Local proof transformations for flexible interpolation and proof reduction

N. Sharygina

Formal Verification and Security Group University of Lugano

June 21, 2011

Natasha Sharygina (USI)

2 Motivation and Related Work

- 2 Motivation and Related Work
- 3 Contribution
 - Proof Transformation for Interpolation and Reduction

2 Motivation and Related Work

3 Contribution

- Proof Transformation for Interpolation and Reduction
- 4 Summary and Future Work

2 Motivation and Related Work

3 Contribution

- Proof Transformation for Interpolation and Reduction
- 4 Summary and Future Work

• Program Verification

- Program Verification
 - Model checking code (LoopFrog, Synergy, SatAbs (with Oxford), FunFrog), ANSI-C
 - Efficient decision procedures as computational engines of verification (OpenSMT)

- Program Verification
 - Model checking code (LoopFrog, Synergy, SatAbs (with Oxford), FunFrog), ANSI-C
 - Efficient decision procedures as computational engines of verification (OpenSMT)
- Abstractions

- Program Verification
 - Model checking code (LoopFrog, Synergy, SatAbs (with Oxford), FunFrog), ANSI-C
 - Efficient decision procedures as computational engines of verification (OpenSMT)
- Abstractions
 - Program Summarization [ATVA'08], [ASE'09]
 - Avoids fix-point computation by constructing symbolic abstract transformers instead
 - Performs sound over-approximation of (unbounded) loops
 - Precision is tuned by selection of abstract domains
 - Exploits efficiency of SAT/SMT solvers

- Program Termination [CAV'10, TACAS'11]
 - Integration of Loop Summarization with Termination Analysis
 - Compositional Transition Invariants avoid all paths computation of termination checks
 - Simple abstract domains are used for termination checks

- Program Termination [CAV'10, TACAS'11]
 - Integration of Loop Summarization with Termination Analysis
 - Compositional Transition Invariants avoid all paths computation of termination checks
 - Simple abstract domains are used for termination checks
- Synergy of Abstractions [STTT'10]
 - Interleaves precise and over-approximated abstractions
 - Reduces CEGAR iterations
 - Removes multiple counterexamples within a single refinement step
 - Localizes precise abstraction/refinement to relevant parts of the program

- Model checking mobile code [IFM'08], [JFAC'10]
 - Specification language for security policies
 - Formalization of mobile code distribution net
 - Location-specific abstractions and model checking of security policies

- Model checking mobile code [IFM'08], [JFAC'10]
 - Specification language for security policies
 - Formalization of mobile code distribution net
 - Location-specific abstractions and model checking of security policies
- Boolean and Theory Reasoning (SMT)
 - Procedure for bit-vector extraction and concatenation [ICCAD'09]
 - Reduces formulae to the theory of equality to avoid, when possible, expensive reduction to SAT

- Model checking mobile code [IFM'08], [JFAC'10]
 - Specification language for security policies
 - Formalization of mobile code distribution net
 - Location-specific abstractions and model checking of security policies
- Boolean and Theory Reasoning (SMT)
 - Procedure for bit-vector extraction and concatenation [ICCAD'09]
 - Reduces formulae to the theory of equality to avoid, when possible, expensive reduction to SAT
 - Generation of explanations in theory propagation [MEMOCODE'10]
 - Computes explanations on demand by reusing the consistency check algorithm for a generic theory *T*.

- Boolean and Theory Reasoning (SMT)
 - Generation of interpolants (for QF EUF, RDL)
 - Proof manipulation for interpolation [ICCAD'10]
 - Proof reduction [HVC'10]

- Boolean and Theory Reasoning (SMT)
 - Generation of interpolants (for QF EUF, RDL)
 - Proof manipulation for interpolation [ICCAD'10]
 - Proof reduction [HVC'10]
 - Solver, *OpenSMT*, combines MiniSAT2 SAT-Solver with state-of-the-art decision procedures for QF EUF, LRA, BV, RDL, IDL
 - *Extensible*: the SAT-to-theory interface facilites design and plug-in of new decision procedures
 - Incremental: suitable for incremental verification
 - Open-source: available under GPL license
 - *Efficient*: currently the fastest open-source SMT Solver for QF UF, IDL, RDL, LRA according to SMT-Comp'10.

- Boolean and Theory Reasoning (SMT)
 - Generation of interpolants (for QF EUF, RDL)
 - Proof manipulation for interpolation [S.F. Rollini, R. Bruttomesso, N. Sharygina, A. Tsitovich, ICCAD'10]
 - Resolution proof reduction [S.F. Rollini, R. Bruttomesso, N. Sharygina, HVC'10]

2 Motivation and Related Work

3 Contribution

Proof Transformation for Interpolation and Reduction

4 Summary and Future Work

Motivation

• Resolution proofs find application in several ambits

- Resolution proofs find application in several ambits
 - Interpolation-based model checking
 - Abstraction techniques
 - Unsatisfiable core extraction in SAT/SMT
 - Automatic theorem proving

- Resolution proofs find application in several ambits
 - Interpolation-based model checking
 - Abstraction techniques
 - Unsatisfiable core extraction in SAT/SMT
 - Automatic theorem proving

Problems

- Resolution proofs find application in several ambits
 - Interpolation-based model checking
 - Abstraction techniques
 - Unsatisfiable core extraction in SAT/SMT
 - Automatic theorem proving

- Problems
 - Clean structure of proofs is required for interpolation generation

- Resolution proofs find application in several ambits
 - Interpolation-based model checking
 - Abstraction techniques
 - Unsatisfiable core extraction in SAT/SMT
 - Automatic theorem proving

- Problems
 - Clean structure of proofs is required for interpolation generation
 - Size affects efficiency
 - Size can be exponential w.r.t. input formula

• Craig's interpolant / for unsatisfiable conjunction of formulae $A \wedge B$ [Craig57]

- Craig's interpolant / for unsatisfiable conjunction of formulae $A \wedge B$ [Craig57]
 - $A \Rightarrow I, I \land B$ unsatisfiable

- Craig's interpolant / for unsatisfiable conjunction of formulae $A \wedge B$ [Craig57]
 - $A \Rightarrow I$, $I \land B$ unsatisfiable
 - / defined over common symbols of A and B

- Craig's interpolant / for unsatisfiable conjunction of formulae $A \wedge B$ [Craig57]
 - $A \Rightarrow I$, $I \land B$ unsatisfiable
 - / defined over common symbols of A and B
 - / as over-approximation A conflicting with B

- Craig's interpolant / for unsatisfiable conjunction of formulae $A \wedge B$ [Craig57]
 - $A \Rightarrow I$, $I \land B$ unsatisfiable
 - / defined over common symbols of A and B
 - / as over-approximation A conflicting with B

• Example

- Craig's interpolant / for unsatisfiable conjunction of formulae $A \wedge B$ [Craig57]
 - $A \Rightarrow I$, $I \land B$ unsatisfiable
 - / defined over common symbols of A and B
 - / as over-approximation A conflicting with B

- Example
 - $A \triangleq (\overline{p} \lor \overline{q}) \land (p \lor \overline{q})$ $B \triangleq (q \lor \overline{r}) \land (q \lor r)$

- Craig's interpolant / for unsatisfiable conjunction of formulae $A \wedge B$ [Craig57]
 - $A \Rightarrow I$, $I \land B$ unsatisfiable
 - / defined over common symbols of A and B
 - / as over-approximation A conflicting with B

- Example
 - $A \triangleq (\overline{p} \lor \overline{q}) \land (p \lor \overline{q})$ $B \triangleq (q \lor \overline{r}) \land (q \lor r)$
 - Interpolant \overline{q}

- Craig's interpolant / for unsatisfiable conjunction of formulae $A \wedge B$ [Craig57]
 - $A \Rightarrow I$, $I \land B$ unsatisfiable
 - / defined over common symbols of A and B
 - / as over-approximation A conflicting with B

- Example
 - $A \triangleq (\overline{p} \lor \overline{q}) \land (p \lor \overline{q})$ $B \triangleq (q \lor \overline{r}) \land (q \lor r)$
 - Interpolant \overline{q}
 - $A \Rightarrow \overline{q}$ $\overline{q} \land B$ unsatisfiable

Interpolation

Background

- Craig's interpolant / for unsatisfiable conjunction of formulae $A \land B$ [Craig57]
 - / as over-approximation A conflicting with B

· Applications in symbolic model checking

- Applications in symbolic model checking
 - Bounded model checking: approximate cheaper reachability set computation [McMillan03]

- · Applications in symbolic model checking
 - Bounded model checking: approximate cheaper reachability set computation [McMillan03]
 - Predicate abstraction refinement based on spurious behaviors [Henzinger04]

- · Applications in symbolic model checking
 - Bounded model checking: approximate cheaper reachability set computation [McMillan03]
 - Predicate abstraction refinement based on spurious behaviors [Henzinger04]
 - Property-based transition relation approximation [Jhala05]

- · Applications in symbolic model checking
 - Bounded model checking: approximate cheaper reachability set computation [McMillan03]
 - Predicate abstraction refinement based on spurious behaviors [Henzinger04]
 - Property-based transition relation approximation [Jhala05]
- Forementioned applications involve

- · Applications in symbolic model checking
 - Bounded model checking: approximate cheaper reachability set computation [McMillan03]
 - Predicate abstraction refinement based on spurious behaviors [Henzinger04]
 - Property-based transition relation approximation [Jhala05]
- Forementioned applications involve
 - Problem encoding into logic (SAT, SMT)

- · Applications in symbolic model checking
 - Bounded model checking: approximate cheaper reachability set computation [McMillan03]
 - Predicate abstraction refinement based on spurious behaviors [Henzinger04]
 - Property-based transition relation approximation [Jhala05]
- Forementioned applications involve
 - Problem encoding into logic (SAT, SMT)
 - Problem solving by means of resolution based engines (SAT solvers, SMT solvers)

• Satisfiability (SAT)

- Satisfiability (SAT)
 - Example

 $A \triangleq (\overline{p} \lor \overline{q}) \land (p \lor \overline{q}) \qquad B \triangleq (q \lor \overline{r}) \land (q \lor r)$

- Satisfiability (SAT)
 - Example

 $A \triangleq (\overline{p} \lor \overline{q}) \land (p \lor \overline{q}) \qquad B \triangleq (q \lor \overline{r}) \land (q \lor r)$

• Satisfiability Modulo Theories (SMT): more expressivity than boolean logic

- Satisfiability (SAT)
 - Example

 $\boldsymbol{A} \triangleq (\overline{\boldsymbol{p}} \vee \overline{\boldsymbol{q}}) \land (\boldsymbol{p} \vee \overline{\boldsymbol{q}}) \qquad \boldsymbol{B} \triangleq (\boldsymbol{q} \vee \overline{\boldsymbol{r}}) \land (\boldsymbol{q} \vee \boldsymbol{r})$

- Satisfiability Modulo Theories (SMT): more expressivity than boolean logic
 - Timed automata, hybrid systems,

- Satisfiability (SAT)
 - Example

 $\boldsymbol{A} \triangleq (\overline{\boldsymbol{p}} \vee \overline{\boldsymbol{q}}) \land (\boldsymbol{p} \vee \overline{\boldsymbol{q}}) \qquad \boldsymbol{B} \triangleq (\boldsymbol{q} \vee \overline{\boldsymbol{r}}) \land (\boldsymbol{q} \vee \boldsymbol{r})$

- Satisfiability Modulo Theories (SMT): more expressivity than boolean logic
 - Timed automata, hybrid systems,
 - Arbitrary precision arithmetic, data structures

- Satisfiability (SAT)
 - Example

 $\boldsymbol{A} \triangleq (\overline{\boldsymbol{p}} \lor \overline{\boldsymbol{q}}) \land (\boldsymbol{p} \lor \overline{\boldsymbol{q}}) \qquad \boldsymbol{B} \triangleq (\boldsymbol{q} \lor \overline{\boldsymbol{r}}) \land (\boldsymbol{q} \lor \boldsymbol{r})$

- Satisfiability Modulo Theories (SMT): more expressivity than boolean logic
 - Timed automata, hybrid systems,
 - Arbitrary precision arithmetic, data structures
 - Example

$$A \triangleq (5x - y \le 1) \land (y - 5x \le -1) \qquad B \triangleq (y - 5z \le 3) \land (5z - y \le -2)$$

• $A \wedge B$ unsatisfiable: certificate of unsatisfiability

- $A \wedge B$ unsatisfiable: certificate of unsatisfiability
 - Propositional proof of unsatisfiability
 - Generated by logging steps at solving time

- $A \wedge B$ unsatisfiable: certificate of unsatisfiability
 - Propositional proof of unsatisfiability
 - Generated by logging steps at solving time
- DPLL SAT solver [Davis60,62]

- $A \wedge B$ unsatisfiable: certificate of unsatisfiability
 - Propositional proof of unsatisfiability
 - Generated by logging steps at solving time
- DPLL SAT solver [Davis60,62]
 - Search space boolean assignments
 - Backtracking

- $A \wedge B$ unsatisfiable: certificate of unsatisfiability
 - Propositional proof of unsatisfiability
 - Generated by logging steps at solving time
- DPLL SAT solver [Davis60,62]
 - Search space boolean assignments
 - Backtracking
- SMT solver

- $A \wedge B$ unsatisfiable: certificate of unsatisfiability
 - Propositional proof of unsatisfiability
 - Generated by logging steps at solving time
- DPLL SAT solver [Davis60,62]
 - Search space boolean assignments
 - Backtracking
- SMT solver
 - DPLL SAT solver
 - Theory solver

• State-of-the-art approach [Pudlák97, McMillan04]

- State-of-the-art approach [Pudlák97, McMillan04]
 - Derivation of unsatisfiability resolution proof of $A \wedge B$

- State-of-the-art approach [Pudlák97, McMillan04]
 - Derivation of unsatisfiability resolution proof of $A \wedge B$
 - Computation of / from proof structure in linear time

Background

• Literal $p \overline{p}$

Background

- Literal $p \overline{p}$
- Clause $p \lor \overline{q} \lor r \lor \ldots \to p\overline{q}r \ldots$ Empty clause \bot

Background

- Literal $p \overline{p}$
- Clause $p \lor \overline{q} \lor r \lor \ldots \to p\overline{q}r \ldots$ Empty clause \bot
- Input formula $(p \lor q) \land (r \lor \overline{p}) \ldots \rightarrow \{pq, r\overline{p}\}$

Background

- Literal $p \overline{p}$
- Clause $p \lor \overline{q} \lor r \lor \ldots \to p\overline{q}r \ldots$ Empty clause \bot
- Input formula $(p \lor q) \land (r \lor \overline{p}) \ldots \rightarrow \{pq, r\overline{p}\}$
- Resolution rule $\frac{pC \quad \overline{p}D}{CD} p$

Antecedents: $pC \ \overline{p}D$ Resolvent: CD Pivot: p

Background

- Literal $p \overline{p}$
- Clause $p \lor \overline{q} \lor r \lor \ldots \to p\overline{q}r \ldots$ Empty clause \bot
- Input formula $(p \lor q) \land (r \lor \overline{p}) \ldots \rightarrow \{pq, r\overline{p}\}$
- Resolution rule $\frac{pC}{CD} p$

Antecedents: $pC \ \overline{p}D$ Resolvent: CD Pivot: p

• Resolution proof of unsatisfiability of a set of clauses S

Background

- Literal $p \overline{p}$
- Clause $p \lor \overline{q} \lor r \lor \ldots \to p\overline{q}r \ldots$ Empty clause \bot
- Input formula $(p \lor q) \land (r \lor \overline{p}) \ldots \rightarrow \{pq, r\overline{p}\}$
- Resolution rule $\frac{pC}{CD} \frac{\overline{p}D}{p}$

Antecedents: $pC \ \overline{p}D$ Resolvent: CD Pivot: p

- Resolution proof of unsatisfiability of a set of clauses S
 - Tree
 - Leaves as clauses of S
 - Intermediate nodes as resolvents
 - Root as unique empty clause

•
$$A \triangleq \{\overline{pq}, \overline{pq}\}$$
 $B \triangleq \{q\overline{r}, qr\}$

- $A \triangleq \{\overline{pq}, \overline{pq}\}$ $B \triangleq \{q\overline{r}, qr\}$
- Proof of unsatisfiability

• Computation of interpolant / for $A \wedge B$ from proof structure

- Computation of interpolant / for $A \wedge B$ from proof structure
- Partial interpolant for leaf

- Computation of interpolant / for $A \wedge B$ from proof structure
- Partial interpolant for leaf
- Partial interpolant for resolvent
 - Pivot
 - Partial interpolants for antecedents

- Computation of interpolant / for $A \wedge B$ from proof structure
- Partial interpolant for leaf
- Partial interpolant for resolvent
 - Pivot
 - Partial interpolants for antecedents
- Partial interpolant for \perp is /

- $A \triangleq \{\overline{pq}, \overline{pq}\}$ $B \triangleq \{q\overline{r}, qr\}$
- Proof of unsatisfiability

- $A \triangleq \{\overline{pq}, \overline{pq}\}$ $B \triangleq \{q\overline{r}, qr\}$
- Proof of unsatisfiability

- $A \triangleq \{\overline{pq}, \overline{pq}\}$ $B \triangleq \{q\overline{r}, qr\}$
- Proof of unsatisfiability

- $A \triangleq \{\overline{pq}, p\overline{q}\}$ $B \triangleq \{q\overline{r}, qr\}$
- Proof of unsatisfiability

- $A \triangleq \{\overline{pq}, p\overline{q}\}$ $B \triangleq \{q\overline{r}, qr\}$
- Proof of unsatisfiability

- $A \triangleq \{\overline{pq}, p\overline{q}\}$ $B \triangleq \{q\overline{r}, qr\}$
- Proof of unsatisfiability

- $A \triangleq \{\overline{pq}, p\overline{q}\}$ $B \triangleq \{q\overline{r}, qr\}$
- Proof of unsatisfiability

- $A \triangleq \{\overline{pq}, \overline{pq}\}$ $B \triangleq \{q\overline{r}, qr\}$
- Proof of unsatisfiability

- $A \triangleq \{\overline{pq}, p\overline{q}\}$ $B \triangleq \{q\overline{r}, qr\}$
- Proof of unsatisfiability

•
$$A \triangleq \{ \overbrace{(5x-y\leq 1)}^{p}, \overbrace{(y-5x\leq -1)}^{q} \} B \triangleq \{ \overbrace{(y-5z\leq 3)}^{r}, \overbrace{(5z-y\leq -2)}^{s} \}$$

•
$$A \triangleq \{ \overbrace{(5x-y\leq 1)}^{p}, \overbrace{(y-5x\leq -1)}^{q} \} B \triangleq \{ \overbrace{(y-5z\leq 3)}^{r}, \overbrace{(5z-y\leq -2)}^{s} \}$$

•
$$A \triangleq \{ \overbrace{(5x-y\leq 1)}^{p}, \overbrace{(y-5x\leq -1)}^{q} \} B \triangleq \{ \overbrace{(y-5z\leq 3)}^{r}, \overbrace{(5z-y\leq -2)}^{s} \}$$

• LIA:
$$\underbrace{(x-z \le 0)}^{t} (x-z \ge 1)$$

•
$$A \triangleq \{ \overbrace{(5x-y\leq 1)}^{p}, \overbrace{(y-5x\leq -1)}^{q} \} B \triangleq \{ \overbrace{(y-5z\leq 3)}^{r}, \overbrace{(5z-y\leq -2)}^{s} \}$$

• LIA:
$$\underbrace{(x-z \le 0)}^{t} (x-z \ge 1)$$

• LRA:
$$(5x - y \nleq 1)$$
 $(y - 5z \nleq 3)$ $(x - z \nsucceq 1)$

•
$$A \triangleq \{ \overbrace{(5x-y \leq 1)}^{p}, \overbrace{(y-5x \leq -1)}^{q} \} B \triangleq \{ \overbrace{(y-5z \leq 3)}^{r}, \overbrace{(5z-y \leq -2)}^{s} \}$$

• LIA:
$$\underbrace{(x-z\leq 0)}^{t} (x-z\geq 1)$$

• LRA:
$$(5x - y \leq 1)$$
 $(y - 5z \leq 3)$ $(x - z \geq 1)$

• LRA:
$$(y - 5x \nleq -1)$$
 $(5z - y \nleq -2)$ $(x - z \nleq 0)$

• $A \triangleq \{p, q\}$ $B \triangleq \{r, s\}$ $L \triangleq \{tu, \overline{pru}, \overline{qst}\}$

Resolution Proofs $_{\text{SMT}}$

- $A \triangleq \{p, q\}$ $B \triangleq \{r, s\}$ $L \triangleq \{tu, \overline{pru}, \overline{qst}\}$
- Proof of unsatisfiability

- $A \triangleq \{p,q\}$ $B \triangleq \{r,s\}$ $L \triangleq \{tu, \overline{pru}, \overline{qst}\}$
- Proof of unsatisfiability

- $A \triangleq \{p,q\}$ $B \triangleq \{r,s\}$ $L \triangleq \{tu, \overline{pru}, \overline{qst}\}$
- Proof of unsatisfiability

- $A \triangleq \{p,q\}$ $B \triangleq \{r,s\}$ $L \triangleq \{tu, \overline{pru}, \overline{qst}\}$
- Proof of unsatisfiability

- $A \triangleq \{p,q\}$ $B \triangleq \{r,s\}$ $L \triangleq \{tu, \overline{pru}, \overline{qst}\}$
- Proof of unsatisfiability

• State-of-the-art approach [Pudlák97, McMillan04]

- State-of-the-art approach [Pudlák97, McMillan04]
 - Derivation of unsatisfiability proof of $A \wedge B$
 - Computation of interpolant from proof structure in linear time

- State-of-the-art approach [Pudlák97, McMillan04]
 - Derivation of unsatisfiability proof of $A \wedge B$
 - Computation of interpolant from proof structure in linear time
- Restriction

- State-of-the-art approach [Pudlák97, McMillan04]
 - Derivation of unsatisfiability proof of $A \wedge B$
 - Computation of interpolant from proof structure in linear time
- Restriction
 - Need for proof not to contain AB-mixed predicates

A-local B-local AB-common AB-mixed

- State-of-the-art approach [Pudlák97, McMillan04]
 - Derivation of unsatisfiability proof of $A \wedge B$
 - Computation of interpolant from proof structure in linear time
- Restriction
 - Need for proof not to contain AB-mixed predicates

A-localB-localAB-commonAB-mixed $A \triangleq \{ (5x - y \le 1), \ldots \}$ $B \triangleq \{ (y - 5z \le 3), \ldots \}$

- State-of-the-art approach [Pudlák97, McMillan04]
 - Derivation of unsatisfiability proof of $A \wedge B$
 - Computation of interpolant from proof structure in linear time
- Restriction
 - Need for proof not to contain AB-mixed predicates

A-local B-local AB-common AB-mixed $A \triangleq \{ (5x - y \le 1), ... \} \quad B \triangleq \{ (y - 5z \le 3), ... \}$ $L \triangleq \{ (x - z \le 0), ... \}$ • Need for proof not to contain AB-mixed predicates

• Need for proof not to contain AB-mixed predicates

• Tune solvers to avoid generating AB-mixed predicates [Cimatti08,Beyer08] • Need for proof not to contain AB-mixed predicates

• Tune solvers to avoid generating AB-mixed predicates [Cimatti08,Beyer08]

• Transform proof to remove AB-mixed predicates

Motivation

• Proof transformation approach

- Proof transformation approach
- Motivation: more flexibility by decoupling SMT solving and interpolant generation

- Proof transformation approach
- Motivation: more flexibility by decoupling SMT solving and interpolant generation
- Motivation: standard SMT techniques can require addition of AB-mixed predicates

- Proof transformation approach
- Motivation: more flexibility by decoupling SMT solving and interpolant generation
- Motivation: standard SMT techniques can require addition of AB-mixed predicates
 - Theory reduction via Lemma on Demand [DeMoura02, Barrett06] Reduction of AX to EUF Reduction of LIA to LRA Ackermann's Expansion
 - Theory combination via DTC [Bozzano05]

1 Background

- 2 Motivation and Related Work
- 3 Contribution
 - Proof Transformation for Interpolation and Reduction
- 4 Summary and Future Work

1 Background

- 2 Motivation and Related Work
- 3 Contribution
 - Proof Transformation for Interpolation and Reduction
- 4 Summary and Future Work

• Isolation of AB-mixed predicates into subtrees

• Isolation of AB-mixed predicates into subtrees

• Removal of AB-mixed subtrees

• Isolation of AB-mixed predicates into subtrees

• Removal of AB-mixed subtrees

• No more AB-mixed predicates, proof still valid

- (a) Initial proof: A-local, B-local, AB-common, AB-mixed
- (b) Transformed proof: AB-mixed predicates isolated into subtrees
- (c) Final proof: AB-mixed subtrees removed, new leaves are theory lemmata

• No more AB-mixed predicates, new leaves are theory lemmata

- No more AB-mixed predicates, new leaves are theory lemmata
- Easy combination of SMT and interpolation techniques

- No more AB-mixed predicates, new leaves are theory lemmata
- Easy combination of SMT and interpolation techniques
 - Theory reduction, theory combination without restrictions

- No more AB-mixed predicates, new leaves are theory lemmata
- Easy combination of SMT and interpolation techniques
 - Theory reduction, theory combination without restrictions
 - Interpolant generation for propositional resolution proofs of unsatisfiability [Pudlák97]

- No more AB-mixed predicates, new leaves are theory lemmata
- Easy combination of SMT and interpolation techniques
 - Theory reduction, theory combination without restrictions
 - Interpolant generation for propositional resolution proofs of unsatisfiability [Pudlák97]
 - (Partial) interpolant generation for theory (combination) lemmata [Yorsh05]

Proof Transformation Framework Features

• Local rewriting rules

Proof Transformation Framework Features

• Local rewriting rules

Rule context

• Local rewriting rules

Rule context

• Exhaustiveness up to symmetry

Local Rewriting Rules

Local Rewriting Rules

Pivots swapping

Local Rewriting Rules

Pivots swapping

• AB-mixed predicates isolation into subtrees

Transformation

- $A \triangleq \{p,q\}$ $B \triangleq \{r,s\}$ $L \triangleq \{tu, \overline{pru}, \overline{qst}\}$
- Proof of unsatisfiability

Transformation

Transformation

• Proof of unsatisfiability

Natasha Sharygina (USI)

Transformation

Transformation

Transformation

Transformation

Transformation

Transformation

• Proof of unsatisfiability

Natasha Sharygina (USI)

Transformation

• Proof of unsatisfiability

Natasha Sharygina (USI)

Transformation

Considerations

• Potential drawbacks

Considerations

- Potential drawbacks
 - Overhead w.r.t. solving time

Considerations

- Potential drawbacks
 - Overhead w.r.t. solving time
 - Increase of proof size

Features

• Local rewriting rules

• Local rewriting rules

Features

- B reduction
- A perturbation

• Local rewriting rules

Features

- B reduction
- A perturbation

Rule context

Features

- Local rewriting rules
 - B reduction
 - A perturbation

Rule context

• Exhaustiveness up to symmetry

Local rewriting rules

• B rules

Local rewriting rules

• B rules

• Redundancy as reintroduction variable after elimination

Local rewriting rules

• B rules

- Redundancy as reintroduction variable after elimination
- Subproof simplification

Local rewriting rules

B rules

- Redundancy as reintroduction variable after elimination
- Subproof simplification
- Subproof root strengthening

Local rewriting rules

• A rules

Local rewriting rules

• A rules

• Pivots swapping

Local rewriting rules

• A rules

- Pivots swapping
- Topology perturbation

Local rewriting rules

A rules

- Pivots swapping
- Topology perturbation
- Redundancies exposure

Local rewriting rules

A1	pqC pqD p = qCD p = qCD = qCDE = qCD = q	<u>φ</u> Εq	\Rightarrow	pqC pCE	₫E₫E CDE	₹ ¯pqD ¯pDEp	- q
A2	$\frac{pqC}{qCD} \frac{\overline{pD}}{p} \frac{p}{\overline{qCD}} \frac{p}{\overline{qCD}} \frac{\overline{qCD}}{\overline{qCDE}}$	iEq	⇒	pq	PCE	- q ₱D	. р
<i>B</i> 1	pqC pqD p qCD p pCDE	9 <u>9</u> q	⇒		pqC pCE	pqEq	
B2	pqC pD p qDC p pCDE	<i>qE</i> ── q	⇒	Pq	C pqE pCE C	– 9 pD	– P
B2'	pqC pD p qDC p pCDE	<u>₹</u> q	⇒		pqC pCE	pqEq	
В3	pqC pD p qCD p pCDE	₫ <i>Е</i> q	⇒		٦Ę)	

Natasha Sharygina (USI)

Flexible Proof Transformation

opensmt

- C++ open-source SMT solver developed at USI
- Fastest open-source solver in SMT-comp 2009, 2010 for various logics

opensmt

- C++ open-source SMT solver developed at USI
- Fastest open-source solver in SMT-comp 2009, 2010 for various logics

Benchmarks

opensmt

- C++ open-source SMT solver developed at USI
- Fastest open-source solver in SMT-comp 2009, 2010 for various logics

Benchmarks

- SMT: SMT-LIB library
- Academic and industrial problems

Group	#	#AB	% _{time}	% _{nodes}	% _{edges}
RDS	2	7	93%	2%	2%
EufLaAr	2	103	91%	30%	26%
pete	6	4	33%	8%	9%
pete2	56	17	59%	27%	32%
uclid	8	11	64%	37%	42%
Overall	74	17	59%	26%	30%

- # number of benchmarks solved
- #AB average number of AB-mixed predicates in proof
- $\%_{time}$ average time overhead
- $\%_{nodes}$, $\%_{edges}$ average difference in proof size

• RecyclePivots (closest related work) [Strichman'08]

- RecyclePivots (closest related work) [Strichman'08]
 - **Pros** Global information Fast and effective

Cons

Cannot expose redundancies

- RecyclePivots (closest related work) [Strichman'08]
 - **Pros** Global information Fast and effective

• Cons

Cannot expose redundancies

• Rule-based approach

- RecyclePivots (closest related work) [Strichman'08]
 - **Pros** Global information Fast and effective

Cons

Cannot expose redundancies

• Rule-based approach

• Pros

Flexibility in rules application Flexibility in amount of transformation Can expose redundancies

• Cons

Local information

• Based on a sequence of proof traversals (e.g. topological order)

- Based on a sequence of proof traversals (e.g. topological order)
- Parameterized in number of traversals and time limit

- Based on a sequence of proof traversals (e.g. topological order)
- Parameterized in number of traversals and time limit
- Examination non-leaf clauses

- Based on a sequence of proof traversals (e.g. topological order)
- Parameterized in number of traversals and time limit
- Examination non-leaf clauses
 - Pivot in both antecedents \rightarrow update, match context, apply rule

$$\frac{qC'D'}{CDE} q \Rightarrow \frac{qC'D'}{C'D'E'} q \Rightarrow \frac{pqC'}{Q'D'E'} q \Rightarrow \frac{pqC'}{qC'D'} q$$

- Based on a sequence of proof traversals (e.g. topological order)
- Parameterized in number of traversals and time limit
- Examination non-leaf clauses
 - Pivot in both antecedents \rightarrow update, match context, apply rule

$$\frac{qC'D'}{CDE} q \Rightarrow \frac{qC'D'}{C'D'E'} q \Rightarrow \frac{pqC'}{Q'D'} q = \frac{pqC'}{qE'} q = \frac{pqC'}{qC'D'} q$$

• Pivot not in both antecedents \rightarrow remove resolution step

$$\frac{C'D' \quad \overline{q}E'}{CDE} q \quad \Rightarrow \qquad C'D'$$

- Based on a sequence of proof traversals (e.g. topological order)
- Parameterized in number of traversals and time limit
- Examination non-leaf clauses
 - Pivot in both antecedents \rightarrow update, match context, apply rule

$$\frac{qC'D'}{CDE} q \Rightarrow \frac{qC'D'}{C'D'E'} q \Rightarrow \frac{pqC'}{Q'D'} q = \frac{pqC'}{Q'D'} q$$

• Pivot not in both antecedents \rightarrow remove resolution step

$$\frac{C'D'}{CDE} q \Rightarrow C'D'$$

Easy combination with RecyclePivots

Natasha Sharygina (USI)

- Implemented in C++ and integrated with OpenSMT
- Available at www.inf.usi.ch/phd/rollini/hvc.html

- Implemented in C++ and integrated with $\mathsf{OpenSMT}$
- Available at www.inf.usi.ch/phd/rollini/hvc.html
- Benchmarks

- Implemented in C++ and integrated with OpenSMT
- Available at www.inf.usi.ch/phd/rollini/hvc.html
- Benchmarks
 - SMT: SMT-LIB library
 - SAT: SAT competition
 - Academic and industrial problems

Experimental results over SMT: QF_UF, QF_IDL, QF_LRA, QF_RDL

	#	Avg _{nodes}	Avg _{edges}	Avg _{core}	T(s)	Max _{nodes}	Max_{edges}	Max _{core}
RP	1370	6.7%	7.5%	1.3%	1.7	65.1%	68.9%	39.1%
Ratio								
0.01	1366	8.9%	10.7%	1.4%	3.4	66.3%	70.2%	45.7%
0.025	1366	9.8%	11.9%	1.5%	3.6	77.2%	79.9%	45.7%
0.05	1366	10.7%	13.0%	1.6%	4.1	78.5%	81.2%	45.7%
0.075	1366	11.4%	13.8%	1.7%	4.5	78.5%	81.2%	45.7%
0.1	1364	11.8%	14.4%	1.7%	5.0	78.8%	83.6%	45.7%
0.25	1359	13.6%	16.6%	1.9%	7.6	79.6%	84.4%	45.7%
0.5	1348	15.0%	18.4%	2.0%	11.5	79.1%	85.2%	45.7%
0.75	1341	16.0%	19.5%	2.1%	15.1	79.9%	86.1%	45.7%
1	1337	16.7%	20.4%	2.2%	18.8	79.9%	86.1%	45.7%

• Ratio — time threshold as fraction of solving time

- # number of benchmarks solved
- Avg_{nodes}, Avg_{edges}, Avg_{core} average reduction in proof size
- T(s) average transformation time in seconds
- Max_{nodes}, Max_{edges}, Max_{core} max reduction in proof size

Experimental results over SMT: QF_UF, QF_IDL, QF_LRA, QF_RDL

	#	Avg _{nodes}	Avg _{edges}	Avg _{core}	T(s)	Max _{nodes}	Max_{edges}	<i>Max_{core}</i>
RP	1370	6.7%	7.5%	1.3%	1.7	65.1%	68.9%	39.1%
Ratio								
0.01	1366	8.9%	10.7%	1.4%	3.4	66.3%	70.2%	45.7%
0.025	1366	9.8%	11.9%	1.5%	3.6	77.2%	79.9%	45.7%
0.05	1366	10.7%	13.0%	1.6%	4.1	78.5%	81.2%	45.7%
0.075	1366	11.4%	13.8%	1.7%	4.5	78.5%	81.2%	45.7%
0.1	1364	11.8%	14.4%	1.7%	5.0	78.8%	83.6%	45.7%
0.25	1359	13.6%	16.6%	1.9%	7.6	79.6%	84.4%	45.7%
0.5	1348	15.0%	18.4%	2.0%	11.5	79.1%	85.2%	45.7%
0.75	1341	16.0%	19.5%	2.1%	15.1	79.9%	86.1%	45.7%
1	1337	16.7%	20.4%	2.2%	18.8	79.9%	86.1%	45.7%

- Ratio time threshold as fraction of solving time
- # number of benchmarks solved
- Avg_{nodes}, Avg_{edges}, Avg_{core} average reduction in proof size
- T(s) average transformation time in seconds
- *Max_{nodes}*, *Max_{edges}*, *Max_{core}* max reduction in proof size

Natasha Sharygina (USI)

Experimental results over SMT: QF_UF, QF_IDL, QF_LRA, QF_RDL

	#	Avg _{nodes}	Avg _{edges}	Avg _{core}	T(s)	Max _{nodes}	Max_{edges}	Max _{core}
RP	1370	6.7%	7.5%	1.3%	1.7	65.1%	68.9%	39.1%
Ratio								
0.01	1366	8.9%	10.7%	1.4%	3.4	66.3%	70.2%	45.7%
0.025	1366	9.8%	11.9%	1.5%	3.6	77.2%	79.9%	45.7%
0.05	1366	10.7%	13.0%	1.6%	4.1	78.5%	81.2%	45.7%
0.075	1366	11.4%	13.8%	1.7%	4.5	78.5%	81.2%	45.7%
0.1	1364	11.8%	14.4%	1.7%	5.0	78.8%	83.6%	45.7%
0.25	1359	13.6%	16.6%	1.9%	7.6	79.6%	84.4%	45.7%
0.5	1348	15.0%	18.4%	2.0%	11.5	79.1%	85.2%	45.7%
0.75	1341	16.0%	19.5%	2.1%	15.1	79.9%	86.1%	45.7%
1	1337	16.7%	20.4%	2.2%	18.8	79.9%	86.1%	45.7%

- Ratio time threshold as fraction of solving time
- # number of benchmarks solved
- Avg_{nodes}, Avg_{edges}, Avg_{core} average reduction in proof size
- T(s) average transformation time in seconds
- *Max_{nodes}*, *Max_{edges}*, *Max_{core}* max reduction in proof size

Natasha Sharygina (USI)

Experimental results over SAT

	#	Avg _{nodes}	Avg _{edges}	Avg _{core}	T(s)	Max _{nodes}	Max_{edges}	Max _{core}
RP	25	5.9%	6.5%	1.7%	10.8	33.1%	33.4%	30.3%
Ratio								
0.01	25	6.8%	7.9%	1.7%	32.3	34.0%	34.4%	30.5%
0.025	25	6.8%	7.9%	1.7%	32.3	34.0%	34.4%	30.5%
0.05	25	7.0%	8.2%	1.8%	40.0	34.0%	34.4%	30.5%
0.075	25	7.2%	8.4%	1.8%	49.3	34.7%	35.1%	30.5%
0.1	25	7.3%	8.4%	1.8%	60.2	34.7%	35.1%	30.5%
0.25	25	7.6%	8.8%	1.9%	125.3	39.8%	40.6%	31.7%
0.5	25	7.8%	9.1%	1.9%	243.5	41.0%	41.9%	32.1%
0.75	25	7.9%	9.3%	1.9%	360.0	41.6%	42.6%	32.1%
1	23	8.4%	9.9%	2.1%	175.6	33.1%	33.4%	30.6%

- Ratio time threshold as fraction of solving time
- # number of benchmarks solved
- Avg_{nodes}, Avg_{edges}, Avg_{core} average reduction in proof size
- T(s) average transformation time in seconds
- Max_{nodes}, Max_{edges}, Max_{core} max reduction in proof size

Experimental results over SAT

	#	Avg _{nodes}	Avg _{edges}	Avg _{core}	T(s)	Max _{nodes}	Max_{edges}	Max _{core}
RP	25	5.9%	6.5%	1.7%	10.8	33.1%	33.4%	30.3%
Ratio								
0.01	25	6.8%	7.9%	1.7%	32.3	34.0%	34.4%	30.5%
0.025	25	6.8%	7.9%	1.7%	32.3	34.0%	34.4%	30.5%
0.05	25	7.0%	8.2%	1.8%	40.0	34.0%	34.4%	30.5%
0.075	25	7.2%	8.4%	1.8%	49.3	34.7%	35.1%	30.5%
0.1	25	7.3%	8.4%	1.8%	60.2	34.7%	35.1%	30.5%
0.25	25	7.6%	8.8%	1.9%	125.3	39.8%	40.6%	31.7%
0.5	25	7.8%	9.1%	1.9%	243.5	41.0%	41.9%	32.1%
0.75	25	7.9%	9.3%	1.9%	360.0	41.6%	42.6%	32.1%
1	23	8.4%	9.9%	2.1%	175.6	33.1%	33.4%	30.6%

- Ratio time threshold as fraction of solving time
- # number of benchmarks solved
- Avg_{nodes}, Avg_{edges}, Avg_{core} average reduction in proof size
- T(s) average transformation time in seconds
- *Max_{nodes}*, *Max_{edges}*, *Max_{core}* max reduction in proof size

Natasha Sharygina (USI)

Experimental results over SAT

	#	Avg _{nodes}	Avg _{edges}	Avg _{core}	T(s)	Max _{nodes}	Max_{edges}	Max _{core}
RP	25	5.9%	6.5%	1.7%	10.8	33.1%	33.4%	30.3%
Ratio								
0.01	25	6.8%	7.9%	1.7%	32.3	34.0%	34.4%	30.5%
0.025	25	6.8%	7.9%	1.7%	32.3	34.0%	34.4%	30.5%
0.05	25	7.0%	8.2%	1.8%	40.0	34.0%	34.4%	30.5%
0.075	25	7.2%	8.4%	1.8%	49.3	34.7%	35.1%	30.5%
0.1	25	7.3%	8.4%	1.8%	60.2	34.7%	35.1%	30.5%
0.25	25	7.6%	8.8%	1.9%	125.3	39.8%	40.6%	31.7%
0.5	25	7.8%	9.1%	1.9%	243.5	41.0%	41.9%	32.1%
0.75	25	7.9%	9.3%	1.9%	360.0	41.6%	42.6%	32.1%
1	23	8.4%	9.9%	2.1%	175.6	33.1%	33.4%	30.6%

- Ratio time threshold as fraction of solving time
- # number of benchmarks solved
- Avg_{nodes}, Avg_{edges}, Avg_{core} average reduction in proof size
- T(s) average transformation time in seconds
- *Max_{nodes}*, *Max_{edges}*, *Max_{core}* max reduction in proof size

1 Background

2 Motivation and Related Work

3 Contribution

- Proof Transformation for Interpolation and Reduction
- 4 Summary and Future Work

• Proof transformation

1 Interpolation, SMT, AB-mixed predicates

- Proof transformation
 - 1 Interpolation, SMT, AB-mixed predicates
 - 2 Proof transformation framework for AB-mixed predicates removal

- Proof transformation
 - 1 Interpolation, SMT, AB-mixed predicates
 - 2 Proof transformation framework for AB-mixed predicates removal
 - **3** Easy combination:
 - Standard SMTs
 - State-of-the art interpolant generation procedures

- Proof transformation
 - 1 Interpolation, SMT, AB-mixed predicates
 - 2 Proof transformation framework for AB-mixed predicates removal
 - **3** Easy combination:
 - Standard SMTs
 - State-of-the art interpolant generation procedures
- Rule-based proof reduction

- Proof transformation
 - 1 Interpolation, SMT, AB-mixed predicates
 - 2 Proof transformation framework for AB-mixed predicates removal
 - **3** Easy combination:
 - Standard SMTs
 - State-of-the art interpolant generation procedures
- Rule-based proof reduction
- Pivots redundancies detection and removal

• Exploitation of DPLL proof structure

- Exploitation of DPLL proof structure
- Evaluation on concrete applications (e.g. interpolation)

- Exploitation of DPLL proof structure
- Evaluation on concrete applications (e.g. interpolation)
- Rule-based control of interpolants' strength

Proof reduction

S.F. Rollini, R. Bruttomesso and N. Sharygina An Efficient and Flexible Approach to Resolution Proof Reduction. HVC 2010.

- Proof manipulation for interpolation
- R. Bruttomesso, S.F. Rollini, N. Sharygina and A. Tsitovich Flexible Interpolation with Local Proof Transformations. ICCAD 2010

Thanks for your attention!

http://www.verify.inf.usi.ch/

Natasha Sharygina (USI)

June 21, 2011 70 / 72