Modeling and Verification of Real-time/Hybrid/Cyber-Physical Systems via Concurrent Co-inductive Constraint Logic Programming

Neda Saeedloei

Department of Computer Science University of Texas at Dallas

May 24th 2011

イロト イポト イヨト イヨト

Neda Saeedloei

Outline

- Incorporation of Real Time in Computation
 - Related Work
 - Temporal Logics
 - BTCTI

- Contribution
 - Co-inductive CLP(R) Framework for Verifying Real-time Systems

(日)

.≣⇒

- Timed Grammars Practical Parser
- Timed π -calculus
 - Operational Semantics in LP
- Foundations of Cyber-Physical Systems (CPS)

3

Summary

Incorporation of Real Time in Computation Related Work

イロト イポト イヨト イヨト

Outline

- Incorporation of Real Time in Computation
- Related Work
 - Temporal Logics
 - RTCTL
- 2 Background
 - Contribution
 - Co-inductive CLP(R) Framework for Verifying Real-time Systems
 - Timed Grammars
 - Practical Parser
 - Timed π-calculus
 - Operational Semantics in LP
 - Foundations of Cyber-Physical Systems (CPS)
 - Summary

Incorporation of Real Time in Computation Related Work

ヘロト ヘ戸ト ヘヨト ヘヨト

Incorporation of Real Time in Computation

Complex real-time systems are difficult to model and verify because they involve:

- Continuous time
- Perpetual execution
- Concurrency

Goal

- Developing techniques for modeling continuous time in real-time systems
 - Co-inductive logic programming
 - Constraint logic programming over reals (CLP(R))

Incorporation of Real Time in Computation Related Work

ヘロト ヘアト ヘヨト ヘ

3

Outline

- Incorporation of Real Time in Computation
- Related Work
 - Temporal Logics
 - RTCTL
- 2 Backgroun
 - Contribution
 - Co-inductive CLP(R) Framework for Verifying Real-time Systems
 - Timed Grammars
 - Practical Parser
 - Timed π-calculus
 - Operational Semantics in LP
 - Foundations of Cyber-Physical Systems (CPS)
 - Summary

Incorporation of Real Time in Computation Related Work

ヘロット (雪) (山) (

Temporal Logics

- Formalisms for describing sequences of transitions between states in a reactive system
- Can be used for verifying discrete real-time systems
 - Time is not mentioned explicitly
- A powerful example of temporal logics: CTL*
- Properties like *eventually* or *never* are specified using special temporal operators
- Event *p* will happen within at most *n* time units is not simple to express

Cannot be used in a natural and efficient way to verify many types of interesting properties of real-time systems.

Incorporation of Real Time in Computation Related Work

くロト (過) (目) (日)

æ

RTCTL

- Obtained by introducing bounds in the CTL temporal operators
- Can be used for verification of discrete real time systems
- Simple and effective way to allow the verification of time bounded properties
- Quantitative analysis on discrete-time models can be performed
 - Computing minimum/maximum delays

Incorporation of Real Time in Computation Related Work

イロト イポト イヨト イヨト

Continuous Real-Time

- Time is a continuous quantity
- By discretizing time certain aspects of real-time systems may not be modeled faithfully or at least in a natural fashion
- We model time as a continuous quantity rather than discretizing it
 - Constraint logic programming over reals

ω -Automata

- Nondeterministic finite state automata
- Acceptance condition modified suitably so as to handle infinite input words
- ω-automata accept ω-languages, i.e., a language consisting of infinite words
- A well-known type of ω -automata
 - Büchi automata
 - Some state from the set of final states must be traversed infinitely often

ヘロン 人間 とくほ とくほ とう

э.

Timed Languages

- Behavior of a real-time system can be modeled by a timed word over the alphabet of events
- A timed word over an alphabet ∑ is an infinite sequence of pairs of the form (σ₁, τ₁)(σ₂, τ₂)... where
 - σ_i is a symbol from the alphabet \sum
 - τ_i is a time-stamp associated with σ_i , such that $\tau_i \in R$ with $\tau_i > 0$ satisfying
 - Monotonicity: τ increases strictly monotonically, that is, $\tau_i < \tau_{i+1}$ for all $i \ge 1$
 - Progress: For every $t \in R$ there is some $i \ge 1$ such that $\tau_i > t$

・ロン・西方・ ・ ヨン・ ヨン・

Timed Automata

- A timed Büchi automaton is a tuple < Σ, S, S₀, C, E, F > where
 - Σ is a finite alphabet
 - S is a finite set of states
 - $S_0 \subseteq S$ is a set of start states
 - C is a finite set of clocks
 - $E \subseteq S \times S \times \Sigma \times 2^C \times \Phi(C)$ gives the set of transitions

イロト イ押ト イヨト イヨトー

æ

• F is a set of final states

Timed Automata

Example

₹ 990

Timed Automata

Neda Saeedloei

Timed Automata are not Enough

- Using timed automata is a popular approach to designing, specifying and verifying real-time systems
- Equivalent to timed regular ω -languages
- Timed automata are unsuitable for many complex (and useful) applications

ヘロン 人間 とくほ とくほ とう

 Timed automata are extended to pushdown timed automata

Pushdown Timed Automata (PTA)

- PTA are obtained from timed automata by adding
 - Stack
 - Stack alphabet
 - Stack operations, associated with each transition

< 口 > < 同 > < 臣 > < 臣 >

- Acceptance conditions for an infinite string for PTA
 - The stack must be empty in every final state

Pushdown Timed Automata

イロト 不得 とくほ とくほとう

ъ

• accepted timed words: $((a, t_a)^n (b, t_b)^n)^{\omega}$

Motivation	Co-inductive CLP(R) Framework for Verifying Real-time Systems
ackground	Timed Grammars
ontribution	Timed π -calculus
Summary	Foundations of Cyber-Physical Systems (CPS)

ヘロト 人間 ト ヘヨト ヘヨト

Outline

- Incorporation of Real Time in Computation
- Related Work
 - Temporal Logics
 - RTCTL
- 2
 - Background
 - Contribution
 - Co-inductive CLP(R) Framework for Verifying Real-time Systems
 - Timed Grammars
 - Practical Parser
 - Timed π-calculus
 - Operational Semantics in LP
 - Foundations of Cyber-Physical Systems (CPS)
 - Summary

Co-inductive CLP(R) Framework for Verifying Real-time Systems Timed Grammars Timed π -calculus Foundations of Cyber-Physical Systems (CPS)

イロト イポト イヨト イヨト

Modeling PTA with Co-inductive CLP(R)

- The underlying language is context free, not regular
- Accepted strings are infinite
- Clock constraints model real-time requirements

Framework

Logic programming extended with *co-induction* and *constraints over reals* is used to model PTA

 Motivation
 Co-inductive CLP(R) Framework for Verifying Real-time Systems

 Background
 Timed Grammars

 Contribution
 Timed m-calculus

 Summary
 Foundations of Cyber-Physical Systems (CPS)

ヘロト ヘアト ヘヨト ヘ

Circularity in Computer Science

- Circular phenomena are quite common in Computer Science:
 - Circular linked lists
 - Graphs (with cycles)
 - Controllers (run forever)
 - Bisimilarity
 - Interactive systems
 - Automata over infinite strings/Kripke structures
 - Perpetual processes
- Numerous other examples can be found elsewhere (Barwise and Moss 1996)

Motivation	Co-inductive CLP(R) Framework for Verifying Real-time Systems
ackground	
ontribution	
Summary	Foundations of Cyber-Physical Systems (CPS)

Coinduction

- Infinite structures
 - Some of them can be represented by circular structures
 - Example: *X* = [1, 2, 1, 2, ...] can be represented by *X* = [1, 2 | *X*]
- Infinite Proofs
 - Exhibit certain regularity such that coinduction can capture them
- Focus of our group: inclusion of coinductive reasoning techniques in LP and its applications

 Motivation
 Co-inductive CLP(R) Framework for Verifying Real-time Systems

 Background
 Timed Grammars

 Contribution
 Timed -calculus

 Summary
 Foundations of Cyber-Physical Systems (CPS)

◆□ > ◆□ > ◆豆 > ◆豆 > -

Induction vs Coinduction

- Induction is a mathematical technique for finitely reasoning about an infinite (countable) no. of things.
- Examples of inductive structures:
 - Naturals: 0, 1, 2, ...
 - Lists: [], [X], [X, X], [X, X, X], ...
- Three components of an inductive definition: (1) initiality,
 (2) iteration, (3) minimality
 - For example, the set of lists is specified as follows:

An empty list [], is a list (initiality) ...(i)

[H | T] is a list if T is a list and H is an element (**iteration**) ...(ii)

Minimal set that satisfies (i) and (ii) (minimality)

Co-inductive CLP(R) Framework for Verifying Real-time Systems Timed Grammars Timed π -calculus Foundations of Cyber-Physical Systems (CPS)

ヘロト ヘアト ヘビト ヘ

- ⊒ →

Induction vs Coinduction

- Coinduction is a mathematical technique for (finitely) reasoning about infinite things.
- Two components of a coinductive definition: (1) iteration,
 (2) maximality
 - For example, for a list:
 - $[H \mid T]$ is a list if T is a list and H is an element (**iteration**). Maximal set that satisfies the specification of a list.
 - This coinductive definition specifies all lists of infinite size.

Co-inductive CLP(R) Framework for Verifying Real-time Systems Timed Grammars Timed π -calculus Foundations of Cyber-Physical Systems (CPS)

<ロト <回 > < 注 > < 注 > 、

Mathematical Foundations

Definition	Proof	Mapping
Least fixed point	Induction	Recursion
Greatest fixed point	Coinduction	Corecursion

 Motivation
 Co-inductive CLP(R) Framework for Verifying Real-time Systems

 Background
 Timed Grammars

 Contribution
 Timed -calculus

 Summary
 Foundations of Cyber-Physical Systems (CPS)

イロト イポト イヨト イヨト

3

Operational Semantics

p :- p. The query |?- p. to succeed.

p([1 | T]) := p(T).The query |?= p(X) to succeed with X= [1 | X].

Motivation	Co-inductive CLP(R) Framework for Verifying Real-time Systems
ackground	
ontribution	
Summary	Foundations of Cyber-Physical Systems (CPS)

Operational Semantics

- Nondeterministic state transition system
- States are pairs of
 - A finite list of syntactic atoms [resolvent] (as in Prolog)
 - A set of syntactic term equations of the form x = f(x) or x = t
- Transition rules
 - Definite clause rule
 - "Coinductive hypothesis rule"
 If a coinductive goal G is called, and G unifies with a call made earlier then G succeeds.

Motivation	Co-inductive CLP(R) Framework for Verifying Real-time Systems
ackground	
ontribution	
Summary	Foundations of Cyber-Physical Systems (CPS)

イロト イポト イヨト イヨト 一臣

Coinduction

Example: perpetual binary streams

bit(0). bit(1). bitstream([H|T]):-bit(H), bitstream(T). |?-X = [0, 1, 1, 0 | X], bitstream(X).

Traditional logic program will not terminate.

```
Motivation
Background
Contribution
Summary
```

Co-inductive CLP(R) Framework for Verifying Real-time Systems Timed Grammars Timed π -calculus Foundations of Cyber-Physical Systems (CPS)

Example: perpetual binary streams in Coinductive LP

```
:- coinductive stream/1.
stream([H|T]) :- num(H), stream(T).
num(0).
num(s(N)) := num(N).
|?- stream( [ 0, s( 0 ), s( s ( 0 ) ) | T ] ).
MEMO: stream([0, s(0), s(s(0)) | T])
MEMO: stream([s(0), s(s(0)) | T])
MEMO: stream([s(s(0)) | T])
     stream(T)
Answers:
T = [0, s(0), s(s(0)) | T]
T = [s(0), s(s(0)), s(0), s(s(0)) | T]
T = [s(s(0)) | T]
T = [0, s(0), s(s(0)) | X] (where X is any
                           rational list of numbers.
```

Co-inductive CLP(R) Framework for Verifying Real-time Systems Timed Grammars Timed π -calculus

Example of Modeling PTA with Co-inductive CLP(R)

trans(s0, (a, T), s1, Ci, Co, [], [1]):-{Co=T}.
trans(s1, (a, T), s1, Ci, Co, P, [1|P]):-{Co=Ci}.
trans(s1, (b, T), s2, Ci, Co, [1|P], P):-{T-Ci<5, Co=Ci}
trans(s2, (b, T), s2, Ci, Co, [1|P], P):-{Co=Ci}.
trans(s2, (b, T), s0, Ci, Co, [1|P], P):-{T-Ci<20,Co=Ci}</pre>

Co-inductive CLP(R) Framework for Verifying Real-time Systems Timed Grammars Timed π -calculus Foundations of Cvber-Physical Systems (CPS)

Example of Modeling PTA with Co-inductive CLP(R)

- Input
 - Can be fully specified, e.g., [a,a,a,b,b,b, ...]
 - Can be partially specified, e.g., [a,X,a,Y,b,b, ...]
 - Can be unspecified, e.g., X
- Output
 - Concrete legal behavior of the system
 - Sequences of time-stamped events
 - Time-stamps are not concrete, but related by set of constraints
 - More general than what you normally expect

Co-inductive CLP(R) Framework for Verifying Real-time Systems Timed Grammars Timed π -calculus Foundations of Cyber-Physical Systems (CPS)

・ロン・西方・ ・ ヨン・ ヨン・

Example of Modeling PTA with Co-inductive CLP(R)

```
[(a,0), (a,2), (b,4), (b,16),...]
    % is legal
    % (will unify with the output of the program)
[(a,0), (a,2), (b,6), (b,16),...]
    % is not legal
[(a,0), (a,2), (b,4), (b,8), (b,16),...]
```

% is not legal

Co-inductive CLP(R) Framework for Verifying Real-time Systems Timed Grammars Timed π -calculus Foundations of Cyber-Physical Systems (CPS)

イロト イポト イヨト イヨト

Application: The Generalized Railroad Crossing (GRC) Problem

- Several tracks and an unspecified number of trains traveling in both directions
- A gate at the railroad crossing, operated (by a controller), in a way that guarantees
 - Safety: The gate must be down while one or more trains are in the crossing
 - Utility: The gate goes down only if a train is approaching

Motivation	Co-inductive CLP(R) Framework for Verifying Real-time Systems
ackground	
ontribution	
Summary	Foundations of Cyber-Physical Systems (CPS)

GRC

 Motivation
 Co-inductive CLP(R) Framework for Verifying Real-time Systems

 Background
 Timed Grammars

 Contribution
 Timed -calculus

 Summary
 Foundations of Cyber-Physical Systems (CPS)

ヘロト ヘアト ヘヨト ヘ

Verifying Properties

Given a property Q to be verified

- Specify its negation as a logic program, notQ
- If the query notQ fails w.r.t. the logic program that models the system, the property Q holds.
- If the query notQ succeeds, the answer provides a counterexample to why the property Q does not hold.

Co-inductive CLP(R) Framework for Verifying Real-time Systems Timed Grammars Timed π -calculus Foundations of Cyber-Physical Systems (CPS)

Verifying Safety and Utility

Notivation	Co-inductive CLP(R) Framework for Verifying Real-time Systems
ckground	
ontribution	
Summary	Foundations of Cyber-Physical Systems (CPS)

イロト イポト イヨト イヨト

■ のへの

Verification Time

Table: safety and utility verification times

Number of tracks	safety	utility
1	0.006	0.006
2	0.065	0.072
3	0.6	0.587
4	5.666	5.634
5	60.013	60.430
6	426.300	453.544

Motivation	Co-inductive CLP(R) Framework for Verifying Real-time Systems
ackground	Timed Grammars
ontribution	
Summary	Foundations of Cyber-Physical Systems (CPS)

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Outline

- Incorporation of Real Time in Computation
- Related Work
 - Temporal Logics
 - RTCTL
- 2
- Background
- Contribution
 - Co-inductive CLP(R) Framework for Verifying Real-time Systems
- Timed Grammars
 Practical Parser
- Timed π-calculus
 - Operational Semantics in LP
- Foundations of Cyber-Physical Systems (CPS)
- Summary
| Motivation | Co-inductive CLP(R) Framework for Verifying Real-time Systems |
|-------------|---|
| ackground | Timed Grammars |
| ontribution | |
| Summary | Foundations of Cyber-Physical Systems (CPS) |

ъ

Motivation

- For real-time systems timed regular languages may not be powerful enough
- Timed context-free languages might be needed

Motivation	Co-inductive CLP(R) Framework for Verifying Real-time Systems
ackground	Timed Grammars
ontribution	
Summary	Foundations of Cyber-Physical Systems (CPS)

ヘロト ヘアト ヘヨト ヘ

Outline

We propose timed grammars

- Simple and natural method for describing timed languages
- Describe words that have real-time constraints placed on the times at which the word's symbols appear
- Equivalence of PTA and ω -TCFGs
- Modeling ω-TCFGs with
 - Definite clause grammars (DCGs)
 - Constraints over reals (CLP(R))
 - Co-induction

Complex real-time systems can be directly (and naturally) modeled as co-inductive CLP(R) programs

Motivation Background Contribution Summary Co-inductive CLP(R) Framework for Verifying Real-time Systems **Timed Grammars** Timed π -calculus Foundations of Cyber-Physical Systems (CPS)

R

イロト イ団ト イヨト イヨト

Timed Context-Free Grammars Examples

Motivation Background Contribution Summary Co-inductive CLP(R) Framework for Verifying Real-time Systems **Timed Grammars** Timed π -calculus Foundations of Cyber-Physical Systems (CPS)

Timed Context-Free ω -Grammars (ω -TCFGs)

 Timed Context-free grammars with co-recursive grammar rules (i.e., recursive rules that need not have base cases)

Motivation Background Contribution Summarv Co-inductive CLP(R) Framework for Verifying Real-time Systems Timed Grammars Timed π-calculus Foundations of Cyber-Physical Systems (CPS)

イロト イポト イヨト イヨト

Modeling Timed Context-Free ω -Grammars with Co-inductive CLP(R)

Incorporation of co-induction and CLP(R) into DCGs allows modeling of ω -TCFGs, this model serves as a practical parser for the ω -TCFL recognized by the ω -TCFG

- General method of Converting ω-TCFGs to co-inductive CLP(R) programs
 - The generated LP models the ω -TCFG as a collection of DCG rules
 - Each rule is extended with clock expressions

Motivation	Co-inductive CLP(R) Framework for Verifying Real-time Systems
ackground	Timed Grammars
ontribution	
Summary	Foundations of Cyber-Physical Systems (CPS)

Example: Parser

 $s(T, Ci, Co) \longrightarrow r(T, Ci, Co1), \{T2 > T\}, s1(T2, Co1, Co).$

t(T, Ci, Co)--> [(a, T)], {T2 > T}, t(T2, Ci, Co1), {T3 > T2}, [(b, T3)], {Co = Co1}.

t(T, Ci, Co)--> [(a, T)], {T2 > T}, [(b, T2)], {T2 - Ci < 5, Co = Ci}. Motivation Background Contribution Summarv Co-inductive CLP(R) Framework for Verifying Real-time Systems **Timed Grammars** Timed π -calculus Foundations of Cyber-Physical Systems (CPS)

イロト イポト イヨト イヨト

Timed Context-Free ω -Grammars Modeled as Co-inductive CLP(R) Programs

- Check whether a particular timed string will be accepted or not
- Systematically generate all possible timed strings that can be accepted
- Verify system properties by posing appropriate queries

 Motivation
 Co-inductive CLP(R) Framework for Verifying Real-time Systems

 Background
 Timed Grammars

 Contribution
 Timed -calculus

 Summary
 Foundations of Cyber-Physical Systems (CPS)

Timed Context-Free ω -Grammar Example

 $C \rightarrow approach\{c := 0\}$ L exit $\{c := 0\}$ raise $\{c < 1\}$ C

- $C \rightarrow approach\{c := 0\} \ L \ N \ exit\{c := 0\} \ raise\{c < 1\} \ C$
- $L \rightarrow lower\{c < 1\}$
- $L \rightarrow approach \ lower\{c < 1\} \ exit$
- $N \rightarrow approach$ exit
- $N \rightarrow approach exit N$
- $N \rightarrow exit$ approach
- $N \rightarrow exit$ approach N

 Motivation
 Co-inductive CLP(R) Framework for Verifying Real-time Systems

 Background
 Timed Grammars

 Contribution
 Timed -calculus

 Summary
 Foundations of Cyber-Physical Systems (CPS)

(日) (四) (日) (日) (日)

æ

Equivalence of PTA and ω -CFGs

Motivation	Co-inductive CLP(R) Framework for Verifying Real-time Systems
ackground	
ontribution	Timed π -calculus
Summary	Foundations of Cyber-Physical Systems (CPS)

ヘロト ヘ戸ト ヘヨト ヘヨト

Outline

- Incorporation of Real Time in Computation
- Related Work
 - Temporal Logics
 - RTCTL
- 2
- Background
- Contribution
- Co-inductive CLP(R) Framework for Verifying Real-time Systems
- Timed Grammars
 - Practical Parser
- Timed π-calculus
 - Operational Semantics in LP
- Foundations of Cyber-Physical Systems (CPS)
- Summary

<i>I</i> otivation	Co-inductive CLP(R) Framework for Verifying Real-time Systems
ckground	
ntribution	Timed π -calculus
Summary	Foundations of Cyber-Physical Systems (CPS)

Motivation

- π-calculus was introduced with the aim of modeling concurrent/mobile processes
- It is not equipped to model concurrent real-time systems and reason about their behavior
 - Several extensions of π -calculus with time have been proposed
 - All these approaches discretize time rather than represent it faithfully as a continuous quantity

Motivation	Co-inductive CLP(R) Framework for Verifying Real-time Systems
ackground	
ontribution	Timed π -calculus
Summary	Foundations of Cyber-Physical Systems (CPS)

ヘロン 人間 とくほ とくほ とう

Outline

- Extending π -calculus with real time by adding clocks
 - Powerful formalism for describing concurrent real-time systems and reasoning about their behaviors
- Developing operational semantics for the proposed timed π -calculus
- Developing the notion of timed bisimilarity and its properties (not presented here)
 - e.g., expansion theorem for real-time, concurrent, mobile processes
- Implementation based on co-induction, coroutining, and constraint logic programming over reals of operational semantics
- Application Example

lotivation	Co-inductive CLP(R) Framework for Verifying Real-time Systems
ckground	
ntribution	Timed π -calculus
Summary	Foundations of Cyber-Physical Systems (CPS)

< □ > < 同 > < 三 > <

Design Decisions

- Associating time-stamps to all messages
- Adding clocks
- Adding clock operations
 - Clock resets
 - Clock constraints
- Representing messages by triples of the form $\langle m, t_m, c \rangle$

Motivation	Co-inductive CLP(R) Framework for Verifying Real-time Systems
ackground	Timed Grammars
ontribution	Timed π -calculus
Summary	Foundations of Cyber-Physical Systems (CPS)

Syntax

$$C ::= C_c C_r$$

$$C_c ::= (Clock \sim x)C_c \mid (Clock - t \sim x)C_c \mid \epsilon$$

$$C_r ::= (Clock := 0)C_r \mid \epsilon$$

$$\sim ::= < \mid > \mid \leq \mid \geq \mid =$$

 $M ::= C\bar{x}\langle y, t_y, c \rangle P \mid Cx(\langle y, t_y, c \rangle) P \mid C\tau P \mid 0 \mid M + M'$ $P ::= M \mid P \mid P' \mid P \mid \nu z P \mid [x = y] P$

Motivation	Co-inductive CLP(R) Framework for Verifying Real-time Systems
ackground	
ontribution	Timed π -calculus
Summary	Foundations of Cyber-Physical Systems (CPS)

・ロト ・四ト ・ヨト ・ヨト

Examples

Example 1

The expression $x(\langle m, t_m, c \rangle).(c - t_m \ge 5)\bar{y}\langle n, t_n, c \rangle$ represents a process that receives a message *m* on channel *x* and sends a message *n* on channel *y* with the delay of at least 5 units of time.

Example 2

Consider a system which is composed of two processes *P* and *Q* that run in parallel. Moreover, there is a clock *c* that can be accessed by both *P* and *Q* which should be reset before the parallel execution begins. The timed π -calculus expression presenting this scenario is $(c := 0)\tau \cdot (P \mid Q)$.

Motivation	Co-inductive CLP(R) Framework for Verifying Real-time Systems
ackground	
ontribution	Timed π -calculus
Summary	Foundations of Cyber-Physical Systems (CPS)

Actions

 $\alpha_t ::= \mathbf{C}_r, \bar{\mathbf{x}} \langle \mathbf{y}, \mathbf{t}_{\mathbf{y}}, \mathbf{c} \rangle \mid \mathbf{C}_r, \mathbf{x}(\langle \mathbf{y}, \mathbf{t}_{\mathbf{y}}, \mathbf{c} \rangle) \mid \mathbf{C}_r, \bar{\mathbf{x}}(\langle \mathbf{y}, \mathbf{t}_{\mathbf{y}}, \mathbf{c} \rangle) \mid \mathbf{C}_r, \langle \tau, t \rangle$

- $P \xrightarrow{C_r, \bar{x}\langle y, t_y, c \rangle} Q : P$ sends $\langle y, t_y, c \rangle$ via x, and evolves to Q.
- $P \xrightarrow{C_r, x(\langle y, t_y, c \rangle)} Q : P$ receives any message $\langle w, t_w, d \rangle$ and becomes $Q\{w/y, t_w/t_y, d/c\}$.
- $P \xrightarrow{C_r, \bar{x}(\langle y, t_y, c \rangle)} Q : P$ emits a private name along with its time-stamp and a clock on port *x*, and becomes *Q*.
- $P \xrightarrow{C_r, \langle \tau, t \rangle} Q : P$ takes an internal action at time *t*.
- The set of clocks that should be reset in each transition is specified by *C*_r.

 Motivation
 Co-inductive CLP(R) Framework for Verifying Real-time Systems

 Background
 Timed Grammars

 Contribution
 Timed -calculus

 Summary
 Foundations of Cyber-Physical Systems (CPS)

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

3

Timed π -calculus Operational Semantics

$TAU \xrightarrow{[C_c]} C_c_{\Gamma_r} P \xrightarrow{C_c(\tau,f)} P$
$OUT \xrightarrow{[C_c]} \frac{[C_c]}{C_c C_r \bar{x}(y, b_r, c) \cdot P} \xrightarrow{C_r, \bar{x}(y, b_r, c)} P$
$INP \frac{[C_c[d/c]]}{C_cC_r x((z,t_z,c)), P} \xrightarrow{[C_c[d/c]] x((y,t_z,d)]} P(y/z,t_y/t_z,d/c)} y \notin ln(\nu zP), d \notin c(P)$
$MAT \xrightarrow{P \xrightarrow{\alpha_1} P'} x = x P \xrightarrow{\alpha_2} P' \qquad SUM \xrightarrow{P \xrightarrow{\alpha_2} P'} P + Q \xrightarrow{\alpha_2} P'$
$PAR \; \frac{P \stackrel{\alpha_{ij}}{\longrightarrow} P'}{P \mid Q \stackrel{\alpha_{ij}}{\longrightarrow} P' \mid Q} \; \frac{bn(\alpha_t) \cap fn(Q) = \emptyset}{P \mid Q \stackrel{\alpha_{ij}}{\longrightarrow} P' \mid Q}$
$COM \xrightarrow{P \xrightarrow{C_r, X(y, L_r)}} P \mid Q \xrightarrow{C_r, X(y, L_r)} Q'$
$CLOSE \xrightarrow{P \xrightarrow{C_r, \vec{x}((z,t,c))} P' \ Q \xrightarrow{C_r, x((z,t,c))} Q'} z \notin \mathit{fn}(Q)$
$RES \frac{P \stackrel{\alpha_1}{\longrightarrow} P'}{\nu Z P \stackrel{\alpha_2}{\longrightarrow} \nu Z P'} Z \notin n(\alpha_t)$
$OPEN \frac{p \ \underline{C}, \overline{x}(y, t_p, c)}{\nu y P \ \underline{C}, \overline{x}(y, t_p, c))} \frac{p'}{p'} \ y \neq x$
$REP-ACT \frac{P \xrightarrow{\alpha_0} P'}{ P \xrightarrow{\alpha_0} P' P}$
$\begin{array}{c} REP\text{-}COM \xrightarrow{P \xrightarrow{C_r X(y,t,c)}} P' \xrightarrow{P' \xrightarrow{C_r X(y,t,c)}} P'' \\ & \qquad \qquad$
$\begin{array}{c} REP\text{-}CLOSE \xrightarrow{P \xrightarrow{C_r, \mathcal{X}(z, t, c)}} P' P \xrightarrow{C_r, \mathcal{X}(z, t, c)} P'' \\ \hline P \xrightarrow{C_r, \mathcal{C}_r, \langle \tau, t \rangle} (\nu z(P' \mid P'')) \mid P \\ \end{array} \\ z \notin fn(P) \\ \swarrow \\ \end{array}$

Neda Saeedloei

 Motivation
 Co-inductive CLP(R) Framework for Verifying Real-time Systems

 Background
 Timed Grammars

 Contribution
 Timed π-calculus

 Summary
 Foundations of Cyber-Physical Systems (CPS)

Timed π -calculus Operational Semantics

$$\begin{aligned} \mathsf{TAU} & \frac{[C_c]}{C_c C_r \tau. P \xrightarrow{C_r, \langle \tau, t \rangle} P} \\ \mathsf{OUT} & \frac{[C_c]}{C_c C_r \bar{x} \langle y, t_y, c \rangle. P \xrightarrow{C_r, \bar{x} \langle y, t_y, c \rangle} P} \\ \mathsf{INP} & \frac{[C_c \{d/c\}]}{C_c C_r x (\langle z, t_z, c \rangle). P \xrightarrow{C_r \{d/c\}, x(\langle y, t_y, d \rangle)} P\{y/z, t_y/t_z, d/c\}} y \notin fn(\nu z P), d \notin c(P) \\ \mathsf{MAT} & \frac{P \xrightarrow{\alpha_t} P'}{[x = x] P \xrightarrow{\alpha_t} P'} \quad \mathsf{SUM} \frac{P \xrightarrow{\alpha_t} P'}{P + Q \xrightarrow{\alpha_t} P'} \\ \mathsf{PAR} & \frac{P \xrightarrow{\alpha_t} P'}{P \mid Q \xrightarrow{\alpha_t} P' \mid Q} bn(\alpha_t) \cap fn(Q) = \emptyset \end{aligned}$$

Table: Timed π -calculus Transition Rules for TAU, OUT, INP, MAT, SUM, PAR

Neda Saeedloei

Motivation Background Contribution Summary Co-inductive CLP(R) Framework for Verifying Real-time Systems Timed Grammars Timed π -calculus Foundations of Outper-Physical Systems (CPS)

イロト イポト イヨト イヨト

æ

Operational Semantics in Logic Programming

Syntax of the Language in LP

$$\begin{aligned} \mathcal{A} &::= out((\mathcal{C}, \mathcal{N}, \mathcal{M}), \mathcal{P}) \mid in((\mathcal{C}, \mathcal{N}, \mathcal{M}), \mathcal{P}) \mid tau((\mathcal{C}, \mathcal{T}), \mathcal{P}) \mid \\ zero \mid choice(\mathcal{P}, \mathcal{P}) \mid par(\mathcal{P}, \mathcal{P}) \mid rep(\mathcal{P}) \mid nu(\mathcal{N}, \mathcal{P}) \mid \\ match(\mathcal{N} = \mathcal{N}, \mathcal{P}) \\ \mathcal{C} &::= reset(\mathcal{CN}) \mid const(\mathcal{CN} \sim \mathcal{R}) \mid const(\mathcal{CN} - \mathcal{T} \sim \mathcal{R}) \end{aligned}$$

 $\mathcal{D} ::= \operatorname{proc}(\mathcal{PN}, \mathcal{P})$ $\mathcal{M} ::= (\mathcal{N}, \mathcal{T}, \mathcal{CN})$

Motivation Background Contribution Summary Co-inductive CLP(R) Framework for Verifying Real-time Systems Timed Grammars Timed π -calculus Foundations of Cyber-Physical Systems (CPS)

▲口 → ▲圖 → ▲ 臣 → ▲ 臣 →

ъ

 Motivation
 Co-inductive CLP(R) Framework for Verifying Real-time Systems

 Background
 Timed Grammars

 Contribution
 Timed m-calculus

 Summary
 Foundations of Cyber-Physical Systems (CPS)

```
\begin{array}{l} \mbox{train} \equiv \mbox{ v } pc \ \overline{ch1} < pc, t_p, t >. \\ (t := 0) \ \overline{pc} < approach, t_a, t >. \\ (t > 2) \ (\tau, t_i). \\ (\tau, t_o). \\ (t < 5) \ \overline{pc} < exit, t_e, t >) \end{array}
```

```
proc(train,
    nu(out(ch1, (pc,tp,t)),
        in(reset(p), pc, (approach,ta,t)),
        tau((t>2)(t<3), ti),
        tau(to),
        out((t<5), pc, (exit,te,t))))</pre>
```

 Motivation
 Co-inductive CLP(R) Framework for Verifying Real-time Systems

 Background
 Timed Grammars

 Contribution
 Timed -r-calculus

 Summary
 Foundations of Cyber-Physical Systems (CPS)

Example: 1-Track GRC

controller = $ch1(<pc, t, c>).pc(<x_1, t_1, c>).$ (c = 1)(c := 0) ch2<lower, $t_1, c>$. $pc(<x_2, t_2, c>).(c-t_2 < 1)(c := 0) ch2<$ raise, $t_1, c>$

```
proc(controller,
    in(ch1, (pc,tp,c)),
    in(pc, (x1,t1,c)),
    out((c=1)(c:=0), ch2, (lower,t1,c)),
    in(pc, (x2,t2,c)),
    out((c<1)(c:=0), ch2, (raise,tr,c)))</pre>
```

 Motivation
 Co-inductive CLP(R) Framework for Verifying Real-time System

 Background
 Timed Grammars

 Contribution
 Timed π -calculus

 Summary
 Foundations of Cyber-Physical Systems (CPS)

<ロト <回 > < 注 > < 注 > 、

3

gate
$$\equiv$$
 ch2(x, g>).
([x = lower](g < 1) (τ , t_d) +
[x = raise](g > 1)(g < 2) (τ , t_u))

 Motivation
 Co-inductive CLP(R) Framework for Verifying Real-time Systems

 Background
 Timed Grammars

 Contribution
 Timed m-calculus

 Summary
 Foundations of Cyber-Physical Systems (CPS)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 Motivation
 Co-inductive CLP(R) Framework for Verifying Real-time Systems

 Background
 Timed Grammars

 Contribution
 Timed m-calculus

 Summary
 Foundations of Cyber-Physical Systems (CPS)

```
controller([(H, W) | Xs], Y, Sc) :-
   freeze(Xs, controller(Xs, Ys, Sc3)),
   (H = approach, M = lower, \{W2 > W, W2 - W = 1\};
   H = exit, M = raise, {W2 > W, W2 - W < 1}),
   controller_trans(Sc, H, Sc2),
   controller_trans(Sc2, M, Sc3),
   Y = [(M, W2) | Ys].
qate([(H, W) | Xs], Sq) :-
   freeze(Xs, gate(Xs, Sg3)),
   (H = lower, M = down, \{W2 > W, W2 - W < 1\};
   H = raise, M = up, \{W2 > W, W2 - W > 1, W2 - W < 2\}),
   gate_trans(Sq, H, Sq2), gate_trans(Sq2, M, Sq3).
main(A, B, C) :-
   freeze(A, (freeze(C, gate(C, s0)),
   controller(B, C, s0))), train(A, B, 0, 0, s0).
                                             ▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q ()
```

 Motivation
 Co-inductive CLP(R) Framework for Verifying Real-time Systems

 Background
 Timed Grammars

 Contribution
 Timed ar-calculus

 Summary
 Foundations of Cyber-Physical Systems (CPS)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Internal Transitions of GRC Components

```
train-trans(s0, approach, s1).
train-trans(s1, in, s2).
train-trans(s2, out, s3).
train-trans(s3, exit, s0).
```

```
c-trans(s0, approach, s1).
c-trans(s1, lower, s2).
c-trans(s2, exit, s3).
c-trans(s3, raise, s0).
```

```
g-trans(s0, lower, s1).
g-trans(s1, down, s2).
g-trans(s2, raise, s3).
g-trans(s3, up, s0).
```

Motivation	Co-inductive CLP(R) Framework for Verifying Real-time Systems
ackground	Timed Grammars
ontribution	Timed π -calculus
Summary	Foundations of Cyber-Physical Systems (CPS)

ヘロト 人間 ト ヘヨト ヘヨト

Outline

- Incorporation of Real Time in Computation
- Related Work
 - Temporal Logics
 - RTCTL
- 2
- Background
- Contribution
 - Co-inductive CLP(R) Framework for Verifying Real-time Systems
 - Timed Grammars
 - Practical Parser
 - Timed π-calculus
 - Operational Semantics in LP
- Foundations of Cyber-Physical Systems (CPS)
- Summary

Motivation	Co-inductive CLP(R) Framework for Verifying Real-time Systems
ackground	
ontribution	
Summary	Foundations of Cyber-Physical Systems (CPS)

< □ > < 同 > < 三 > <

Motivation

- CPS consist of perpetually and concurrently executing physical and computational components
- The presence of physical components require the computational components to deal with continuous quantities

 Motivation
 Co-inductive CLP(R) Framework for Verifying Real-time Systems

 Background
 Timed Grammars

 Contribution
 Timed m-calculus

 Summary
 Foundations of Cyber-Physical Systems (CPS)

イロト イポト イヨト イヨト

æ

CPS Characteristics Summary

- Perform discrete computations
- Deal with continuous physical quantities
- Run forever
- They are concurrent

 Motivation
 Co-inductive CLP(R) Framework for Verifying Real-time Systems

 Background
 Timed Grammars

 Contribution
 Timed -calculus

 Summary
 Foundations of Cyber-Physical Systems (CPS)

イロト イポト イヨト イヨト

Design Challenges of CPS

- Dealing with continuous quantities in computations
 - typical approaches discretize them, e.g., time
- Operational modeling/analysis of perpetual computations is not well understood
 - Co-induction have been introduced to formally model rational, infinite computations
- Concurrency is reasonably well understood
- However, concurrency combined with continuous quantities and perpetual computations makes modeling of CPS difficult

Motivation	Co-inductive CLP(R) Framework for Verifying Real-time Systems
Background	
Contribution	
Summary	Foundations of Cyber-Physical Systems (CPS)

ヘロト 人間 ト ヘヨト ヘヨト

Problem

A formalism that can model discrete and continuous quantities together with concurrent, perpetual execution is lacking

Goal

Faithfuly modeling CPS and reasoning about them

Our Thesis

Logic programming extended with *co-induction*, *constraints over reals* and *coroutining* is an excellent formalism for modeling CPS and reasoning about them.

Motivation	Co-inductive CLP(R) Framework for Verifying Real-time Systems
ackground	
ontribution	
Summary	Foundations of Cyber-Physical Systems (CPS)

Modeling CPS

- Communicating hybrid ω -automata as underlying model
 - State machines modeled as logic programs
 - Physical quantities are represented as continuous quantities (i.e., not discretized)
 - The constraints imposed on them by CPS physical interactions are faithfully modeled with *CLP(R)*
- Non-terminating nature handled via co-inductive LP
- The communication/concurrency is handled by coroutining
- So each hybrid ω-automaton modeled as a co-inductive CLP(R) program
- The multiple co-inductive CLP(R) programs execute concurrently modeled as co-routined logic programs

Motivation Background Contribution Co-inductive CLP(R) Framework for Verifying Real-time Systems Timed Grammars Timed $\pi\text{-}calculus$

イロト イポト イヨト イヨト

э

Foundations of Cyber-Physical Systems (CPS)

Traditional Example of CPS: Reactor Temperature Control System

Motivation Background Contribution Summarv Co-inductive CLP(R) Framework for Verifying Real-time Systems Timed Grammars Timed π-calculus Foundations of Cyber-Physical Systems (CPS)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

LP Realization of Reactor Temperature Control System

rl(outl,addl,in1,W,Ti,To,T) :-{W-Ti>=T, To=Ti}.
rl(in1,removel,out1,W,Ti,To,T) :- {To=W}.

r2(out2,add2,in2,W,Ti,To,T) :-{W-Ti>=T, To=Ti}.
r2(in2,remove2,out2,W,Ti,To,T) :- {To=W}.

 Motivation
 Co-inductive CLP(R) Framework for Verifying Real-time Systems

 Background
 Timed Grammars

 Contribution
 Timed m-calculus

 Summary
 Foundations of Cyber-Physical Systems (CPS)

LP Model of Reactor Temperature Control System

c(norod,add1,rod1,Pi,Po,W,Ti1,Ti2,To1,To2,F) :(F == 1 -> {Ti=Ti1}; {Ti=Ti2}),
{Pi<550, Po=550, exp(e,(W-Ti)/10)=5, To1=W, To2=Ti2}.</pre>

c(rod1,remove1,norod,Pi,Po,W,Ti1,Ti2,To1,To2,F) :{Pi>510, Po=510, exp(e,(W-Ti1)/10)=5, To1=W, To2=Ti2}.

c(norod,add2,rod2,Pi,Po,W,Ti1,Ti2,To1,To2,F) :(F == 1 -> {Ti=Ti1}; {Ti=Ti2}),
{Pi<550, Po=550, exp(e,(W-Ti)/10)=5, To1=Ti1, To2=W}.</pre>

c(rod2,remove2,norod,Pi,Po,W,Ti1,Ti2,To1,To2,F) :{Pi>510, Po=510, exp(e,(T-Ti2)/10)=9/5, To1=Ti1, To2=W}.

c(norod,_,shutdown,Pi,Po,W,Ti1,Ti2,To1,To2,F) : (F == 1 -> {Ti=Ti1}; {Ti=Ti2}),
 {Pi<550, Po=550, exp(e,(W-Ti)/10)=5, To1=Ti1, To2=Ti2}.</pre>

 Motivation
 Co-inductive CLP(R) Framework for Verifying Real-time Systems

 Background
 Timed Grammars

 Contribution
 Timed -calculus

 Summary
 Foundations of Cyber-Physical Systems (CPS)

LP Model of Reactor Temperature Control System

```
:- coinductive(rod1/6).
rod1([(H, W) | Xs], Si1, Si2, Ti1, Ti2, T) :-
((H = add1; H = remove1) \rightarrow
 (H = add1 -> freeze(Xs, rod1(Xs, So1, Si2, To1, Ti2, T));
   freeze(Xs, rod1(Xs, So1, Si2, To1, Ti2, T);
             rod2(Xs, So1, Si2, To1, Ti2, T))),
 r1(Si1, H, So1, W, Ti1, To1, T);
H = shutdown, \{W - Til < T, W - Ti2 < T\}).
:- coinductive(rod2/6).
rod2([(H, W)| Xs], Si1, Si2, Ti1, Ti2, T) :-
((H = add2; H = remove2) \rightarrow
 (H = add2 -> freeze(Xs, rod2(Xs, Si1, So2, Ti1, To2, T));
   freeze(Xs, rod1(Xs, Si1, So2, Ti1, To2, T);
             rod2(Xs, Si1, So2, Ti1, To2, T))),
 r2(Si2, H, So2, W, Ti2, To2, T);
H = shutdown, {W - Ti1 < T, W - Ti2 < T}).
                                          • • • • • • •
```
Motivation
 Co-inductive CLP(R) Framework for Verifying Real-time Systems

 Background
 Timed Grammars

 Contribution
 Timed -calculus

 Summary
 Foundations of Cyber-Physical Systems (CPS)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

LP Model of Reactor Temperature Control System

```
:- coinductive(contr/7).
contr(X, Si, W, Pi, Ti1, Ti2, Fi) :-
(H=add1; H=remove1; H=add2; H=remove2; H=shutdown),
\{W2 > W\},\
freeze(X, contr(Xs, So, W2, Po, To1, To2, Fo)),
c(Si,H,So,Pi,Po,W,Ti1,Ti2,To1,To2,Fi),
((H=add1; H=remove1) \rightarrow Fo = 1; Fo = 2),
((H=add1; H=remove1; H=add2; H=remove2) ->
          X = [(H, W) | Xs]; X = [(H, W)]).
main(S, W, T) :-
 \{W - Tr1 = T, W - Tr2 = T\},\
 freeze(S, (rod1(S, s0, s0, Tr1, Tr2, T);
            rod2(S, s0, s0, Tr1, Tr2, T))),
 contr(S, s0, W, 510, Tc1, Tc2, 1).
```

Summary

- Techniques for incorporation of continuous time in computation
 - Co-inductive CLP(R) framework for modeling and verification of real-time systems
 - Timed Grammars
 - Practical parsers
 - Timed *π*-calculus
 - Operational Semantics in LP
 - Foundations of CPS
- Future work
 - Incorporation of continuous time in traditional model checkers

ヘロト 人間 ト ヘヨト ヘヨト

3

Publications

Gopal Gupta, **Neda Saeedloei**, Brian DeVries, Richard Min, "Practical Applications of Co-inductive Logic Programming," To appear in the International Conference on Algebra and Coalgebra (CALCO) 2011.

Neda Saeedloei, Gopal Gupta, "A Logic-based Modeling and Verification of CPS," To appear in Proceedings of International Conference on Cyber-Physical Systems, Work-in-Progress (WiP) session 2011, SIGBED review.

Neda Saeedloei, Gopal Gupta, "Verifying Complex Continuous Real-Time Systems with Coinductive CLP(R)," Proceedings of the LATA 2010, Springer Verlag, Pages 536-548.

Publications

Neda Saeedloei, Gopal Gupta, "A Logic Programming Realization of Timed Context-Free Grammars," Proceedings of the ICLP 2010, Pages 212-221.

Neda Saeedloei, Gopal Gupta, "Timed π -Calculus," Submitted to TIME 2011.

Neda Saeedloei, Gopal Gupta, "Logic Programming Realization of Timed π -Calculus," In Preparation (to be Submitted to FORMATS 2011).

Neda Saeedloei, Gopal Gupta, "Timed π -Calculus and its applicatins," In Preparation (to be Submitted to the Journal of Science of Computer Programming, Elsevier).

Publications

Neda Saeedloei, Gopal Gupta, "Verifying Complex Continuous Real-Time Systems with Coinductive CLP(R)," Workshop Proceedings of ICLP 2009.

Neda Saeedloei, Gopal Gupta, "Modeling and Verification of Cyber-Physical Systems with Co-inductive Constraint Logic Programming," In Preparation.

イロト イポト イヨト イヨト