] 4,10 976,247 88.2 74,484 170.8

4,14 2,288,771 128.3 166,203 430.6

Experimental results

Case study Non-compositional Compositional
parametersl [s] Time | (Psize | Tme)

3,2 1,418,545 18,971 40,542 29.6
Randomised _
consensus 3, 20 39,827,233 time-out 40,542 125.3
(3 processes) 4,2 150,487,585 78,955 141,168 376.1
[R,KI 4,20 2,028,200,209 mem-out 141,168 471.9
4 313,541 103.9 20,927 21.9
Zerﬁgonf 6 811,290 2752 40,258 54.8
8 1,892,952 592.2 66,436 107.6
\
2,10 65,567 46.3 62,188 89.0
ZeroConf 2,14 106,177 63.1 101,313 170.8
time-bounded
K, T] 4,10 976,247 88.2 74,484 170.8
4,14 2,288,771 128.3 166,203 430.6

* Faster than conventional model checking in a number of cases

Experimental results

Case study Non-compositional Compositional
RS

3,2 1,418,545 18,971 40,542 29.6
Randomised :

consensus 3, 20 39,827,233 time-out| 40,542 125.3

(3 processes) 4, 2 150,487,585 78,955 141,168 376.1

[R,KI 4,20 2,028,200,209[mem—out] 141,168 471.9

4 313,541 103.9 20,927 21.9

Zerﬁgonf 6 811,290 2752 40,258 54.8

8 1,892,952 502.2 66,436 107.6

2.10 65,567 46.3 62,188 89.0

ZeroConf 2,14 106,177 63.1 101,313 170.8

time-bounded
K. T] 4,10 976,247 88.2 74.484 170.8
4,14 2,288,771 128.3 166,203 430.6

* Verified instances where conventional model checking is infeasible

Experimental results

Case study Non- compositional Compositional
RS

3,2 1,418,545 18,971 (40,542 29.6
Randomised

consensus 3, 20 39,827,233 time-out | 40,542 125.3

(3 processes) 4,2 150,487,585 78,955 | 141,168 376.1

[R,KI 4,20 2,028,200,209 mem-out | 141,168 471.9

4 313,541 103.9 20,927 21.9

Zerﬁgonf 6 811,290 2752 | 40,258 54.8

8 1,892,952 592.2 66,436 107.6

2,10 65,567 46.3 62,188 89.0

ZeroConf 2,14 106,177 63.1 | 101,313 170.8
time-bounded

K, T] 4,10 976,247 88.2 74,484 170.8

4,14 2,288,771 128.3 | 166,203, 430.6

* LP problem generally much smaller than full state space
(but still the limiting factor)

Overview

Compositional verification
— assume-guarantee reasoning
Probabilistic automata
— probabilistic safety properties
— multi-objective model checking
Probabilistic assume guarantee [TACAS’10]
— semantics, model checking, proof rules
— guantitative approaches
— implementation & results
- Automated generation of assumptions [QEST’ 10]
— L*-based learning loop
— implementation & results
Conclusions, current & future work

Generating assumptions

- We can verify M, ||M, compositionally o (true) My (A,
— but this relies on the existence L Ay Mo (G
of a suitable assumption (A). i (rue) M, || M, <G)ch :

B o e e e e e e e e e e e e e

1. Does such an assumption always exist?
2. When it does exist, can we generate it automatically?

One possibility: use algorithmic learning techniques
— inspired by non-probabilistic AG work of [Pasareanu et al.]
— uses L* algorithm to learn finite automata for assumptions

— successful implementations using Boolean functions [Chen/
Clarke/et al.] and BDD-based techniques [Alur et al.]

- We use a modified version of L*
— to learn probabilistic assumptions for rule (ASym)

L* for assume-guarantee

- L* algorithm [Angluin] - learns regular languages (as a DFA)
— relies on existence of a “teacher” to guide the learning
— answers two type of queries: “membership” and “conjecture’
— membership: “is word w in the target language L?”
— conjecture: “does automaton A accept the target language L™
— if not, teacher must return counterexample w’
— L* produces minimal DFA, runs in polynomial time

. Successfully applied to the of learning assumptions for AG

— uses notion of “weakest assumption” about a component that
suffices for compositional verification (always exists)

— weakest assumption is the target regular language
— model checker plays role of teacher, returns counterexamples

— in practice, can usually stop early: either with a simpler
(stronger) assumption or by refuting the property

Key steps of (modified) L*

Key idea: learn probabilistic assumption (A)ZpA
— via non-probabilistic assumption A

Membership” query (for trace t): (true) My (A).p,

~ does t || M, - P_,_[G] hold? gy M2 (Cpg
 (true) M, || M, (G).,
- “Conjecture” query (for assumption A) -~ oo
— 1. compute lowest value of p, such that (A)., M, (G).,_holds
. if no such value, need to refine A
— 2. check if M, = PZIOA [A] holds
- if yes, successfully verified (G).,_for M, [| M, (with (A).)
— 3. check if counterexample from 2 is real
. if yes, have refuted <G>2Pc for M, || M,
. if no, need to refine A
— (use probabilistic counterexamples [Han/Katoen] to “refine A”)

Experimental results (learning)

paramerersl [Tioe | i | A | Tmew
3 229 16 6.6

: 4
Client-server
(N failures) 4 1,121 25 5 13.1
[N] 5 5.397 36 6 87.5
2, 3,20 391 3,217 5 24.2
Randomised 2, 4,72 573 113,569 10 108.4
consensus
[N.R.K] 3,3,2 8,843 4,065 14 681.7
3, 3,20 8,843 38,193 14 863.8
S] 42 72 2 3.5
ensor
network 2 42 1,184 2 3.7

[N] 3 42 10,662 2 4.6

Client-server

(N failures) 4 1,121

[N] 5 5,397

2,3,20 391

Randomised 2, 4,2 573
consensus

NRK] 3:3.2 5,543

3, 3,20 8,843

Sensor] 42

network 2 42

[N] 3 472

* Successfully learnt (small) assumptions in all cases

25

36
3,217
113,569
4,065
38,193

/2
1,184

. 10,662,

Case study
[parameters] IM,®G, .| m
3 229 16

6.6
13.1
87.5
24.2

108.4
681.7
863.8

3.5
3.7
4.6

Experimental results (learning)

paramerersl [Tioe | i | A | Tmew
3 229 16 6.6

- 4
Client-server
(N failures) 4 1,121 25 5 13.1
[N] 5 5.397 36 6 87.5
2,3, 20 391 3,217 5
Randomised 2 4, 2 573 113,569 10 108.4
“INRK . 33,2 8,843 4,065 14 681.7
3, 3,20 8,843 38,193 14 863.8
.] 42 72 2 3.5
ensor
network 2 42 1,184 2 3.7
[N] 3 42 10,662 2 4.6

* In some cases, learning + compositional verification is faster
(than non-compositional verification, using PRISM)

Conclusions

- Compositional probabilistic verification based on:
— probabilistic automata, with arbitrary parallel composition
— assumptions/guarantees are probabilistic safety properties
— reduction to multi-objective model checking
— multiple proof rules; adapted to quantitative approach
— automatic generation of assumptions: L* learning

- Encouraging experimental results
— verified safety/performance on several large case studies

— cases where infeasible using non-compositional verification
+ Current/future work
— prove (lack of) completeness
— other types of assumptions/properties, e.g. liveness, rewards
— further (e.g. symmetric/circular) proof rules
— continuous-time models

