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* An Online Model Checker for Distributed
Systems [with Microsoft Research Asia]

* A Refined Decompiler to Generate C/C++ Code
with High Readability

 Some research topics in our group



Debugging distributed systems is
difficult

* Bugs are difficult to reproduce
— Many machines executing concurrently
— Machines may fail
— Network may fail

e Existing Methods

— Insert print statements, then writes a front client to
pars

— model checkers find safety counterexamples
— software model checking methods are focused on the

S%specifications (Spin/SMV/TLC)

Microso




Example: Paxos protocol [Leslie Lamport]

Application: Microsoft Autopilot cluster management service
Google Chubby distributed lock service

Zlient Proposer Acceptor Learner
| | [ . |
K—————- > | [ . |1 (1)
| K————- === == |1 (2)
| | €—————— K——¥—-X I (3)
| K———— - === == |1 (4)
| | <—————— A——d——K———>|-=| (5)
| <———————_————————————————— — X——¥ (&)
| | [ |

(l) :Eequest (Z2):Prepare(N)

(2) :Promise (N, {(Va,VE,Vcl})

(4) :Accept! (N,Vn) (95):Accepted(N,Vn)

(&) :Response

Liveness property :
Some proposed value is eventually chosen and, and if a value
has been chosen, then a process can eventually learn the value.

Microsoft
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Problems for State-of-the-art of runtime checking

Step 1: add logs
! void ClientNode::OnLockAcquired(...) {

print_log( m_NodelD, lock, mode);

}

Step 2: Collect logs, align them into a
globally consistent sequence
* Keep partial order

Step 3: Write checking scripts
* Scan the logs to retrieve lock states
* Check the consistency of locks

3% ® Too many manual effort
| ® Only low-level safety properties

Microsoft .
Research/sia
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Problems for software model checking methods

The real system code is complex usually, so it is not practical to
use classical model checking to verify it which often leads to
infinite states.

Although some errors can be found by checking the abstract
model, many bugs related to the real code are still hard to be
detected

* There are many optimization tricks undefined in specification to
improve performance, which increases difficulty for evaluating
their side-effects.

* Qur focus: provide online dynamic monitoring tool to check

whether a real system satisfies a set of high-level safety and
_— ) __liveness properties.

Microsoft .
Research/sia
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Why LTL?

“Modern software model checkers find safety
violations: breaches where the system enters some bad
state. However, we argue that checking liveness
properties offers both a richer and more natural way to
search for errors, particularly in complex concurrent and
distributed systems”. [NSDI 2007]

Liveness properties specify desirable system behaviors
which must be satisfied eventually, but are not always
satisfied, perhaps as a result of failure or during system
initialization.



Classical Linear Temporal Logic and
Finite Trace Semantics

Definition (syntax). The set of LTL formulae on the set
P is defined by the grammar ¢ ::= p|=ple V | O pleUp,

where p ranges over P.

Definition (semantics) The satisfaction relation of Fi-

nite Trace Linear Temporal Logic (FLTL)

—C Trace x

Formula defines when a trace t satisfies a formula f, writ-
tent = f, and is defined inductively over the structure of
the formulae as follows, where A is any atomic proposition

and X and Y are any formulae:



Finite Trace Semantics

t = true if [ true (1)
t = false of [ false (2)
tE= A iff A€ head(t) (3)
t = -A if [ tEA 4)
t=X ANY aff t=X and tE=Y (5)
t=EX VvY 4iff t=EX or tEY (6)
tE=OX iffoif(tail(t)=0) tEX

else tail(t) =X (7)
t = O0X if (31 <length(t)) t; =X (8)
t =0X if f (Vi <length(t)) t; =X (9)
t=XUY iff (Ji<length(t)) (i =Y

- and (Vj <1i)t; = X) (10)
—~ It is acceptable to regard a finite trace as an infinite stationary trace in

Migost which the last event is repeated infinitely [Grigore Rosu, et al. 2005]

System Research Group




Modified Blchi automaton

* Our automata A(p) = (S, £,S,,6,F)
— S is the set of states
— 2 is the alphabet
— S, is the initial set
— O is transition relation

— F is the accepting condition. F ={F,F,,...,F.},
Because eventualities must be satisfied on the

finite sequence, so the accepting condition is
e F,i1rfrvi,l < 1 < n, r e F.

7



The correctness proof

Theorem Let P be the set of propositions from which
LTL formulas are constructed, £ = g, x1.....: Ly IS a finite
word over 2F, and A(p) is the finite automaton for formula
o. Then A(yp) accepts £ iff £ = .

* Notations and proof, from [Rob Gerth, et al, PSTV 1995]

— 0Old(s) denote the set of formulas that must hold and have
already been processed in node s

— New(s) denote the set of formulas that must hold at
current state and have not yet been processed in s

— Next(s) denote the set of formulas that must hold in all
immediate successors of s

— A(s) denote the value of Old(s) when the construction of s
is finished.



Lemma 1

* lemma 1 For every initial state ¢ € / of an
automaton A generated from the formula ¢,
we have ¢ € Alg),

* Proof. Immediately form the construction. Il



Lemma 2

Lemma 2 Let 0 = q,q,09,... be a run of A that accepts the

propositional sequence ¢ when q is taken to be an initial state.
Then

¢ = AAlg,)
Proof sketch. By induction on the size of the formulas.
— The base case is for formulas of the form P, —P.

— We show the case of ©l7 € A(g,) according to the construction of
U operator, only following two cases are possible:

1.7 =0 : u, uln € Alg,)andn ¢ Alg,)

237 > 0V0 < 7 < J 1 u, uln € Alg,)andn € Alg ;)
« Since o satisfies the acceptance conditions of A, only case 2 is
possible. By the induction hypothesis, then fj = 7] and
0<7i=<Jj,& 1= u ,then & | = wuln
N



Lemma 3

* Lemma 3 Let 0 be an execution of the
automaton A, constructed for o, that accepts

the propositional sequence & Then &= ¢

* Proof.
— The node qy is initial state, From Lemma 2 it

follows ¢ = AAlg,)
— By lemma 1, if q, is initial then ¢ € Alg,)

—Thus, ¢= ¢ N



Lemma 4

e Lemma 4 Ifé = ¢, Then there exists an execution
o of A that accepts &.

* Proof sketch.
— First, there exists a node that q is initial such that
£ = (AA(g)) A X(ANext(q,))

— Now if & |= (AA(g,)) A X(ANext(q,)) ,according to
transition invariants of automaton, we can find a
successor q.,, of q. that &.., = (rAlg,,,)) A X(aNext(q,,,))

— Sinceé, |= wln, there must be some minimal
J = isuchthat &, = n |



Architecture

Symbol . ————— =l * State Exposer(SE)
_,[: — B — uses ]MSRA's tool DS [NSDI
. ] 2008] to instrument
L= ] S processes being monitored

H Dynamic Instrumentation

— SE loads the DLL into the
process’s address space,
R T Venf and redirects function calls
e i that are interposed on to
" callbacks in the DLL.
App. kl_}-"criﬁcr

 Verifiers

Devloved Svstems

— collect states that are
transmitted from SE, then
evaluate predicates and
output bug reports.

Log

Fig.1 Architecture

— the modified version of
the popular algorithm SPIN
[Gerard J. Holzmann, 1997]

Microsoft .
Research/sia

System Research Group



D3S Workflow [From NSDI 08]

D (vomiont | > @@+

Checker Checker




D3S Interface-1

New Class derived from D3S

» class exposer : public
beyond::d3s::emit::actor_io_service<exposer,fltl_exposer>

{
public:
static void execute(const state & param) {
std::cout << "[exposer_actor_io_service] " << &param <<
std::endl;
beyond::d3s::emit::emit_to<fltl partitioner>(param); }
};

Microsoft

Research/sia
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D3S Interface-2

° CIaSS e oser pUbllC distributed states

beyond::d3s::emit::actor_io_service<expose
° CIaSS p Tioner :pUb“C to happen before relation
beyond::d3s::emit::actor_partitioned call t

hrough<partitioner,fltl_partitioner>

. - 3. Call modified SPIN engine
e class verifier : public to check FLTL

beyond::d3s::emit::actor_sorter_called _in i

%_serviceweriﬁen fltl verifier>

Microsoft .
Research/sia

System Research Group




Modified SPIN

if {incr_cnt+count >= Max_Red)
sprintf(pref ,"accept™ )/ +last hop+/

else

Hsprintf{pref, " T0d”, count+incr_cnt J;
sprintf{pref, "TO");

L I L R e

Line 4: if not all the right part of U operator are

implemented in this state, then go to the T(count+incr cnt)
level to continue

In case of finite trace

— the last step should be repeated infinitely, so all the right part of
U operator should be satisfied in the last step.

— If not, we just go to the TO level to reject this formula(Line 5 )



Microsoft
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(propose — (chosen)

TO_init:
if
((! ((propose)) || (chosen)))
accept_520
1 (1) —= goto TO_S27
fi:

accept_S20:
if
((! ((propose)) || (chosen)))
TO_init
2 (1) —= goto TO_S27
fi:
accept_S27:
if
({chosen)) —= goto TO_init
(1) —> goto TO_S27
fi:
TO_S27 :
if

({ chosen )) —= goto accept_520
(1) — goto TO_S27
({ chosen)) — goto accept_S27
fi:
}

—=> goto

—=> goto




Online Program Analysis

1 CurrentStateList currentstate={InitState }
2 NextStateList nextstate={} " r DE an
3 CheckOneSi{Ep( stateformula . finalstep){
4 result = NoProgress
3 foreach state In currentstate {
4] foreach tramsition in state {
T ifi{stateformula = transition.
Condition ){
8 nextstate . Add(transition. TargetState
!
9 ififinalstep){
10 if i ransition TﬂLEEQPu% 0 .
1 return Accept If it’s final step, Check
12 } accept condition
13 continue
14 }
15 result = Progress
16
17 v/l end for each transition
18 Y/ end for each srare
19
20 currentstate . cleari)
21 currentstate = nextstate
22 nextstate . clear ()
23
24 ifi finalstep &% result != Accept)q
25 return Reject
26 1
Microsoft 27 return result
Research/sis 23 |}
System Research Group




Case study- Paxos

* Paxos protocal [Leslie Lamport] - Concurrent, distributed state
machine for Consensus

e Three main state:
— Stable

In this state R believes it knows all chosen decrees, and it has accepted

exactly one additional decree which may or may not have been chosen.
— Initializing

R starts in this state after replaying its log. It also enters the initializing

state whenever it receives a message which shows that a decree has

been chosen which R has not heard about, or when no decrees have
been passed for a while.

— Preparing

In this state R is trying to elect itself primary. It sends Prepare
requests to all peers, and if a majority responds R moves to the Stable

state as primary.
— P y
N -

Microsoft
Research

System Research Group




Safety

* Nontriviality: all the learned value must be the
proposed value
Definition 5 pl = Vr € Learner : (learned|r]

proposedset)
Nontriviality = Opl

Stablity: when a value is learned, this value will
always be learned.

Definition 6 p2 = Vr € Learner : (learned[r] = v)
p3 = Yr € Learner : (learned[r] C v)
Stability = O(p2 — Op3)

Consistency: any two replica will learn the

°
same value.
Definition 7 p4 = Vrl,r2 € Learner : (learned[rl] =

Microsoft learned|r2])
esearch C O?zazsfenc*u; = D(-pJI)

System Research Group




Liveness

* “We won’t try to specify precise liveness
requirements. However, the goal is to ensure
that some proposed value is eventually
chosen and, if a value has been chosen, then a
process can eventually learn the value.”[Leslie
Lamport,2001]

Definition 8 p5 = (chosen V notchosen)
Progressl = O(propose — Op5)

ﬂ[ | Definition 9 p6 = (chosen A requirevalue)
= _ Progress2 = O(p6 — Olearned)

Microsoft
Research

System Research Group




Program Analysis Challenges

 How to define a global state and expose it as the state predicate ?

— the global state can be defined as the array of tuple (ReplicalD, State,
Ballot, Decree, Value) with logical timestamp.

 How to specify the final step?

— if all replicas have accepted a consistent decree, we know that
previous round must be ended and then indicate that previous round
reaches its final step

* How to go through the different paths as many as possible?

e design three execution
— models: Message Model, Restart Model, and Reconfig Model.
— Future: Use some model checker to cover different paths.

5,

Microsoft .
Research/sia
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Experiment Evaluation

30000
25000
20000

15000

time ( ticks )

10000

5000

Microsoft

Research/sia
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B Hooked M Native

From this result, the overhead is less than %5 in most cases.



Experiment Evaluation-2

Table 1. Property Checking Result

Model/Property | Message | Restart | Reconfig
Nontriviality v v W
Stability v \ b
Consistency v :w: b4
Progressl bt bt bt
Progress2 v b P

e Typical Bug: When Replica 4 learned Decree 368 in Ballot 41
and executed this request, we found that the previous
decree (Decree 367) had not been learned while other
replicas all learned Decree 367, which violates Consistency
and Progressl properties.

- | ' " This bug validates the high-level properties and involves
— &P several rounds which can not be easily captured by simple
predicates such as assert().

Microsoft .
Research/sia
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Experiment Evaluation-3

1600

1400 *

1200 *

1000

800 =

600 »*

400

200
0 e e ey
0 1 2 3 4 5 6 7 8 9 10

#® Error Decree

* We may find bugs in 2000 rounds and take
less than one hour.
ﬂ% After fixing these bugs we run our tool again,
-~ and have not found bugs in 4000 rounds.

Research/sia
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A Livelock bug

1,13
a,2) @ z,1)

T
®(1 1) ‘/ \
¢ 1 @ J @ .2 9

2,1)
(1,1) 1,1
(1) Node C proposed a value to (2) C proposed avalue to  (3) A.B,DrestartedandD
A,B,D,E all, but only E accepted became the proposer
2,1) (1,2) (1, 2)

(@)— @@
®) @

2, 1) (1,2) (3, 1) (,2)

{4) C,Erestartedand C (5) D beganto compete
began to propose its for being proposer, and
last value again live-lock started

Microsoft

Research/sia

System Research Group
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Related Work

Check safety properties in systems

— Using random walks to analyze networking protocols whose state spaces were too
large for exhaustive search [PSTV’86].

— A method for iterating exhaustive search and random walks to find bugs in cache-
coherence protocols.[PDMC'03]

— WiDS and D3S [NSDI’07, NSDI'08]

Model checking software implementations is to abstract them to obtain
a finite-state model of the program

— Verisoft [POPL'97]

— CMC[OSDI'01]

— JavaPathfinder[TACAS ‘04]

— SLAM [POPL'02]

— SAT-solver[TACAS’'04]

— CUTE/CREST [PLDI’08 FSE’08 CAV’06]

— Eagle/ JMPAX [FMOODS'05 ]

we provide a high level temporal logical description to find safety and
liveness violations in real code
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* A Refined Decompiler to Generate C/C++ Code
with High Readability [WCRE 2010]

 Some research topics in our group



Motivation

#include "stdafx h" extern char as_0[41]; int _trmain(int argc, _TCHAR argv)
extern _UNKMNOWN sub_418C 30; 1
int _tmain{int argc, _TCHAR argv(]) extern _UNKNOWN sub_ 4197 ED:; int loc1[2][3];
{ extern _UNKMNOWN loc_41983C; int loc2[3][2];
int a[2][3] = {1.2.3.4.5 B} int loc3[2][2].
int b[3][2] = {1.2,3.4,5 6}, .
int c[2][2] = {0.0,0,0} _DWORD __cdecl sub_41100A( DWORD, _DWORD,
_DWORD, char); loc1[0][0] = 1:
for(inti = 0;i = 2; j++) _DWORD sub_41100F(); loc1[0][1] = 2
for(int k= 0; k < 2; k++) _DWORD __cdecl sub_411023(UINT CodePage); loc1[0][2] = 3;
for(intj = 0;j < 3; j++}{ _DWORD __cdecl sub_411020{_DWORD): .
clil(k] += afil(i“blillk}
1 loc3[locd][locs] = ((loc1[locd |[locE] *
} if { "(_DWORD *)v7 +v3 - 4) = -858993460 || *(_DWORD | locZ[locB][locs]) + loc3[locd][locs]);
W7+ *(_DWORD *)(vG + 4) + v3) I= -B58593460 )
sub_411250( r, *{_ DWORD *){*(vG+ 1) + vd + B)):

(a) Source Code of MatrixMul (k) Decompiled Code of IDA Hex_rays ic) Decompiled Code of C-Decompiler

e Variables reduction
 Function Identification
e STL (C++ ) Identification




Architecture

Stack Manitor Library Identifizer C-Decompiler
Binary . R Assembly Assembly
Code » Binary Analyzer » Generator Code

Semantics IR Bam‘ad Control Flow
Analyzer Analysis Analysis Engine
Subsystem
Data Flow . Source Code C/C++
IR Generator CFG Constructor [ Crelels S e b Generator " Code




Shadow Stack

01. sub esp, 0x30

VirtualESP
02. mov eax, dword ptriesp + 0x34] parameter1

+0x00 01. sub esp, 0x30

03. pushieax 0x30 02. mov eax, dword ptrfesp + 0x34]

04. pUSh DXTfDD -0x30 03. pus @ Esp_lunc-p[}xq,
05. push ecx -0x34 04. push 0x7f00

06. moy dword ptriesp + 0x24], ebx ~ parameter2 "0x38 05. push ecx

0x3C 06. mov dword plifesp + 0x24
0x3C 07. mov ecx,ebx

-0x3C 08. call Loadlcon )
-0x30 10. test eax, eax '

+0x00 11. add esp, 0x30 r

+0x00 12. mov dword ptrfesp - 0x18], ecx

+0x00 13. ret

07. mo
08. call'Loadlc
09. poplecx
10. test eax, eax
11. add esp, 0x30

12. mov dword ptriesp - 0x18],
13. ret

= esp_func-0x18

esp_func-0x34

local variable 1

Fig. 4 With the help of the shadow stack, we can see that line 6 and
line 12 wnte to the same memory location. Totally one parameter and two
local varables are identified. Moreover, the the correct data path of ecx 1s
recogmized.

Fig. 3. An example of how the classic algorithm works. The memory
locations with green mark are parameters, and blue for local vanables. The
red arrowed curve i1s the propagation path of ecx according to the classic
algorithm, while the green curve is the correct path.



Inter-Basic-Block register propagation

Algornithm: dcc Register Propagation

Algornithm: Inter-BB Register Propagation

procedure ExiRegCopyProp
/* Pre: dead-register analysis has been performed.
*dead-condition code analysis has been performed.
‘register arguments have been detected.
‘function return registers have been detected.
* Post: temporary registers are removed from the
intermediate code. */
initExpStk()
for (all basic blocks b of function ) do
for (all instructions fin &) do
for (all registers rused by instruction j) do
if {((ud( ) = { def}) && CanDoPropagate())
[* uniquely defined at instruction def*/
DoPropagate();
end if
end for
end for
end for

procedure InterBBRegCopyProp

for (all ret instructions k in the program) do
ConstructPath(path);
{/Construct all the instruction paths for all the ret
end for
for (all instructions jusing registers r) do
XBE_ud( r) = Compute UD();
{/Compute the ud-chains based on constructed
instruction paths
end for
for (all /nstructions fin function ) do
for (all registers rused by instruction j) do
if (XBB_ud( ) = { def}) && CanDoAcrossBB())
DoPropagate();
end if
end for
end for

procedure CanDoAcrossBB

if (path of 7 is unique)//ris only appear in one path.
CanDoPropagate();

end if




Dcc vs. C-Decomplier

Binary Code The dce Decompiler C-Decompiler
01 SUB (eaxy? —ifftlocO - 2) 1= O){ if ((loc0 - 2) 1= 0) {
02 JE L1 /g(mm -13) 1= 0) { if (((locO - 2) - 13) != 0) {
03 SUB if ((loc2 - 258) 1= 0) { if ((((locO - 2) - 13) - 258) 1= 0) {
04 JE L2 .-/J'
05 SUB jelse (/L3 else {//L3
06 JE L3 o} .}
07 ... Jelse {//L lelse {//L
08 L1 o} )
09 L2 else {//L1 telse {//L1
10 L3 - )

Fig. 5.

The comparison of the decompiled codes from the dec decompiler and C-Dlecompiler. This i1s mainly to illuminate the difference of the common
method and the inter-BE method. The code decompiled by the dec decompiler is in the middle and the one by C-Decompiler 1s presented on the right.




STL function identification based on

(@) (b) ()
Original Code Assembly Code |dentification

vector<int> vl: Xor esi,esi vector loc1;
mov dword ptr [esp+18h].esi
mov dword ptr [esp+1Ch].esi
mov dword ptr [esp+20h],esi

vl.push_back(10)| xor ecx,ecx loc1.push(10);
push ecx

lea eax,[esp+18h]

push eax

lea eax,[esp+10h]

push eax

lea ecx,[esp+18h]

mov dword ptrlesp+3Ch],esi

push ecx

lea eax,[esp+24h]

mov dword ptr[esp+18h],0Ah

call std::vector<int,std::allocator<int> >:insert

Fig. 8. An example of STL identification. Considering the original code in
(a), (c) 1s the output of STL identification by C-Decompiler with the input of
assembly code in (b).



Experiments-1

(@)Original code

(b)Decompiled code

int APIENTRY _tWinMain{...)
{
MSG msg;
HACCEL hAccelTable;
LoadString(...);
LoadString(...);
MyRegisterClassihlnstance);
if (!Initinstance (hinstance, nCmdShow))

{
retum FALSE:

}

hAccelTable = LoadAccelerators(...));
while (GetMessage(&msg, NULL, 0, 0))
{

if ('TranslateAcceleratori...))

i
TranslateMessage(&msqg);
DispatchMessage(&msg);
}

}

return (int) msg.wParam;

]

int _tWinMaini...){
HACCEL loc1;
MSG loc2;
intloc3; /™ eax ™/
LoadStringW (...);
LoadStringW (...);
proc_1 (hinstance);
if jproc_2 (hinstance, nCmdShow) ==0) {
loc3 = 0;
}
else{
loc1 = LoadAcceleratorsW (...);
while((GetMessageW (loc2,...) 1=0)) {
if(TranslateAcceleratorW (...)== 0}
TranslateMessage (&loc2);
DispatchMessageW (&loc2);
}
1 i* end of while */
loc3 = loc2.wParam:;

}

return (loc3);

}




Experiment-2

(b)

@ (c)

DOMQOOOOO®OE ®

@ (d)

NOOLOOO® M
OOEO cJoJofolololelele

Fig. 10.

Function-call trees of the code decompiled. (a), (b), (¢) and (d)

are the function-call trees of the original code, C-Decompiler., Hex_rays and
Boomerang respectively. The nodes are functions. The green nodes represent
APIs. and the blue ones stand for UDFs.




Reduction Rate

100.00%

0.00% -

-100.00% P

W hex_ray
-200.00% -

B c-decompiler

W boomerang
-300.00% -

-400.00%

-500.00%

Fig. 14. Summary of reduction rate of the 3 decompilers. The red. green
and blue bars stand for the reduction% of C-Decompiler. Boomerang
and Hex_rays respectively. The higher bars mean the better performance.
Generally speaking. the red bar 1s the highest. which means the length of
the code decompiled by C-Decompiler 1s closest to the length of the original
code.



Variable expansion

rate

1800._00%

1600.00%
1400.00%

1200.00%

1000.00%
E00.00%

600.00%

W hex_ray

400.00%

B c-decompiler

200.00%
0.00%

W boomerang

Fig. 15.

Summary of variable expansion rate. The relationship of the colors

and the decompilers 1s the same to the Figure 15. The lower bars present
the better performance. Generally speaking. the red bar i1s the lowest. This
means the quantity of variables in the code decompiled by C-Decompiler is
the closest to the one of the original code.
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Introduction

An Online Model Checker for Distributed
Systems [with Microsoft Research Asia]

A Refined Decompiler to Generate C/C++ Code
with High Readability [WCRE 2010]

Some current research topics in our group
[call for cooperation]



1. Mixing Lockset Analysis and Symbolic Execution for
Critical Section Inference [submitted to ACM APSYS 2011]

bl if (%) if (x)
[ . lock(L) lock(L)
Problem: How to Lo
if (x) if (y)
guarantee the lock- unlock(L) wndock(L)
. ? (a) The simplest case  (b) Flow-sensitive
UnlOCk palr: if (x) foo(int y) {
lock(L) if (y)
* |dea: Use KLEE S , lock®
- (¢) Context-sensitive
[OSDI 2008] to
. Figure 1: Variations of a common pattern seen in
reaSOn the OCk IN Apache (simplified for the purpose of illustration)

large system.

Solution: combine scalable lockset analysis, which identifies
functions with ambiguous locksets, and accurate symbolic
execution, which resolves the ambiguity of these functions
locally, for better analysis results.



Primary result

ambiguous | Symbolic
functions /|execution

found

annotation

Intra-procedural
lockset analysis

No ambiguity

'y Inter-procedural
lockset analysis

ambiguous Symbo_lic
functions / |execution
found
3/ Analysis
No ambiguity result

Figure 2: The analysis procedure

safe_mutex_lock(fifo->mut)
while (fifo->full) {

if”(syncGetTerminateFlag() 1=0) {
pthread_mutex_unlock(fifo->mut);
close(hInfile);

return -1:
) } Not match
- with fifo-mut
if (queueElement == NULL) {
close(hInfile);
handle_error (EF_EXIT,-1,"pbzip2:...");
) return -1:

:;.zlif'e_mutex_unlnck(fifu—)mut) :

Figure 4: Mismatch of lock /unlock in Pbzip2

name instruction | paths | time | result
ap_buffered_log_ 10,609 6 2.9s yes
writer®
cgi_bucket_read* - - - -
child_main* - - - -
apr_file_seek 12,388 33 6.3s yes
apr_file_read™ 9,976 3 2.2s yves
apr_file_flush 10,195 7 4.3s yves
apr_file_write® - - - -
apr_file_gets™ 10,466 7 1.3s yes
procomutex_proc_ - - - -
pthread_create
proc_mutex_proc_ 10,152 5 2.3s no
pthread_cleanup
allocator_free*® 9877 2 3.3s ves
allocator_alloc 10,861 21 160s yes
apr_pool_create_ex® | - - - -
apr_pool_destroy™ - - - -
apr_pollset_poll* 10,010 3 2.8s ves
apr_pollset_add 10,102 3 2.3s yes

Table 1: Symbolic execution of Apache functions
with ambiguous locksets



2. Shepherd application privacy with virtualized special
purpose memory [OSDI 2010 Poster]

» Reduce the TCB to
include only user-
selected sensitive code ] p— ﬂ: L
and the hypervisor Ml A
assisted by taint analys

Libjoan
L ]

|
Apps c———n!

—

» Exploit memory | eemmomas ) ordinary
. ° o o — | memory | cade
virtualization to provid i
1 Joan-aware A
privacy aware memory PP

primitives.

05 Kernel




3. Complete CFG by static analysis

* Dynamic Taint <>
Analysis to get a real / IRy
execution path /"’” " DA

* Static analysis to Coma D | Cam
complete the Vi h
execution path as a | (o )/

CFG. \‘M‘

* In order to reason the L e
key path in a large (o=
system <>

The concrete black path indicates the real execution path, and
the dotted red ones are supplemented by the static analyzer.



4. Binary Symbolic Execution tool

* A dynamic symbolic execution tool, for x86
binary code. It’s based on the DynamoRIO as a
frontend

* Combine program slicing and dynamic taint
analysis

* Atool to reason the real binary code

|
|
| Symbolic tree for eax
I after mov: Symbolic tree for path condition
: formula:
|
i |
iﬁ;;;r:; —»| Solver [* Testcase :
Engine cmp  eax, 0 Il Symbolic tree for eax
DynamoRIO: ) iz short loc_8048737 ||| after sub:
Binary Runtime code || | Instruction L, !
Program | Manipulation Cache : ~
System | )
Symbolic I
Tree - . |
Builder Warning/I | m“ 1 (,]\
| — "/

Figure 2: Example of Symbolic Tree.



Case study

vaoid lock_eccample(int multi_thread) |
pthread mutex_t *forkd = creats_muteso();
pthread _mutex_t *forkB = creals_mutes();
ifimuli_thread) pthread_mutex_lock{forkA);
aat|d);
multi_thread—;

ifimuli_thread) pthread mutex unlock(forkA);

ifimuli_thread) pthread_mutex_lock{farkB);
aat|1);
mulli_thread—;

fimuli_thread) pthread_mutes:unlock{forkB);

rErm;

o ce,_ e aple
push  oop

MO oDp, S50

2un osp, 280

(=1} O T L
TR oon -HTe |, o
il o e ey
maw [eip-var_10), aax
anp  [sbp+amg 0],0

E shorl oo 8048705

\ﬁ EBP 8.0=10

EBP 8.01=40
k| Ca Tl [ S Y
B0 BEE may  dward pir [=s], 0
MO A, [n -HT e . [ oai
may  [esp], sax T e suh shp+ang O], 1
(=1} i e ad_mu fe_ioick omp  [ebp+ang 01,0
E sh o hoc_Bi048 726
EBP §. :IJE Iﬁ EBP .1 1=0
OBa04aT18
oc_BOMS 726 Mo o, e Do e
omp  |ebp+arg_ 01,0 | — 3 :
- shar ucg JILE TT M |, s T
: - cal o d_mutes_unlack
JEBP 8.1)-0%=140 |
(EBP 8.1)-0=0
w ST
oo B0 487 AT
OR)4ET2C may  chword pir fespl, 1
may oan, [ebn-ear_10] » cal o
T 50|, s T L =1 ]a] wop-+arg U], 1
[ o e ad_ e _ ook amp =op-+arg U], J
= shar iomei_B0487 58
1 —
NEBP 8- 1)=1)
EBP 8-1)=1]-0=10
QA0 740
miaw  aax, ebp+sar_10)
a)[ 50|, aax e X
[ pEraa d_muie x_uniock:
wW
oo i_B04 8758
fat

at=a



5. System wide real code analysis

e Bitblaze[ICISS 08] use a simulator QEMU to do
system-wide analysis.

* A real hardware supported analysis may be
more practical

— DynamoRIO runs in user-level
— how about in a supervisor-level tool?

Shadow IDT
manager

— just a proposal

-
Indirect branc
stays on trace?
L *Interrupt
Context switch
r Y
Dispatch -+ mterm!:t

I > trampoline [« “Interrupt

Start I I Postponed

Basic Block Trace selector i
Builder triggering
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