Crossing the Bridge between Similar Games

Jan-David Quesel, Martin Fränzle, and Werner Damm

University of Oldenburg, Department of Computing Science, Germany

CMACS Seminar CMU, Pittsburgh, PA, USA 2nd December 2011

Deutsche Forschungsgemeinschaft DFG

Quesel, Fränzle, Damm

Outline

2 Hybrid Systems and Simulation

3 Logic

4 Determining Similarity

5 Conclusion

Outline

Hybrid Systems and Simulation

3 Logic

4 Determining Similarity

5 Conclusion

Hybrid Systems

Problem

Hybrid System

- Continuous evolutions (differential equations)
- Discrete jumps (control decisions)

Velocity differences

Antoine Girard, A. Agung Julius, and George J. Pappas.

Approximate simulation relations for hybrid systems.

Discrete Event Dynamic Systems, 18(2):163–179, 2008.

Outline

2 Hybrid Systems and Simulation

3 Logic

4 Determining Similarity

5 Conclusion

Example for the Semantics

Example

Illustration of the Similarity Notion

Quesel, Fränzle, Damm

Illustration of the Similarity Notion

Quesel, Fränzle, Damm

Illustration of the Similarity Notion

Quesel, Fränzle, Damm

Velocity differences

Antoine Girard, A. Agung Julius, and George J. Pappas.

Approximate simulation relations for hybrid systems.

Discrete Event Dynamic Systems, 18(2):163–179, 2008.

Retiming

Definition (ε -Retiming)

A left-total, surjective relation $\mathfrak{r} \subseteq \mathbb{R}^+ \times \mathbb{R}^+$ is called ε -retiming iff

$$orall (t, ilde t)\in \mathfrak{r}: |t- ilde t| .$$

Definition of ε - δ -simulation

3

Definition

For two streams $\sigma_i : \mathbb{R}^+ \times \mathbb{N} \to \mathbb{R}^{\rho}$ with $i \in \{1, 2\}$, given two non-negative real numbers ε , δ , we say that σ_1 is ε - δ -simulated by stream σ_2 (denoted by $\sigma_1 \trianglelefteq^{\varepsilon,\delta} \sigma_2$) iff there is a ε -retiming \mathfrak{r} such that

 $orall (t, ilde{t}) \in \mathfrak{r} : ||c(\sigma_1)(t), c(\sigma_2)(ilde{t})|| < \delta$

where for $k \in \{1, 2\}$: $c(\sigma_k)$ is defined by $c(\sigma_k)(t) := \lim_{q \to \infty} \sigma_k(t, q)$.

Definition of ε - δ -simulation

S

Definition

A hybrid system A is ε - δ -simulated by another system B (denoted by $A \trianglelefteq^{\varepsilon,\delta} B$) iff for all input streams ι_A and for all input streams ι_B $\iota_A \trianglelefteq^{\varepsilon,\delta} \iota_B$ implies that for all output streams $\omega_A \in \Xi(\iota_A)$ of A, there is an output stream $\omega_B \in \Xi(\iota_B)$ of B such that $\omega_A \trianglelefteq^{\varepsilon,\delta} \omega_B$ holds.

Jan-David Quesel, Martin Fränzle, Werner Damm Crossing the Bridge between Similar Games *FORMATS*, LNCS 6919, 160-176. Springer, 2011.

Outline

2 Hybrid Systems and Simulation

Determining Similarity

5 Conclusion

Logic \mathcal{L} (Syntax)

Definition (Syntax of $\mathcal{L} \natural$)

The basic formulas are defined by

$$\phi ::= x \in \mathcal{I} \mid f(x_1, \ldots, x_n) \leq 0 \mid \neg \phi \mid \phi_1 \land \phi_2 \mid \phi_1 \mathbb{U}_{\mathcal{J}} \phi_2$$

where $\mathcal{I} \subseteq \mathbb{R}$, $\mathcal{J} \subseteq \mathbb{R}$, f is a Lipschitz continuous function and the x_i are variables.

Example ($\mathcal{L} \natural$ Formulas)

•
$$(x - y \le 5) \mathbb{U}_{[0,10]}(x - y > 10)$$

• $\Box (x < 3 \rightarrow \diamondsuit_{x>7}(x + y > 10))$

Definition (Valuation)

We define the valuation of a variable x at time t on a run ξ as

$$\zeta_{\xi}(t,x) := \lim_{n \to \infty} \xi(t,n)|_{x} ,$$

where $y|_x$ denotes the projection of the vector y to its component associated with the variable name x.

Logic $\mathcal{L}
arrow (Semantics)$

Definition (Semantics of $\mathcal{L} \natural$)

We define for a run ξ and some $t \in \mathbb{R}^+$ the semantics of a formula ϕ by:

- $\xi, t \models x \in \mathcal{I} \text{ iff } \zeta(t, x) \in \mathcal{I}$
- $\xi, t \models f(x_1, \ldots, x_n) \leq 0$ iff $f(\zeta(t, x_1), \ldots, \zeta(t, x_n)) \leq 0$

Logic $\mathcal{L}
arrow (Semantics)$

Definition (Semantics of $\mathcal{L} \natural$)

We define for a run ξ and some $t \in \mathbb{R}^+$ the semantics of a formula ϕ by:

- $\xi, t \models x \in \mathcal{I} \text{ iff } \zeta(t, x) \in \mathcal{I}$
- $\xi, t \models f(x_1, \ldots, x_n) \leq 0$ iff $f(\zeta(t, x_1), \ldots, \zeta(t, x_n)) \leq 0$
- $\xi, t \models \neg \phi$ iff not $\xi, t \models \phi$
- $\xi, t \models \phi \land \psi$ iff $\xi, t \models \phi$ and $\xi, t \models \psi$

Logic $\mathcal{L}
arrow$ (Semantics)

Definition (Semantics of $\mathcal{L} \natural$)

We define for a run ξ and some $t \in \mathbb{R}^+$ the semantics of a formula ϕ by:

•
$$\xi, t \models x \in \mathcal{I}$$
 iff $\zeta(t, x) \in \mathcal{I}$

• $\xi, t \models f(x_1, \ldots, x_n) \leq 0$ iff $f(\zeta(t, x_1), \ldots, \zeta(t, x_n)) \leq 0$

•
$$\xi, t \models \neg \phi$$
 iff not $\xi, t \models \phi$

•
$$\xi, t \models \phi \land \psi$$
 iff $\xi, t \models \phi$ and $\xi, t \models \psi$

•
$$\xi, t \models \phi \mathbb{U}_{\mathcal{J}} \psi$$

iff $\exists t' \in \mathcal{J} : \xi, max\{t' + t, 0\} \models \psi$ and $\forall t \leq t'' < t' + t : \xi, t'' \models \phi$

Logic \mathcal{L} (Semantics)

Definition (Semantics of \mathcal{L})

We define for a run ξ and some $t \in \mathbb{R}^+$ the semantics of a formula ϕ by:

•
$$\xi, t \models x \in \mathcal{I}$$
 iff $\zeta(t, x) \in \mathcal{I}$

•
$$\xi, t \models f(x_1, \ldots, x_n) \leq 0$$
 iff $f(\zeta(t, x_1), \ldots, \zeta(t, x_n)) \leq 0$

•
$$\xi, t \models \neg \phi$$
 iff not $\xi, t \models \phi$

•
$$\xi, t \models \phi \land \psi$$
 iff $\xi, t \models \phi$ and $\xi, t \models \psi$

•
$$\xi, t \models \phi \mathbb{U}_{\mathcal{J}} \psi$$

iff $\exists t' \in \mathcal{J} : \xi, max\{t' + t, 0\} \models \psi$ and $\forall t \leq t'' < t' + t : \xi, t'' \models \phi$

Additionally we define for a set of runs Ξ :

$$\Xi, t \models \phi$$
 iff for all runs $\xi \in \Xi$ holds $\xi, t \models \phi$

A hybrid system H satisfies a formula denoted by $H \models \phi$ iff $\Xi_H, 0 \models \phi$.

Quesel, Fränzle, Damm

Crossing the Bridge between Similar Games

2nd December 2011 12 / 22

Quesel, Fränzle, Damm

Quesel, Fränzle, Damm

Crossing the Bridge between Similar Games

2nd December 2011 12 / 22

Example

Quesel, Fränzle, Damm

Crossing the Bridge between Similar Games

2nd December 2011 12 / 22

If hybrid systems A and B satisfy $A \trianglelefteq^{\varepsilon,\delta} B$ and $B \models \phi$ then $A \models \phi_{+\varepsilon}^{+\delta}$ where $\phi_{+\varepsilon}^{+\delta} := re_{\varepsilon,\delta}(\phi)$ and $re_{\varepsilon,\delta}$ is defined by:

- $re_{\varepsilon,\delta}(x \in \mathcal{I}) := x \in \mathcal{I}'$, where $\mathcal{I}' = \{a \mid \exists b \in \mathcal{I} : a \in [b \delta, b + \delta]\}.$
- re_{ε,δ}(f(x₁,...,x_n) ≤ 0) := f(x₁,...,x_n) − δ · M ≤ 0 where M is the Lipschitz constant for f.

If hybrid systems A and B satisfy $A \trianglelefteq^{\varepsilon,\delta} B$ and $B \models \phi$ then $A \models \phi_{+\varepsilon}^{+\delta}$ where $\phi_{+\varepsilon}^{+\delta} := re_{\varepsilon,\delta}(\phi)$ and $re_{\varepsilon,\delta}$ is defined by:

- $re_{\varepsilon,\delta}(x \in \mathcal{I}) := x \in \mathcal{I}'$, where $\mathcal{I}' = \{a \mid \exists b \in \mathcal{I} : a \in [b \delta, b + \delta]\}.$
- re_{ε,δ}(f(x₁,...,x_n) ≤ 0) := f(x₁,...,x_n) − δ · M ≤ 0 where M is the Lipschitz constant for f.

•
$$re_{\varepsilon,\delta}(\neg\phi) := \neg ro_{\varepsilon,\delta}(\phi).$$

•
$$re_{\varepsilon,\delta}(\phi \wedge \psi) := re_{\varepsilon,\delta}(\phi) \wedge re_{\varepsilon,\delta}(\psi).$$

If hybrid systems A and B satisfy $A \trianglelefteq^{\varepsilon,\delta} B$ and $B \models \phi$ then $A \models \phi_{+\varepsilon}^{+\delta}$ where $\phi_{+\varepsilon}^{+\delta} := re_{\varepsilon,\delta}(\phi)$ and $re_{\varepsilon,\delta}$ is defined by:

- $re_{\varepsilon,\delta}(x \in \mathcal{I}) := x \in \mathcal{I}'$, where $\mathcal{I}' = \{a \mid \exists b \in \mathcal{I} : a \in [b \delta, b + \delta]\}.$
- re_{ε,δ}(f(x₁,...,x_n) ≤ 0) := f(x₁,...,x_n) − δ · M ≤ 0 where M is the Lipschitz constant for f.

•
$$re_{\varepsilon,\delta}(\neg \phi) := \neg ro_{\varepsilon,\delta}(\phi).$$

•
$$re_{\varepsilon,\delta}(\phi \wedge \psi) := re_{\varepsilon,\delta}(\phi) \wedge re_{\varepsilon,\delta}(\psi).$$

• $re_{\varepsilon,\delta}(\phi \mathbb{U}_{\mathcal{J}}\psi) := re_{\varepsilon,\delta}(\phi)\mathbb{U}_{\mathcal{J}'}re_{\varepsilon,\delta}(\psi)$, where $\mathcal{J}' = \{a \mid \exists b \in \mathcal{J} : a \in [b - \varepsilon, b + \varepsilon]\}.$

Quesel, Fränzle, Damm

Crossing the Bridge between Similar Games

2nd December 2011 14 / 22

The transformation function $ro_{\varepsilon,\delta}$ is given by:

- $ro_{\varepsilon,\delta}(x \in \mathcal{I}) := x \in \mathcal{I}'$, where $\mathcal{I}' = \{a \mid \forall b \in [a \delta, a + \delta] : b \in \mathcal{I}\}.$
- ro_{ε,δ}(f(x₁,...,x_n) ≤ 0) := f(x₁,...,x_n) + δ ⋅ M ≤ 0 where M is the Lipschitz constant for f.

The transformation function $ro_{\varepsilon,\delta}$ is given by:

- $ro_{\varepsilon,\delta}(x \in \mathcal{I}) := x \in \mathcal{I}'$, where $\mathcal{I}' = \{a \mid \forall b \in [a \delta, a + \delta] : b \in \mathcal{I}\}.$
- ro_{ε,δ}(f(x₁,...,x_n) ≤ 0) := f(x₁,...,x_n) + δ ⋅ M ≤ 0 where M is the Lipschitz constant for f.

•
$$ro_{\varepsilon,\delta}(\neg\phi) := \neg re_{\varepsilon,\delta}(\phi).$$

•
$$\mathsf{ro}_{arepsilon,\delta}(\phi\wedge\psi):=\mathsf{ro}_{arepsilon,\delta}(\phi)\wedge\mathsf{ro}_{arepsilon,\delta}(\psi).$$

The transformation function $ro_{\varepsilon,\delta}$ is given by:

- $ro_{\varepsilon,\delta}(x \in \mathcal{I}) := x \in \mathcal{I}'$, where $\mathcal{I}' = \{a \mid \forall b \in [a \delta, a + \delta] : b \in \mathcal{I}\}.$
- ro_{ε,δ}(f(x₁,...,x_n) ≤ 0) := f(x₁,...,x_n) + δ ⋅ M ≤ 0 where M is the Lipschitz constant for f.

•
$$ro_{\varepsilon,\delta}(\neg \phi) := \neg re_{\varepsilon,\delta}(\phi).$$

• $ro_{\varepsilon,\delta}(\phi \land \psi) := ro_{\varepsilon,\delta}(\phi) \land ro_{\varepsilon,\delta}(\psi).$
• $ro_{\varepsilon,\delta}(\phi \mathbb{U}_{\mathcal{J}}\psi) := ro_{\varepsilon,\delta}(\phi)\mathbb{U}_{\mathcal{J}'}ro_{\varepsilon,\delta}(\psi), \text{ where }$
 $\mathcal{J}' = \{a \mid \forall b \in [a - \varepsilon, a + \varepsilon] : b \in \mathcal{J}\}.$

Outline

1 Motivation

2 Hybrid Systems and Simulation

3 Logic

4 Determining Similarity

5 Conclusion

Classical Relation

Observation

Simulations can be defined in terms of games.

Observation

Controller synthesis is a game as well, i.e. the question whether the controller can win against an malicious environment.

Quesel, Fränzle, Damm

Classical Relation

Observation

Controller synthesis is a game as well, i.e. the question whether the controller can win against an malicious environment.

Example

Definition (Hybrid Game)

A hybrid game $HG = (S, E_c, U_c, I)$ consists of

- a hybrid automaton S = (U, X, L, E, F, Inv, Init),
- a set of controllable transitions $E_c \subseteq E$,
- a set of controllable variables $U_c \subseteq U$,
- and a location $I \in L$.

The environment wins, if it can force the game to enter the location *I* or if the controller does not have any more moves. The controller wins, if he can assert that the location *I* is avoided.

Velocity Controller (Game)

Quesel, Fränzle, Damm

Assumption

The systems that we compare are inputless, i.e. $U = \emptyset$.

Theorem

Given two hybrid systems A and B. If there is a winning strategy for the controller in the game (A < B, E_c , {s}, bad) then A $\leq^{\varepsilon,\delta}$ B holds.

Observation

If system B is deterministic and a retiming strategy is given, model checking can be used to show that the winning strategy exists.

Optimal Control

G

Optimal Control Strategy

For $x_A = (x_{A,1}, \ldots, x_{A,n})$ and $x_B = (x_{B,1}, \ldots, x_{B,n})$, the square of the distance evolves as follows:

$$\frac{d(||x_A, x_B||)^2}{dt} = \frac{d(\sqrt{((x_{A,1} - x_{B,1})^2 + \dots + (x_{A,n} - x_{B,n})^2)^2})}{dt}$$
$$= \frac{d((x_{A,1} - x_{B,1})^2 + \dots + (x_{A,n} - x_{B,n})^2)}{dt}$$
$$= \sum_{i=1}^n (2(x_{A,i} - x_{B,i}) \cdot (s\frac{dx_{A,i}}{dt} - (2 - s)\frac{dx_{B,i}}{dt}))$$

Let s_{min} be the *s* that minimizes this term. Now choose *s* in the following way: If $r < \varepsilon \land s_{min} > 1$ or $r > -\varepsilon \land s_{min} < 1$ choose $s = s_{min}$. Otherwise choose s = 1. The resulting strategy, for controlling *s* can then be encoded into a hybrid automaton and included into the original automaton.

Quesel, Fränzle, Damm

Outline

1 Motivation

2 Hybrid Systems and Simulation

3 Logic

Determining Similarity

5 Conclusion

Summary

We ...

- ... defined a notion of similarity for hybrid systems.
- ... showed properties that are preserved by this notion.
- ... established the classical relation between simulations and games for this notion.
- ... established some preliminary results for solving these games.

