
An Online Finite LTL Model Checker
for Distributed Systems

 -- with an introduction to our group

Zhengwei QI
May 20, 2011

Shanghai Jiao Tong University –Shanghai, China

Current SCS visiting faculty –hosted by Prof. Ed Clarke

Agenda

• Introduction

• An Online Model Checker for Distributed
Systems

• A Refined Decompiler to Generate C/C++ Code
with High Readability

• Current research topics in our group

About Me

• 2002-2006

– PhD, SJTU, my supervisor is
Prof. Jinyuan YOU

• 2006-present

– Teacher, School of Software,
Shanghai Jiao Tong University

• 2008.1-2008.7

– a visiting teacher in the
system group of Microsoft
Research Asia

http://se.sjtu.edu.cn/
http://www.sjtu.edu.cn/
http://research.microsoft.com/en-us/groups/sr/
http://research.microsoft.com/en-us/groups/sr/
http://research.microsoft.com/en-us/groups/sr/

About Shanghai Jiao Tong University
(SJTU)

• 1896, Nanyang Public School in
Shanghai

• Today
– 26 academic schools and departments

– 63 undergraduate programs

– 232 masters-degree programs

– 147 Ph.D. programs

– 20,300 undergraduates,

– 28,100 masters and Ph.D. candidates

– 1,900 professors and associate
professors

About School of Software

• 2001.5-2011.5
– Celebrations for the 10th anniversary

of the establishment

• Today
– 150 new undergraduates per year
– 60 new masters per year
– 15 new PhD candidates per year
– 30+ faculty
– 9 labs including System\Software

engineering\Applications

Agenda

• Introduction

• An Online Model Checker for Distributed
Systems [with Microsoft Research Asia]

• A Refined Decompiler to Generate C/C++ Code
with High Readability

• Some research topics in our group

Debugging distributed systems is
difficult

• Bugs are difficult to reproduce
– Many machines executing concurrently

– Machines may fail

– Network may fail

• Existing Methods
– Insert print statements, then writes a front client to

pars

– model checkers find safety counterexamples

– software model checking methods are focused on the
specifications (Spin/SMV/TLC)

Example: Paxos protocol [Leslie Lamport]

Liveness property :
Some proposed value is eventually chosen and, and if a value
has been chosen, then a process can eventually learn the value.

Application: Microsoft Autopilot cluster management service
 Google Chubby distributed lock service

Problems for State-of-the-art of runtime checking

Step 1: add logs
void ClientNode::OnLockAcquired(…) ,
 …
 print_log(m_NodeID, lock, mode);
}

Step 2: Collect logs, align them into a
globally consistent sequence
• Keep partial order

Step 3: Write checking scripts
• Scan the logs to retrieve lock states
• Check the consistency of locks

 Too many manual effort
 Only low-level safety properties

Problems for software model checking methods

• The real system code is complex usually, so it is not practical to
use classical model checking to verify it which often leads to
infinite states.

• Although some errors can be found by checking the abstract
model, many bugs related to the real code are still hard to be
detected

• There are many optimization tricks undefined in specification to
improve performance, which increases difficulty for evaluating
their side-effects.

• Our focus: provide online dynamic monitoring tool to check
whether a real system satisfies a set of high-level safety and
liveness properties.

Why LTL?

• “Modern software model checkers find safety
violations: breaches where the system enters some bad
state. However, we argue that checking liveness
properties offers both a richer and more natural way to
search for errors, particularly in complex concurrent and
distributed systems”. [NSDI 2007]

 Liveness properties specify desirable system behaviors

which must be satisfied eventually, but are not always
satisfied, perhaps as a result of failure or during system
initialization.

Classical Linear Temporal Logic and
Finite Trace Semantics

Finite Trace Semantics

It is acceptable to regard a finite trace as an infinite stationary trace in
which the last event is repeated infinitely [Grigore Rosu, et al. 2005]

Modified Büchi automaton

• Our automata A(ϕ) = (S, Σ,S0 ,δ,F)

– S is the set of states

– Σ is the alphabet

– S0 is the initial set

– δ is transition relation

– F is the accepting condition. F = {F1,F2,…,Fn} ,
Because eventualities must be satisfied on the
finite sequence, so the accepting condition is

 iFfniiiffFf  ,1,,

The correctness proof

• Notations and proof, from [Rob Gerth, et al, PSTV 1995]
– Old(s) denote the set of formulas that must hold and have

already been processed in node s
– New(s) denote the set of formulas that must hold at

current state and have not yet been processed in s
– Next(s) denote the set of formulas that must hold in all

immediate successors of s
– Δ(s) denote the value of Old(s) when the construction of s

is finished.

Lemma 1

• Lemma 1 For every initial state of an
automaton A generated from the formula ϕ,
we have .

• Proof. Immediately form the construction. ■

Iq 

)(q

Lemma 2

• Lemma 2 Let σ = q0q1q2… be a run of A that accepts the
propositional sequence ξ when q0 is taken to be an initial state.
Then

• Proof sketch. By induction on the size of the formulas.
– The base case is for formulas of the form P, ¬P.
– We show the case of , according to the construction of

U operator, only following two cases are possible:

• Since σ satisfies the acceptance conditions of A, only case 2 is
possible. By the induction hypothesis, then and

 , then
 ■

)(| 0q

)(0qU 

)()(,:00.2

)()(,:0.1

ji

ii

qandqUjij

qandqUi









 |j
  |,0 iji   U|

Lemma 3

• Lemma 3 Let σ be an execution of the
automaton A, constructed for ϕ, that accepts
the propositional sequence ξ. Then

• Proof.

– The node q0 is initial state, From Lemma 2 it
follows

– By lemma 1, if q0 is initial then

– Thus, ■

 |

)(| 0q

)(0q

 |

Lemma 4

• Lemma 4 If , Then there exists an execution
σ of A that accepts ξ.

• Proof sketch.
– First, there exists a node that q0 is initial such that

– Now if ,according to
transition invariants of automaton, we can find a
successor qi+1 of qi that

– Since , there must be some minimal

 such that . ■

 |

))(())((| 00 qNextXq 

))(())((| iii qNextXq 

))(())((| 111   iii qNextXq

 Ui |

ij   |j

Architecture

• State Exposer(SE)
– uses MSRA’s tool D3S [NSDI

2008] to instrument
processes being monitored

– SE loads the DLL into the
process’s address space,
and redirects function calls
that are interposed on to
callbacks in the DLL.

• Verifiers
– collect states that are

transmitted from SE, then
evaluate predicates and
output bug reports.

– the modified version of
the popular algorithm SPIN
[Gerard J. Holzmann, 1997]

D3S Workflow [From NSDI 08]

Checker Checker

Predicate:
no conflict locks

Violation!

state
state

state

state
state

Conflict!

D3S Interface-1

• class exposer : public
beyond::d3s::emit::actor_io_service<exposer,fltl_exposer>

{
public:
 static void execute(const state & param) {
 std::cout << "[exposer_actor_io_service] " << ¶m <<

std::endl;
 beyond::d3s::emit::emit_to<fltl_partitioner>(param); }
 ……

};

New Class derived from D3S

D3S Interface-2

• class exposer : public
beyond::d3s::emit::actor_io_service<expose
r,fltl_exposer>

• class partitioner : public
beyond::d3s::emit::actor_partitioned_call_t
hrough<partitioner,fltl_partitioner>

• class verifier : public
beyond::d3s::emit::actor_sorter_called_in_i
o_service<verifier, fltl_verifier>

1. Obtain the
distributed states

2. Ordered states according
to happen before relation

3. Call modified SPIN engine
to check FLTL

Modified SPIN

• Line 4: if not all the right part of U operator are
implemented in this state, then go to the T(count+incr cnt)
level to continue

• In case of finite trace
– the last step should be repeated infinitely, so all the right part of

U operator should be satisfied in the last step.
– If not, we just go to the T0 level to reject this formula(Line 5)

Online Program Analysis

Monitor per step

If it’s final step, Check
accept condition

Case study- Paxos

• Paxos protocal [Leslie Lamport] - Concurrent , distributed state
machine for Consensus

• Three main state:
– Stable
 In this state R believes it knows all chosen decrees, and it has accepted

exactly one additional decree which may or may not have been chosen.
– Initializing
 R starts in this state after replaying its log. It also enters the initializing

state whenever it receives a message which shows that a decree has
been chosen which R has not heard about, or when no decrees have
been passed for a while.

– Preparing
 In this state R is trying to elect itself primary. It sends Prepare

requests to all peers, and if a majority responds R moves to the Stable
state as primary.

Safety

• Nontriviality: all the learned value must be the
proposed value

• Stablity: when a value is learned, this value will
always be learned.

• Consistency: any two replica will learn the
same value.

 Liveness

• “We won’t try to specify precise liveness
requirements. However, the goal is to ensure
that some proposed value is eventually
chosen and, if a value has been chosen, then a
process can eventually learn the value.”*Leslie
Lamport,2001]

Program Analysis Challenges

• How to define a global state and expose it as the state predicate ?
– the global state can be defined as the array of tuple (ReplicaID, State,

Ballot, Decree, Value) with logical timestamp.

• How to specify the final step?
– if all replicas have accepted a consistent decree, we know that

previous round must be ended and then indicate that previous round
reaches its final step

• How to go through the different paths as many as possible?
• design three execution

– models: Message Model, Restart Model, and Reconfig Model.
– Future: Use some model checker to cover different paths.

Experiment Evaluation

From this result, the overhead is less than %5 in most cases.

Experiment Evaluation-2

• Typical Bug: When Replica 4 learned Decree 368 in Ballot 41
and executed this request, we found that the previous
decree (Decree 367) had not been learned while other
replicas all learned Decree 367, which violates Consistency
and Progress1 properties.

• This bug validates the high-level properties and involves
several rounds which can not be easily captured by simple
predicates such as assert().

Experiment Evaluation-3

• We may find bugs in 2000 rounds and take
less than one hour.

• After fixing these bugs we run our tool again,
and have not found bugs in 4000 rounds.

A Livelock bug

Related Work

• Check safety properties in systems
– Using random walks to analyze networking protocols whose state spaces were too

large for exhaustive search *PSTV’86+.
– A method for iterating exhaustive search and random walks to find bugs in cache-

coherence protocols.[PDMC'03]
– WiDS and D3S *NSDI’07, NSDI’08+

• Model checking software implementations is to abstract them to obtain
a finite-state model of the program
– Verisoft *POPL’97+
– CMC *OSDI’01+

– JavaPathfinder*TACAS ‘04+
– SLAM *POPL’02+
– SAT-solver*TACAS’04+
– CUTE/CREST *PLDI’08 FSE’08 CAV’06+
– Eagle/ JMPAX [FMOODS'05]

• we provide a high level temporal logical description to find safety and
liveness violations in real code

Agenda

• Introduction

• An Online Model Checker for Distributed
Systems [with Microsoft Research Asia]

• A Refined Decompiler to Generate C/C++ Code
with High Readability [WCRE 2010]

• Some research topics in our group

Motivation

• Variables reduction

• Function Identification

• STL (C++) Identification

Architecture

Shadow Stack

Inter-Basic-Block register propagation

Dcc vs. C-Decomplier

STL function identification based on
signature

Experiments-1

Experiment-2

Reduction Rate

Variable expansion rate

Agenda

• Introduction

• An Online Model Checker for Distributed
Systems [with Microsoft Research Asia]

• A Refined Decompiler to Generate C/C++ Code
with High Readability [WCRE 2010]

• Some current research topics in our group
[call for cooperation]

1. Mixing Lockset Analysis and Symbolic Execution for
Critical Section Inference [submitted to ACM APSYS 2011]

• Problem: How to
guarantee the lock-
unlock pair?

• Idea: Use KLEE
[OSDI 2008] to
reason the lock in
large system.

Solution: combine scalable lockset analysis, which identifies
functions with ambiguous locksets, and accurate symbolic
execution, which resolves the ambiguity of these functions
locally, for better analysis results.

Primary result

Not match
with fifo-mut

2. Shepherd application privacy with virtualized special
purpose memory [OSDI 2010 Poster]

Reduce the TCB to
include only user-
selected sensitive code
and the hypervisor
assisted by taint analysis

Exploit memory
virtualization to provide
privacy aware memory
primitives.

3. Complete CFG by static analysis

• Dynamic Taint
Analysis to get a real
execution path

• Static analysis to
complete the
execution path as a
CFG.

• In order to reason the
key path in a large
system

The concrete black path indicates the real execution path, and
the dotted red ones are supplemented by the static analyzer.

4. Binary Symbolic Execution tool

• A dynamic symbolic execution tool, for x86
binary code. It’s based on the DynamoRIO as a
frontend

• Combine program slicing and dynamic taint
analysis

• A tool to reason the real binary code

Case study

5. System wide real code analysis

• Bitblaze[ICISS 08] use a simulator QEMU to do
system-wide analysis.

• A real hardware supported analysis may be
more practical

– DynamoRIO runs in user-level

– how about in a supervisor-level tool?

– just a proposal

Reference

• Zhengwei Qi, Liang Liu, Alei Liang, Hao Wang, Ying Chen: An Online Model
Checking Tool for Safety and Liveness Bugs. ICPADS 2008: 493-500

• Rob Gerth, Doron Peled, Moshe Y. Vardi, Pierre Wolper: Simple on-the-fly
automatic verification of linear temporal logic. PSTV 1995: 3-18

• Gengbiao Chen, Zhuo Wang, Ruoyu Zhang, Kan Zhou, Shiqiu Huang, Kangqi
Ni, Zhengwei Qi, Kai Chen, Haibing Guan: A Refined Decompiler to
Generate C Code with High Readability. WCRE 2010: 150-154

• Cristian Cadar, Daniel Dunbar, Dawson R. Engler: KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems
Programs. OSDI 2008: 209-224

• Derek Bruening. Efficient, Transparent, and Comprehensive Runtime Code
Manipulation. Ph.D Thesis, MIT, September 2004

• Dawn Song, David Brumley, Heng Yin, et al. BitBlaze: A New Approach to
Computer Security via Binary Analysis. ISISS 2008

 http:// 202.120.40.124

