Local proof transformations for flexible interpolation and proof reduction

N. Sharygina

Formal Verification and Security Group
University of Lugano

June 21, 2011
1 Background
Outline

1. Background

2. Motivation and Related Work
Outline

1 Background

2 Motivation and Related Work

3 Contribution
 - Proof Transformation for Interpolation and Reduction
Outline

1. Background

2. Motivation and Related Work

3. Contribution
 - Proof Transformation for Interpolation and Reduction

4. Summary and Future Work
Outline

1 Background

2 Motivation and Related Work

3 Contribution
 - Proof Transformation for Interpolation and Reduction

4 Summary and Future Work
Background
Formal Verification in Lugano, Switzerland

- Program Verification
• Program Verification
 • Model checking code (LoopFrog, Synergy, SatAbs (with Oxford), FunFrog), ANSI-C
 • Efficient decision procedures as computational engines of verification (OpenSMT)
Background

Formal Verification in Lugano, Switzerland

- Program Verification
 - Model checking code (LoopFrog, Synergy, SatAbs (with Oxford), FunFrog), ANSI-C
 - Efficient decision procedures as computational engines of verification (OpenSMT)

- Abstractions
Background

Formal Verification in Lugano, Switzerland

- Program Verification
 - Model checking code (LoopFrog, Synergy, SatAbs (with Oxford), FunFrog), ANSI-C
 - Efficient decision procedures as computational engines of verification (OpenSMT)

- Abstractions
 - Program Summarization [ATVA’08], [ASE’09]
 - Avoids fix-point computation by constructing symbolic abstract transformers instead
 - Performs sound over-approximation of (unbounded) loops
 - Precision is tuned by selection of abstract domains
 - Exploits efficiency of SAT/SMT solvers
• Program Termination [CAV’10, TACAS’11]
 • Integration of Loop Summarization with Termination Analysis
 • Compositional Transition Invariants avoid all paths computation of termination checks
 • Simple abstract domains are used for termination checks
Background
Formal Verification in Lugano, Switzerland

- Program Termination [CAV’10, TACAS’11]
 - Integration of Loop Summarization with Termination Analysis
 - Compositional Transition Invariants avoid all paths computation of termination checks
 - Simple abstract domains are used for termination checks

- Synergy of Abstractions [STTT’10]
 - Interleaves precise and over-approximated abstractions
 - Reduces CEGAR iterations
 - Removes multiple counterexamples within a single refinement step
 - Localizes precise abstraction/refinement to relevant parts of the program
Background

Formal Verification in Lugano, Switzerland

- Model checking mobile code [IFM’08], [JFAC’10]
 - Specification language for security policies
 - Formalization of mobile code distribution net
 - Location-specific abstractions and model checking of security policies
Background
Formal Verification in Lugano, Switzerland

- Model checking mobile code [IFM’08], [JFAC’10]
 - Specification language for security policies
 - Formalization of mobile code distribution net
 - Location-specific abstractions and model checking of security policies

- Boolean and Theory Reasoning (SMT)
 - Procedure for bit-vector extraction and concatenation [ICCAD’09]
 - Reduces formulae to the theory of equality to avoid, when possible, expensive reduction to SAT
Background
Formal Verification in Lugano, Switzerland

- Model checking mobile code [IFM’08], [JFAC’10]
 - Specification language for security policies
 - Formalization of mobile code distribution net
 - Location-specific abstractions and model checking of security policies

- Boolean and Theory Reasoning (SMT)
 - Procedure for bit-vector extraction and concatenation [ICCAD’09]
 - Reduces formulae to the theory of equality to avoid, when possible, expensive reduction to SAT
 - Generation of explanations in theory propagation [MEMOCODE’10]
 - Computes explanations on demand by reusing the consistency check algorithm for a generic theory T.
Background

Formal Verification in Lugano, Switzerland

- Boolean and Theory Reasoning (SMT)
 - Generation of interpolants (for QF EUF, RDL)
 - Proof manipulation for interpolation [ICCAD’10]
 - Proof reduction [HVC’10]
• Boolean and Theory Reasoning (SMT)
 • Generation of interpolants (for QF EUF, RDL)
 • Proof manipulation for interpolation [ICCAD’10]
 • Proof reduction [HVC’10]
 • Solver, OpenSMT, combines MiniSAT2 SAT-Solver with state-of-the-art decision procedures for QF EUF, LRA, BV, RDL, IDL
 • Extensible: the SAT-to-theory interface facilitates design and plug-in of new decision procedures
 • Incremental: suitable for incremental verification
 • Open-source: available under GPL license
 • Efficient: currently the fastest open-source SMT Solver for QF UF, IDL, RDL, LRA according to SMT-Comp’10.
Background

Formal Verification in Lugano, Switzerland

- Boolean and Theory Reasoning (SMT)
 - Generation of interpolants (for QF EUF, RDL)
 - Proof manipulation for interpolation [S.F. Rollini, R. Bruttomesso, N. Sharygina, A. Tsitovich, ICCAD’10]
 - Resolution proof reduction [S.F. Rollini, R. Bruttomesso, N. Sharygina, HVC’10]
Outline

1. Background
2. Motivation and Related Work
3. Contribution
 - Proof Transformation for Interpolation and Reduction
4. Summary and Future Work
Resolution proofs find application in several ambits.
Proof Transformation and Reduction

Motivation

- Resolution proofs find application in several ambits
 - Interpolation-based model checking
 - Abstraction techniques
 - Unsatisfiable core extraction in SAT/SMT
 - Automatic theorem proving
Proof Transformation and Reduction

Motivation

• Resolution proofs find application in several ambits
 • Interpolation-based model checking
 • Abstraction techniques
 • Unsatisfiable core extraction in SAT/SMT
 • Automatic theorem proving

• Problems
Proof Transformation and Reduction

Motivation

• Resolution proofs find application in several ambits
 • Interpolation-based model checking
 • Abstraction techniques
 • Unsatisfiable core extraction in SAT/SMT
 • Automatic theorem proving

• Problems
 • Clean structure of proofs is required for interpolation generation
Proof Transformation and Reduction

Motivation

- Resolution proofs find application in several ambits
 - Interpolation-based model checking
 - Abstraction techniques
 - Unsatisfiable core extraction in SAT/SMT
 - Automatic theorem proving

- Problems
 - Clean structure of proofs is required for interpolation generation
 - Size affects efficiency
 - Size can be exponential w.r.t. input formula
Craig’s interpolant \(I \) for unsatisfiable conjunction of formulae \(A \land B \) [Craig57]
• Craig’s interpolant I for unsatisfiable conjunction of formulae $A \land B$ [Craig57]

 • $A \Rightarrow I$, $I \land B$ unsatisfiable
• Craig’s interpolant I for unsatisfiable conjunction of formulae $A \land B$ [Craig57]

 • $A \Rightarrow I$, $I \land B$ unsatisfiable
 • I defined over common symbols of A and B
Craig’s interpolant I for unsatisfiable conjunction of formulae $A \land B$ [Craig57]

- $A \Rightarrow I, I \land B$ unsatisfiable
- I defined over common symbols of A and B
- I as over-approximation A conflicting with B
• Craig’s interpolant \(l \) for unsatisfiable conjunction of formulae \(A \land B \) [Craig57]

- \(A \Rightarrow l, l \land B \) unsatisfiable
- \(l \) defined over common symbols of \(A \) and \(B \)
- \(l \) as over-approximation \(A \) conflicting with \(B \)

• Example

\[
A \equiv (p \lor q) \land (p \lor q) \\
B \equiv (q \lor r) \land (q \lor r)
\]
Craig’s interpolant I for unsatisfiable conjunction of formulae $A \land B$ [Craig57]

- $A \Rightarrow I$, $I \land B$ unsatisfiable
- I defined over common symbols of A and B
- I as over-approximation A conflicting with B

Example

- $A \triangleq (\bar{p} \lor \bar{q}) \land (p \lor \bar{q})$
- $B \triangleq (q \lor \bar{r}) \land (q \lor r)$
Craig’s interpolant I for unsatisfiable conjunction of formulae $A \land B$ [Craig57]

- $A \Rightarrow I$, $I \land B$ unsatisfiable
- I defined over common symbols of A and B
- I as over-approximation A conflicting with B

Example

- $A \triangleq (\overline{p} \lor \overline{q}) \land (p \lor \overline{q})$
- $B \triangleq (q \lor \overline{r}) \land (q \lor r)$
- Interpolant \overline{q}
Craig’s interpolant I for unsatisfiable conjunction of formulae $A \land B$ [Craig57]

- $A \Rightarrow I$, $I \land B$ unsatisfiable
- I defined over common symbols of A and B
- I as over-approximation A conflicting with B

Example

- $A \triangleq (\overline{p} \lor \overline{q}) \land (p \lor \overline{q})$
 $B \triangleq (q \lor \overline{r}) \land (q \lor r)$
- Interpolant \overline{q}
- $A \Rightarrow \overline{q}$
 $\overline{q} \land B$ unsatisfiable
Interpolation

Background

• Craig’s interpolant I for unsatisfiable conjunction of formulae $A \land B$ [Craig'57]

 • I as over-approximation A conflicting with B
Interpolation

Background

- Applications in symbolic model checking
• Applications in symbolic model checking

 • Bounded model checking: approximate cheaper reachability set computation [McMillan03]
Applications in symbolic model checking

- Bounded model checking: approximate cheaper reachability set computation [McMillan03]
- Predicate abstraction refinement based on spurious behaviors [Henzinger04]
Applications in symbolic model checking

- Bounded model checking: approximate cheaper reachability set computation [McMillan03]
- Predicate abstraction refinement based on spurious behaviors [Henzinger04]
- Property-based transition relation approximation [Jhala05]
Interpolation

Background

• Applications in symbolic model checking

 • Bounded model checking: approximate cheaper reachability set computation [McMillan03]

 • Predicate abstraction refinement based on spurious behaviors [Henzinger04]

 • Property-based transition relation approximation [Jhala05]

• Forementioned applications involve

Problem encoding into logic (SAT, SMT)

Problem solving by means of resolution based engines (SAT solvers, SMT solvers)
Interpolation

Background

- Applications in symbolic model checking
 - Bounded model checking: approximate cheaper reachability set computation [McMillan03]
 - Predicate abstraction refinement based on spurious behaviors [Henzinger04]
 - Property-based transition relation approximation [Jhala05]
- Forementioned applications involve
 - Problem encoding into logic (SAT, SMT)
Interpolation

Background

• Applications in symbolic model checking
 • Bounded model checking: approximate cheaper reachability set computation [McMillan03]
 • Predicate abstraction refinement based on spurious behaviors [Henzinger04]
 • Property-based transition relation approximation [Jhala05]

• Forementioned applications involve
 • Problem encoding into logic (SAT, SMT)
 • Problem solving by means of resolution based engines (SAT solvers, SMT solvers)
SAT and SMT

Background

- Satisfiability (SAT)

\[A \equiv (p \lor q) \land (p \lor q) \]

\[B \equiv (q \lor r) \land (q \lor r) \]

- Satisfiability Modulo Theories (SMT): more expressivity than boolean logic

- Timed automata, hybrid systems, . . .

- Arbitrary precision arithmetic, data structures . . .

\[A \equiv (5x - y \leq 1) \land (y - 5x \leq -1) \]

\[B \equiv (y - 5z \leq 3) \land (5z - y \leq -2) \]
SAT and SMT

Background

- Satisfiability (SAT)
 - Example
 \[A \triangleq (\overline{p} \lor \overline{q}) \land (p \lor \overline{q}) \quad B \triangleq (q \lor \overline{r}) \land (q \lor r) \]
SAT and SMT

Background

- Satisfiability (SAT)
 - Example
 \[
 A \triangleq (\overline{p} \lor \overline{q}) \land (p \lor \overline{q}) \\
 B \triangleq (q \lor \overline{r}) \land (q \lor r)
 \]

- Satisfiability Modulo Theories (SMT): more expressivity than boolean logic
SAT and SMT

Background

- Satisfiability (SAT)
 - Example
 \[A \triangleq (\bar{p} \lor \bar{q}) \land (p \lor \bar{q}) \quad B \triangleq (q \lor \bar{r}) \land (q \lor r) \]

- Satisfiability Modulo Theories (SMT): more expressivity than boolean logic
 - Timed automata, hybrid systems, ...
SAT and SMT

Background

- Satisfiability (SAT)
 - Example
 \[A \triangleq (\overline{p} \lor \overline{q}) \land (p \lor \overline{q}) \quad B \triangleq (q \lor \overline{r}) \land (q \lor r) \]

- Satisfiability Modulo Theories (SMT): more expressivity than boolean logic
 - Timed automata, hybrid systems, ...
 - Arbitrary precision arithmetic, data structures ...

SAT and SMT

Background

- **Satisfiability (SAT)**
 - Example
 \[
 A \triangleq (\overline{p} \lor \overline{q}) \land (p \lor \overline{q}) \\
 B \triangleq (q \lor \overline{r}) \land (q \lor r)
 \]

- **Satisfiability Modulo Theories (SMT): more expressivity than boolean logic**
 - Timed automata, hybrid systems, . . .
 - Arbitrary precision arithmetic, data structures . . .
 - Example
 \[
 A \triangleq (5x - y \leq 1) \land (y - 5x \leq -1) \\
 B \triangleq (y - 5z \leq 3) \land (5z - y \leq -2)
 \]
• $A \land B$ unsatisfiable: certificate of unsatisfiability
• $A \land B$ unsatisfiable: certificate of unsatisfiability
 • Propositional proof of unsatisfiability
 • Generated by logging steps at solving time
• $A \land B$ unsatisfiable: certificate of unsatisfiability
 • Propositional proof of unsatisfiability
 • Generated by logging steps at solving time

• DPLL SAT solver [Davis60,62]
SAT and SMT
Proofs and Solving Engines

- $A \land B$ unsatisfiable: certificate of unsatisfiability
 - Propositional proof of unsatisfiability
 - Generated by logging steps at solving time

- DPLL SAT solver [Davis60,62]
 - Search space boolean assignments
 - Backtracking
SAT and SMT
Proofs and Solving Engines

- \(A \land B \) unsatisfiable: certificate of unsatisfiability
 - Propositional proof of unsatisfiability
 - Generated by logging steps at solving time

- DPLL SAT solver [Davis60,62]
 - Search space boolean assignments
 - Backtracking

- SMT solver
• $A \land B$ unsatisfiable: certificate of unsatisfiability
 • Propositional proof of unsatisfiability
 • Generated by logging steps at solving time

• DPLL SAT solver [Davis60,62]
 • Search space boolean assignments
 • Backtracking

• SMT solver
 • DPLL SAT solver
 • Theory solver
• Interpolant I for unsatisfiable conjunction of formulae $A \land B$
• Interpolant \(I \) for unsatisfiable conjunction of formulae \(A \land B \)

• State-of-the-art approach [Pudlák97, McMillan04]
• Interpolant I for unsatisfiable conjunction of formulae $A \land B$

• State-of-the-art approach [Pudlák97, McMillan04]
 • Derivation of unsatisfiability resolution proof of $A \land B$
Interpolation
Generation

- Interpolant I for unsatisfiable conjunction of formulae $A \land B$

- State-of-the-art approach [Pudlák97, McMillan04]
 - Derivation of unsatisfiability resolution proof of $A \land B$
 - Computation of I from proof structure in linear time
Resolution System

Background

- Literal $p \quad \bar{p}$
Resolution System

Background

- Literal \(p \) \(\overline{p} \)

- Clause \(p \lor \overline{q} \lor r \lor \ldots \rightarrow p\overline{q}r \ldots \) Empty clause \(\bot \)
Resolution System

Background

- Literal \(p, \overline{p} \)

- Clause \(p \lor \overline{q} \lor r \lor \ldots \rightarrow p\overline{q}r\ldots \) Empty clause \(\bot \)

- Input formula \((p \lor q) \land (r \lor \overline{p})\ldots \rightarrow \{pq, r\overline{p}\}\)
Resolution System

Background

- **Literal** \(p \), \(\overline{p} \)

- **Clause** \(p \lor \overline{q} \lor r \lor \ldots \rightarrow p\overline{q}r\ldots \) **Empty clause** \(\bot \)

- **Input formula** \((p \lor q) \land (r \lor \overline{p})\ldots \rightarrow \{pq, r\overline{p}\}\)

- **Resolution rule**

 \[
 \frac{pC \quad \overline{p}D}{CD \quad \overline{p}D} \]

 Antecedents: \(pC \overline{p}D \) **Resolvent**: \(CD \) **Pivot**: \(p \)
Resolution System

Background

- Literal \(p, \overline{p} \)

- Clause \(p \lor \overline{q} \lor r \lor \ldots \rightarrow p\overline{q}r \ldots \)

- Empty clause \(\bot \)

- Input formula \((p \lor q) \land (r \lor \overline{p}) \ldots \rightarrow \{pq, r\overline{p}\}\)

- Resolution rule

\[
\begin{array}{c c c}
\text{pC} & \overline{pD} & \rightarrow \ p \\
\end{array}
\]

Antecedents: \(pC, \overline{pD} \)

Resolvent: \(CD \)

Pivot: \(p \)

- Resolution proof of unsatisfiability of a set of clauses \(S \)
Resolution System

Background

- Literal \(p \quad \overline{p} \)

- Clause \(p \lor \overline{q} \lor r \lor \ldots \rightarrow p\overline{q}r \ldots \) Empty clause \(\bot \)

- Input formula \((p \lor q) \land (r \lor \overline{p}) \ldots \rightarrow \{pq, r\overline{p}\} \)

- Resolution rule

\[
\begin{array}{c}
 pC \\
 \overline{p}D
\end{array}
\]

\[
\hline
 CD \\
 p
\end{array}
\]

Antecedents: \(pC \quad \overline{p}D \) Resolvent: \(CD \) Pivot: \(p \)

- Resolution proof of unsatisfiability of a set of clauses \(S \)
 - Tree
 - Leaves as clauses of \(S \)
 - Intermediate nodes as resolvents
 - Root as unique empty clause
Resolution Proofs

SAT

- $A \triangleq \overline{pq}, pq$
- $B \triangleq q\overline{r}, qr$
Resolution Proofs

SAT

- $A \triangleq \{\overline{pq}, pq\}$
 $B \triangleq \{q\overline{r}, qr\}$

- Proof of unsatisfiability

\[
\begin{array}{ccccccccc}
\text{pq} & \overline{pq} & p & q & \overline{r} & qr & r & q & \bot \\
\overline{q} & p & \overline{q} & p & q & r & qr & q & \bot \\
\end{array}
\]
• Computation of interpolant I for $A \land B$ from proof structure
Interpolant Generation
SAT [Pudlák97]

- Computation of interpolant I for $A \land B$ from proof structure

- Partial interpolant for leaf
Interpolant Generation

SAT [Pudlák97]

- Computation of interpolant I for $A \land B$ from proof structure
- Partial interpolant for leaf
- Partial interpolant for resolvent
 - Pivot
 - Partial interpolants for antecedents
Interpolant Generation

SAT [Pudlák97]

- Computation of interpolant I for $A \land B$ from proof structure
- Partial interpolant for leaf
- Partial interpolant for resolvent
 - Pivot
 - Partial interpolants for antecedents
- Partial interpolant for \bot is $/$
Interpolant Generation

SAT [Pudlák97]

- \(A \triangleq \{ \overline{pq}, pq \} \)
- \(B \triangleq \{ q\overline{r}, qr \} \)

- Proof of unsatisfiability

\[
\begin{array}{cccccc}
\overline{pq} & p\overline{q} & p & q\overline{r} & qr & r \\
\hline
\overline{q} & & p &$q\overline{r}$ & qr & r \\
\hline
\overline{q} & & & & q & q \\
\hline
\bot & & & & & q
\end{array}
\]
Interpolant Generation
SAT [Pudlák97]

- \(A \triangleq \{ \overline{pq}, \overline{pq} \} \)
- \(B \triangleq \{ q\overline{r}, qr \} \)

- Proof of unsatisfiability

\[
\begin{array}{cccc}
\overline{pq} & \{ \bot \} & p\overline{q} & \{ \bot \} \\
& & \overline{q} & \\
& & & \bot
\end{array}
\]

\[
\begin{array}{cccc}
q\overline{r} & & qr & \\
& & q & \\
& & & q
\end{array}
\]

Natasha Sharygina (USI) Flexible Proof Transformation June 21, 2011 20 / 72
• \(A \triangleq \{ \overline{pq}, \overline{pq} \} \quad B \triangleq \{ q\overline{r}, qr \} \)

• Proof of unsatisfiability

\[
\begin{array}{ccc}
\overline{pq} \quad \{ \bot \} & \quad p\overline{q} \quad \{ \bot \} & \quad p & \quad q \overline{r} \quad \{ \top \} & \quad qr \quad \{ \top \} & \quad r \\
\overline{q} & \quad q & \quad \overline{q} & \quad \overline{q} & \quad q
\end{array}
\]
• \(A \triangleq \{ \overline{pq}, pq \} \quad B \triangleq \{ q\overline{r}, qr \} \)

• Proof of unsatisfiability

\[
\begin{align*}
\overline{pq} & \quad \{ \bot \} & pq & \quad \{ \bot \} \\
\hline
\overline{q} & \quad \{ \bot \lor \bot \} & p
\end{align*}
\]

\[
\begin{align*}
q\overline{r} & \quad \{ \top \} & qr & \quad \{ \top \} \\
\hline
q & & q
\end{align*}
\]
Interpolant Generation
SAT [Pudlák97]

- $A \triangleq \{ \overline{p}q, pq \}$
- $B \triangleq \{ q\overline{r}, qr \}$

- Proof of unsatisfiability

\[
\begin{align*}
\overline{p}q & \{ \bot \} & pq & \{ \bot \} & p & \\hline
\overline{q} & \{ \bot \} & q & \\hline
\bot
\end{align*}
\]

\[
\begin{align*}
q\overline{r} & \{ \top \} & qr & \{ \top \} & r & \\hline
q & \\hline
q
\end{align*}
\]
Interpolant Generation
SAT [Pudlák97]

- $A \triangleq \{ \overline{pq}, pq \} \quad B \triangleq \{ q\overline{r}, qr \}$

- Proof of unsatisfiability

\[
\begin{array}{c}
\overline{pq} \{ \bot \} \quad pq \{ \bot \} \\
p \\
\overline{q} \{ \bot \} \\
\downarrow \\
\downarrow \\
\downarrow \\
\bot
\end{array}
\begin{array}{c}
q\overline{r} \{ \top \} \\
qr \{ \top \} \\
r \\
q \{ \top \wedge \top \}
\end{array}
\]
Interpolant Generation

SAT [Pudlák97]

- \(A \triangleq \{ \overline{pq}, pq \} \quad B \triangleq \{ q\bar{r}, qr \} \)

- Proof of unsatisfiability

\[
\begin{array}{cccccc}
\overline{pq} & \{ \bot \} & pq & \{ \bot \} & \overline{q} & \{ \bot \} \\
\hline
& & p & & q & \{ \top \} \\
\overline{q} & \{ \bot \} & & & qr & \{ \top \} \\
\hline
& & & & q & \{ \top \} \\
& & & \bot & & q
\end{array}
\]
Interpolant Generation

SAT [Pudlák97]

- $A \triangleq \{ \overline{pq}, pq \}$
- $B \triangleq \{ q\overline{r}, qr \}$

Proof of unsatisfiability:

\[
\begin{array}{c}
\overline{pq} \{ \bot \} \\
\overline{pq} \{ \bot \} \\
\overline{q} \{ \bot \} \\
\bot \{ (\bot \lor \overline{q}) \land (\top \lor q) \}
\end{array}
\]

\[
\begin{array}{c}
pq \{ \bot \} \\
\top \{ \top \} \\
q \{ \top \} \\
q \{ \top \} \\
q \{ \top \}
\end{array}
\]

Natasha Sharygina (USI)
• $A \triangleq \{\overline{pq}, pq\}$ \quad $B \triangleq \{q\overline{r}, qr\}$

• Proof of unsatisfiability

$$
\overline{pq} \quad \{\bot\} \quad p\overline{q} \quad \{\bot\} \quad \overline{q} \quad \{\bot\} \quad r
\overline{q} \quad \{\bot\} \quad q \quad \{\top\} \quad \overline{q} \quad \{\top\} \quad q
\bot \quad \{\overline{q}\} \quad \bot \quad \{\overline{q}\} \quad q \quad \{\top\} \quad \overline{q} \quad \{\top\} \quad q
$$
• $A \triangleq \{(5x - y \leq 1), (y - 5x \leq -1)\} \quad B \triangleq \{(y - 5z \leq 3), (5z - y \leq -2)\}$
Resolution Proofs

SMT

- \[A \triangleq \{ (5x - y \leq 1), (y - 5x \leq -1) \} \]
- \[B \triangleq \{ (y - 5z \leq 3), (5z - y \leq -2) \} \]

- Theory lemmata
Resolution Proofs

SMT

- \(A \triangleq \{ (5x - y \leq 1), \ (y - 5x \leq -1) \} \)

- \(B \triangleq \{ (y - 5z \leq 3), \ (5z - y \leq -2) \} \)

- Theory lemmata

 - LIA:
 - \(t \triangleq \{ (x - z \leq 0) \} \)
 - \(u \triangleq \{ (x - z \geq 1) \} \)
Resolution Proofs

SMT

- $A \triangleq \{ (5x - y \leq 1), (y - 5x \leq -1) \} \quad B \triangleq \{ (y - 5z \leq 3), (5z - y \leq -2) \}$

- Theory lemmata
 - **LIA:**
 - t: $(x - z \leq 0)$
 - u: $(x - z \geq 1)$
 - **LRA:**
 - \bar{p}: $(5x - y \not\leq 1)$
 - \bar{r}: $(y - 5z \not\leq 3)$
 - \bar{u}: $(x - z \not\geq 1)$
Resolution Proofs

SMT

\[A \triangleq \{ (5x - y \leq 1), (y - 5x \leq -1) \} \]

\[B \triangleq \{ (y - 5z \leq 3), (5z - y \leq -2) \} \]

• Theory lemmata

- LIA:
 \[(x - z \leq 0), (x - z \geq 1) \]

- LRA:
 \[(5x - y \not\leq 1), (y - 5z \not\leq 3), (x - z \not\geq 1) \]

 \[(y - 5x \not\leq -1), (5z - y \not\leq -2), (x - z \not\geq 0) \]
• $A \triangleq \{p, q\}$
 $B \triangleq \{r, s\}$
 $L \triangleq \{tu, \overline{pru}, \overline{qst}\}$
Resolution Proofs

SMT

- \(A \triangleq \{ p, q \} \quad B \triangleq \{ r, s \} \quad L \triangleq \{ tu, \overline{pru}, \overline{qst} \} \)

- Proof of unsatisfiability

\[
\begin{align*}
p & \vdash \overline{pru} \\
& \vdash \overline{ru} \quad \vdash r \\
& \vdash \overline{u} \quad \vdash tu \\
& \vdash t \\
& \vdash \overline{qs} \\
& \vdash \overline{s} \\
& \vdash \bot
\end{align*}
\]
• $A \triangleq \{p, q\}$, $B \triangleq \{r, s\}$, $L \triangleq \{tu, \overline{pru}, \overline{qst}\}$

• Proof of unsatisfiability
Interpolant Generation
SMT

- $A \triangleq \{ p, q \}$ \hspace{1cm} $B \triangleq \{ r, s \}$ \hspace{1cm} $L \triangleq \{ tu, \overline{pru}, \overline{qst} \}$

- Proof of unsatisfiability

\[
\begin{align*}
p & \{ \bot \} & \overline{pru} \\
\overline{ru} & \quad r \\
\overline{u} & \quad tu \\
\overline{qst} & \quad t \\
\overline{qs} & \quad q \{ \bot \} \\
\overline{s} & \quad s \\
\bot &
\end{align*}
\]
Interpolant Generation

SMT

- \(A \triangleq \{ p, q \} \) \quad \(B \triangleq \{ r, s \} \) \quad \(L \triangleq \{ t, \overline{pru}, \overline{qst} \} \)

- Proof of unsatisfiability

\[
\begin{align*}
\overline{p} & \{ \bot \} \\
& \overline{pru} \\
& \overline{r}u \\
& \{ \top \} \\
& r \\
& \overline{ru} \quad \overline{r} \\
& \{ \top \} \\
& u \\
& \overline{tu} \quad \overline{qst} \\
& t \\
& \overline{qs} \quad q \\
& \{ \bot \} \\
& s \\
& \overline{s} \quad q \\
& \{ \top \} \\
& s \\
& \{ \bot \}
\end{align*}
\]
Interpolant Generation

SMT

- \(A \triangleq \{ p, q \} \)
- \(B \triangleq \{ r, s \} \)
- \(L \triangleq \{ tu, \overline{pru}, \overline{qst} \} \)

- Proof of unsatisfiability

\[
\begin{align*}
p & \{ \bot \} & \overline{pru} \\
\hline
\overline{ru} & r & \{ \top \} \\
\overline{u} & t & \overline{qst} \\
\hline
\overline{qs} & q & \{ \bot \} \\
\overline{s} & s & \{ \top \} \\
\bot
\end{align*}
\]
Interpolation

Challenge

- State-of-the-art approach [Pudlák97, McMillan04]
Interpolation

Challenge

- State-of-the-art approach [Pudlák97, McMillan04]
 - Derivation of unsatisfiability proof of $A \land B$
 - Computation of interpolant from proof structure in linear time

Natasha Sharygina (USI) Flexible Proof Transformation June 21, 2011
Interpolation

Challenge

- State-of-the-art approach [Pudlák97, McMillan04]
 - Derivation of unsatisfiability proof of $A \land B$
 - Computation of interpolant from proof structure in linear time

- Restriction
Interpolation

Challenge

- State-of-the-art approach [Pudlák97, McMillan04]
 - Derivation of unsatisfiability proof of $A \land B$
 - Computation of interpolant from proof structure in linear time

- Restriction
 - Need for proof not to contain AB-mixed predicates

<table>
<thead>
<tr>
<th>A-local</th>
<th>B-local</th>
<th>AB-common</th>
<th>AB-mixed</th>
</tr>
</thead>
</table>

Natasha Sharygina (USI) Flexible Proof Transformation June 21, 2011 24 / 72
Interpolation

Challenge

- State-of-the-art approach [Pudlák97, McMillan04]
 - Derivation of unsatisfiability proof of $A \land B$
 - Computation of interpolant from proof structure in linear time

- Restriction
 - Need for proof not to contain AB-mixed predicates

\[
A \triangleq \{ (5x - y \leq 1), \ldots \} \\
B \triangleq \{ (y - 5z \leq 3), \ldots \}
\]
Interpolation
Challenge

- State-of-the-art approach [Pudlák97, McMillan04]
 - Derivation of unsatisfiability proof of $A \land B$
 - Computation of interpolant from proof structure in linear time

- Restriction
 - Need for proof not to contain AB-mixed predicates

\[
\begin{align*}
A & \triangleq \{ (5x - y \leq 1), \ldots \} \\
B & \triangleq \{ (y - 5z \leq 3), \ldots \} \\
L & \triangleq \{ (x - z \leq 0), \ldots \}
\end{align*}
\]
• Need for proof not to contain AB-mixed predicates
Interpolation

Possible Solutions

- Need for proof not to contain AB-mixed predicates

- Tune solvers to avoid generating AB-mixed predicates
 [Cimatti08, Beyer08]
Interpolation
Possible Solutions

• Need for proof not to contain AB-mixed predicates

• Tune solvers to avoid generating AB-mixed predicates [Cimatti08, Beyer08]

• Transform proof to remove AB-mixed predicates
• Proof transformation approach
Proof transformation approach

Motivation: more flexibility by decoupling SMT solving and interpolant generation
Proof transformation approach

Motivation: more flexibility by decoupling SMT solving and interpolant generation

Motivation: standard SMT techniques can require addition of AB-mixed predicates
Proof Transformation

Motivation

• Proof transformation approach

• Motivation: more flexibility by decoupling SMT solving and interpolant generation

• Motivation: standard SMT techniques can require addition of AB-mixed predicates

 • Theory reduction via Lemma on Demand [DeMoura02, Barrett06]
 Reduction of AX to EUF
 Reduction of LIA to LRA
 Ackermann’s Expansion

 • Theory combination via DTC [Bozzano05]
Outline

1. Background

2. Motivation and Related Work

3. Contribution
 - Proof Transformation for Interpolation and Reduction

4. Summary and Future Work
Outline

1. Background

2. Motivation and Related Work

3. Contribution
 - Proof Transformation for Interpolation and Reduction

4. Summary and Future Work
• Proof rewriting framework based on local rules
• Proof rewriting framework based on local rules

• Isolation of AB-mixed predicates into subtrees
Contribution
Proof Transformation Framework

- Proof rewriting framework based on local rules
- Isolation of AB-mixed predicates into subtrees
- Removal of AB-mixed subtrees
Contribution
Proof Transformation Framework

- Proof rewriting framework based on local rules
- Isolation of AB-mixed predicates into subtrees
- Removal of AB-mixed subtrees
- No more AB-mixed predicates, proof still valid
Proof Transformation

Effect

(a) Initial proof: A-local, B-local, AB-common, AB-mixed
(b) Transformed proof: AB-mixed predicates isolated into subtrees
(c) Final proof: AB-mixed subtrees removed, new leaves are theory lemmata
Proof Transformation

Advantages

- No more AB-mixed predicates, new leaves are theory lemmata
Proof Transformation

Advantages

- No more AB-mixed predicates, new leaves are theory lemmata
- Easy combination of SMT and interpolation techniques
Advantages

- No more AB-mixed predicates, new leaves are theory lemmata
- Easy combination of SMT and interpolation techniques
 - Theory reduction, theory combination without restrictions
Proof Transformation

Advantages

- No more AB-mixed predicates, new leaves are theory lemmata
- Easy combination of SMT and interpolation techniques
 - Theory reduction, theory combination without restrictions
 - Interpolant generation for propositional resolution proofs of unsatisfiability [Pudlák97]
Proof Transformation

Advantages

- No more AB-mixed predicates, new leaves are theory lemmata
- Easy combination of SMT and interpolation techniques
 - Theory reduction, theory combination without restrictions
 - Interpolant generation for propositional resolution proofs of unsatisfiability [Pudlák97]
 - (Partial) interpolant generation for theory (combination) lemmata [Yorsh05]
Proof Transformation Framework

Features

- Local rewriting rules
Proof Transformation Framework

Features

- Local rewriting rules
- Rule context

\[
\begin{array}{c}
\text{pqC} \quad \bar{p}D \\
\hline
qCD \\
\bar{q}E \\
\hline
CDE
\end{array}
\]
Proof Transformation Framework

Features

- Local rewriting rules

- Rule context

- Exhaustiveness up to symmetry
Proof Transformation Framework
Local Rewriting Rules

\[\begin{array}{c}
\frac{pqC\quad \bar{p}D}{q\quad \bar{q}E\quad p} \quad \Rightarrow \quad \frac{pqC\quad \bar{q}E}{q\quad pCE\quad \bar{p}D} \\
qCD\quad \bar{q}E\quad q
\end{array} \]
Proof Transformation Framework
Local Rewriting Rules

- \(pqC\), \(\overline{p}D\) \(\overline{q}E\) \(q\) \(\Rightarrow\)
 \(CDE\)

- Pivots swapping
• Pivots swapping

• AB-mixed predicates isolation into subtrees
Reduction LIA to LRA

Transformation

- \(A \equiv \{ p, q \} \quad B \equiv \{ r, s \} \quad L \equiv \{ tu, \overline{pru}, \overline{qst} \} \)

- Proof of unsatisfiability
Proof of unsatisfiability
• Proof of unsatisfiability
• Proof of unsatisfiability
• Proof of unsatisfiability
• Proof of unsatisfiability
Proof of unsatisfiability
- Proof of unsatisfiability
• Proof of unsatisfiability
Reduction LIA to LRA

Transformation

- Proof of unsatisfiability
Proof of unsatisfiability
• Proof of unsatisfiability
• Proof of unsatisfiability
Proof of unsatisfiability
• Proof of unsatisfiability
• Proof of unsatisfiability
• Potential drawbacks
Potential drawbacks

Overhead w.r.t. solving time
Proof Transformation Framework

Considerations

• Potential drawbacks

 • Overhead w.r.t. solving time

 • Increase of proof size
Transformation Framework

Features

- Local rewriting rules
Transformation Framework

Features

- Local rewriting rules
 - B reduction
 - A perturbation
Transformation Framework

Features

- Local rewriting rules
 - B reduction
 - A perturbation

- Rule context

\[
\begin{array}{c}
\text{pqC} \\
\hline
\text{p}D \\
\hline
\text{qCD} \\
\hline
\text{qE} \\
\hline
\text{CDE}
\end{array}
\]
Transformation Framework

Features

• Local rewriting rules
 • B reduction
 • A perturbation

• Rule context

\[
\frac{pqC \quad \bar{p}D}{qCD \quad \bar{q}E} \quad p \quad q
\]

• Exhaustiveness up to symmetry
• **B rules**

\[
\begin{array}{c|c}
\text{B1} & \frac{pqC \quad \neg pqD}{qCD \quad p} \quad \frac{p\neg E}{pE \quad q} \\
 & \frac{pCDE}{\Rightarrow} \\
\end{array}
\]

\[
\frac{pqC \quad p\neg E}{pCE \quad q}
\]
B rules

| B1 | $\frac{pqC}{qCD} \frac{\overline{pq}D}{p} \frac{\overline{pq}E}{q} \Rightarrow \frac{pqC}{pCE} \frac{\overline{pq}E}{q} \frac{pqC}{pCE} $ |

- Redundancy as reintroduction variable after elimination
B rules

| $B1$ | $\begin{array}{c} pqC \\ \bar{p}qD \\ qC \bar{D} \\ \bar{C}DE \\ pCE \\ q \end{array}$ | \Rightarrow | $\begin{array}{c} \bar{p}qC \\ p\bar{q}E \\ q \end{array}$ |

- Redundancy as reintroduction variable after elimination
- Subproof simplification
Transformation Framework

Local rewriting rules

- B rules

| B1 | \[\frac{pqC \quad \bar{p}qD}{qCD \quad p\bar{q}E} p \Rightarrow \frac{pqC \quad p\bar{q}E}{pCDE} q] |

- Redundancy as reintroduction variable after elimination

- Subproof simplification

- Subproof root strengthening
Transformation Framework

Local rewriting rules

- **A rules**

<table>
<thead>
<tr>
<th>A2</th>
<th>$\frac{pqC}{qCD} \frac{\overline{p}D}{\overline{q}E} \frac{p}{q} \Rightarrow \frac{pqC}{pCE} \frac{\overline{q}E}{\overline{p}D} \frac{q}{CDE} p$</th>
</tr>
</thead>
</table>
Transformation Framework

Local rewriting rules

- **A rules**

\[
\begin{array}{c|c}
\text{A2} & \begin{array}{c}
\frac{pqC}{qCD} & \frac{\overline{p}D}{p} \\
\frac{\overline{q}E}{q} & \Rightarrow \\
\frac{CDE}{q}\end{array} & \begin{array}{c}
\frac{pqC}{pCE} & \frac{\overline{q}E}{q} \\
\frac{\overline{p}D}{p} & \frac{CDE}{q}\end{array}
\end{array}
\]

- **Pivots swapping**
Transformation Framework

Local rewriting rules

- A rules

\[
\begin{array}{c|c}
A2 & \frac{pqC \quad \overline{p}D}{qCD} \quad p \\
 & \frac{\overline{q}E}{q} \quad \Rightarrow \\
 & \frac{CDE}{pCE} \quad \frac{qCDE}{\overline{p}D} \quad q \\
& \frac{pCE}{pCE} \quad q \\
& \frac{CDE}{CDE} \quad p
\end{array}
\]

- Pivots swapping

- Topology perturbation
Transformation Framework

Local rewriting rules

- **A rules**

| A2 | \[
\begin{align*}
& pqC \quad \overline{p}D \\
& qCD \quad \overline{q}E \\
& CDE
\end{align*}
\]
\[
\Rightarrow
\begin{align*}
& pqC \quad \overline{q}E \\
& pCE \quad \overline{p}D \\
& CDE
\end{align*}
\] |

- **Pivots swapping**

- **Topology perturbation**

- **Redundancies exposure**
Local rewriting rules

<table>
<thead>
<tr>
<th>Rule</th>
<th>Premises</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>(pqC \quad \neg qD \quad p) \quad qCD \quad \neg qE \quad q \quad \Rightarrow \quad pqC \quad \neg qE \quad \neg qE \quad \neg qD \quad q) \quad pCE \quad \neg pDE \quad p</td>
<td>CDE \quad pCE \quad \neg pDE \quad p</td>
</tr>
<tr>
<td>A2</td>
<td>(pqC \quad \neg pD \quad p) \quad qCD \quad \neg qE \quad q \quad \Rightarrow \quad pqC \quad \neg qE \quad \neg qE \quad pCE \quad p \quad \neg pD \quad p</td>
<td>CDE \quad \neg pE \quad pCE \quad \neg pD \quad p</td>
</tr>
<tr>
<td>B1</td>
<td>(pqC \quad \neg pD \quad p) \quad qCD \quad \neg p\neg qE \quad q \quad \Rightarrow \quad pqC \quad \neg p\neg qE \quad \neg p\neg qE \quad pCE \quad \neg pCE \quad q</td>
<td>pCDE \quad pCE \quad \neg pCE \quad q</td>
</tr>
<tr>
<td>B2</td>
<td>(pqC \quad \neg pD \quad p) \quad qDC \quad \neg p\neg qE \quad q \quad \Rightarrow \quad pqC \quad \neg p\neg qE \quad \neg p\neg qE \quad pCE \quad \neg pCE \quad \neg pD \quad p</td>
<td>pCDE \quad pCE \quad \neg pCE \quad \neg pD \quad p</td>
</tr>
<tr>
<td>B2'</td>
<td>(pqC \quad \neg pD \quad p) \quad qDC \quad \neg p\neg qE \quad q \quad \Rightarrow \quad pqC \quad \neg p\neg qE \quad \neg p\neg qE \quad pCE \quad \neg pCE \quad \neg pD \quad p</td>
<td>pCDE \quad pCE \quad \neg pCE \quad \neg pD \quad p</td>
</tr>
<tr>
<td>B3</td>
<td>(pqC \quad \neg pD \quad p) \quad qCD \quad \neg p\neg qE \quad q \quad \Rightarrow \quad \neg pD</td>
<td>pCDE \quad \neg pCE \quad \neg pCE \quad \neg pD</td>
</tr>
</tbody>
</table>
• opensmt
Evaluation
Framework and Benchmarks

- **opensmt**
 - C++ open-source SMT solver developed at USI
 - Fastest open-source solver in SMT-comp 2009, 2010 for various logics
• **opensmt**

 • C++ open-source SMT solver developed at USI

 • Fastest open-source solver in SMT-comp 2009, 2010 for various logics

• Benchmarks
• **opensmt**
 - C++ open-source SMT solver developed at USI
 - Fastest open-source solver in SMT-comp 2009, 2010 for various logics

• Benchmarks
 - SMT: SMT-LIB library
 - Academic and industrial problems
Evaluation

Experimental results over QF_UFIDL

<table>
<thead>
<tr>
<th>Group</th>
<th>#</th>
<th>#AB</th>
<th>%<sub>time</sub></th>
<th>%<sub>nodes</sub></th>
<th>%<sub>edges</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>RDS</td>
<td>2</td>
<td>7</td>
<td>93%</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>EufLaAr</td>
<td>2</td>
<td>103</td>
<td>91%</td>
<td>30%</td>
<td>26%</td>
</tr>
<tr>
<td>pete</td>
<td>6</td>
<td>4</td>
<td>33%</td>
<td>8%</td>
<td>9%</td>
</tr>
<tr>
<td>pete2</td>
<td>56</td>
<td>17</td>
<td>59%</td>
<td>27%</td>
<td>32%</td>
</tr>
<tr>
<td>uclid</td>
<td>8</td>
<td>11</td>
<td>64%</td>
<td>37%</td>
<td>42%</td>
</tr>
<tr>
<td>Overall</td>
<td>74</td>
<td>17</td>
<td>59%</td>
<td>26%</td>
<td>30%</td>
</tr>
</tbody>
</table>

- # — number of benchmarks solved
- #_{AB} — average number of AB-mixed predicates in proof
- %_{time} — average time overhead
- %_{nodes}, %_{edges} — average difference in proof size
Comparison

- RecyclePivots (closest related work) [Strichman’08]

 - Pros
 - Global information
 - Fast and effective

 - Cons
 - Cannot expose redundancies

 - Rule-based approach

 - Pros
 - Flexibility in rules application
 - Flexibility in amount of transformation
 - Can expose redundancies

 - Cons
 - Local information
Comparison

- RecyclePivots (closest related work) [Strichman’08]
 - **Pros**
 - Global information
 - Fast and effective
 - **Cons**
 - Cannot expose redundancies
Comparison

- RecyclePivots (closest related work) [Strichman’08]
 - **Pros**
 - Global information
 - Fast and effective
 - **Cons**
 - Cannot expose redundancies

- Rule-based approach
Comparison

- RecyclePivots (closest related work) [Strichman’08]
 - **Pros**
 - Global information
 - Fast and effective
 - **Cons**
 - Cannot expose redundancies

- Rule-based approach
 - **Pros**
 - Flexibility in rules application
 - Flexibility in amount of transformation
 - Can expose redundancies
 - **Cons**
 - Local information
• Based on a sequence of proof traversals (e.g. topological order)
• Based on a sequence of proof traversals (e.g. topological order)

• Parameterized in number of traversals and time limit
- Based on a sequence of proof traversals (e.g. topological order)
- Parameterized in number of traversals and time limit
- Examination non-leaf clauses
Implementation
Reduction Algorithm

• Based on a sequence of proof traversals (e.g. topological order)

• Parameterized in number of traversals and time limit

• Examination non-leaf clauses

 • Pivot in both antecedents \rightarrow update, match context, apply rule

\[
\frac{qC'D'}{CDE} \frac{\overline{qE'}}{q} \Rightarrow \frac{qC'D'}{C'D'E'} \frac{\overline{qE'}}{q} \Rightarrow \frac{pqC'}{qC'D'} \frac{\overline{pD'}}{C'D'E'} \frac{\overline{qE'}}{q}
\]
Implementation
Reduction Algorithm

- Based on a sequence of proof traversals (e.g. topological order)
- Parameterized in number of traversals and time limit
- Examination non-leaf clauses
 - Pivot in both antecedents → update, match context, apply rule
 \[
 \frac{qC'D'}{CDE} \quad \frac{\overline{qE'}}{q} \quad \Rightarrow \quad \frac{qC'D'}{C'D'E'} \quad \frac{\overline{qE'}}{q} \quad \Rightarrow \quad \frac{p\overline{qC'}}{qC'D'} \quad \frac{\overline{pD'}}{C'D'E'} \quad \frac{\overline{qE'}}{q}
 \]
 - Pivot not in both antecedents → remove resolution step
 \[
 \frac{C'D'}{CDE} \quad \frac{\overline{qE'}}{q} \quad \Rightarrow \quad C'D'
 \]
Implementation
Reduction Algorithm

- Based on a sequence of proof traversals (e.g. topological order)
- Parameterized in number of traversals and time limit
- Examination non-leaf clauses
 - Pivot in both antecedents \rightarrow update, match context, apply rule
 $$\frac{qC'D'}{CDE} \frac{\overline{q}E'}{q} \Rightarrow \frac{qC'D'}{C'D'E'} \frac{\overline{q}E'}{q} \Rightarrow \frac{pqC'}{qC'D'} \frac{\overline{p}D'}{p} \frac{\overline{q}E'}{q}$$
 - Pivot not in both antecedents \rightarrow remove resolution step
 $$\frac{C'D'}{CDE} \frac{\overline{q}E'}{q} \Rightarrow C'D'$$
- Easy combination with RecyclePivots
Evaluation
Framework and Benchmarks

- Implemented in C++ and integrated with OpenSMT
- Available at www.inf.usi.ch/phd/rollini/hvc.html
• Implemented in C++ and integrated with OpenSMT

• Available at www.inf.usi.ch/phd/rollini/hvc.html

• Benchmarks
• Implemented in C++ and integrated with OpenSMT

• Available at www.inf.usi.ch/phd/rollini/hvc.html

• Benchmarks
 • SMT: SMT-LIB library
 • SAT: SAT competition
 • Academic and industrial problems
Combined Approach Evaluation

Experimental results over SMT: QF-UF, QF_IDL, QF_LRA, QF_RDL

<table>
<thead>
<tr>
<th></th>
<th>#</th>
<th>Avg_nodes</th>
<th>Avg_edges</th>
<th>Avg_core</th>
<th>T(s)</th>
<th>Max_nodes</th>
<th>Max_edges</th>
<th>Max_core</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP</td>
<td>1370</td>
<td>6.7%</td>
<td>7.5%</td>
<td>1.3%</td>
<td>1.7</td>
<td>65.1%</td>
<td>68.9%</td>
<td>39.1%</td>
</tr>
<tr>
<td>Ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>1366</td>
<td>8.9%</td>
<td>10.7%</td>
<td>1.4%</td>
<td>3.4</td>
<td>66.3%</td>
<td>70.2%</td>
<td>45.7%</td>
</tr>
<tr>
<td>0.025</td>
<td>1366</td>
<td>9.8%</td>
<td>11.9%</td>
<td>1.5%</td>
<td>3.6</td>
<td>77.2%</td>
<td>79.9%</td>
<td>45.7%</td>
</tr>
<tr>
<td>0.05</td>
<td>1366</td>
<td>10.7%</td>
<td>13.0%</td>
<td>1.6%</td>
<td>4.1</td>
<td>78.5%</td>
<td>81.2%</td>
<td>45.7%</td>
</tr>
<tr>
<td>0.075</td>
<td>1366</td>
<td>11.4%</td>
<td>13.8%</td>
<td>1.7%</td>
<td>4.5</td>
<td>78.5%</td>
<td>81.2%</td>
<td>45.7%</td>
</tr>
<tr>
<td>0.1</td>
<td>1364</td>
<td>11.8%</td>
<td>14.4%</td>
<td>1.7%</td>
<td>5.0</td>
<td>78.8%</td>
<td>83.6%</td>
<td>45.7%</td>
</tr>
<tr>
<td>0.25</td>
<td>1359</td>
<td>13.6%</td>
<td>16.6%</td>
<td>1.9%</td>
<td>7.6</td>
<td>79.6%</td>
<td>84.4%</td>
<td>45.7%</td>
</tr>
<tr>
<td>0.5</td>
<td>1348</td>
<td>15.0%</td>
<td>18.4%</td>
<td>2.0%</td>
<td>11.5</td>
<td>79.1%</td>
<td>85.2%</td>
<td>45.7%</td>
</tr>
<tr>
<td>0.75</td>
<td>1341</td>
<td>16.0%</td>
<td>19.5%</td>
<td>2.1%</td>
<td>15.1</td>
<td>79.9%</td>
<td>86.1%</td>
<td>45.7%</td>
</tr>
<tr>
<td>1</td>
<td>1337</td>
<td>16.7%</td>
<td>20.4%</td>
<td>2.2%</td>
<td>18.8</td>
<td>79.9%</td>
<td>86.1%</td>
<td>45.7%</td>
</tr>
</tbody>
</table>

- **Ratio** — time threshold as fraction of solving time
- **#** — number of benchmarks solved
- **Avg_nodes, Avg_edges, Avg_core** — average reduction in proof size
- **T(s)** — average transformation time in seconds
- **Max_nodes, Max_edges, Max_core** — max reduction in proof size
Combined Approach Evaluation

Experimental results over SMT: QF_UF, QF_IDL, QF_LRA, QF_RDL

<table>
<thead>
<tr>
<th></th>
<th>#</th>
<th>Avg_nodes</th>
<th>Avg_edges</th>
<th>Avg_core</th>
<th>T(s)</th>
<th>Max_nodes</th>
<th>Max_edges</th>
<th>Max_core</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP</td>
<td>1370</td>
<td>6.7%</td>
<td>7.5%</td>
<td>1.3%</td>
<td>1.7</td>
<td>65.1%</td>
<td>68.9%</td>
<td>39.1%</td>
</tr>
<tr>
<td>Ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>1366</td>
<td>8.9%</td>
<td>10.7%</td>
<td>1.4%</td>
<td>3.4</td>
<td>66.3%</td>
<td>70.2%</td>
<td>45.7%</td>
</tr>
<tr>
<td>0.025</td>
<td>1366</td>
<td>9.8%</td>
<td>11.9%</td>
<td>1.5%</td>
<td>3.6</td>
<td>77.2%</td>
<td>79.9%</td>
<td>45.7%</td>
</tr>
<tr>
<td>0.05</td>
<td>1366</td>
<td>10.7%</td>
<td>13.0%</td>
<td>1.6%</td>
<td>4.1</td>
<td>78.5%</td>
<td>81.2%</td>
<td>45.7%</td>
</tr>
<tr>
<td>0.075</td>
<td>1366</td>
<td>11.4%</td>
<td>13.8%</td>
<td>1.7%</td>
<td>4.5</td>
<td>78.5%</td>
<td>81.2%</td>
<td>45.7%</td>
</tr>
<tr>
<td>0.1</td>
<td>1364</td>
<td>11.8%</td>
<td>14.4%</td>
<td>1.7%</td>
<td>5.0</td>
<td>78.8%</td>
<td>83.6%</td>
<td>45.7%</td>
</tr>
<tr>
<td>0.25</td>
<td>1359</td>
<td>13.6%</td>
<td>16.6%</td>
<td>1.9%</td>
<td>7.6</td>
<td>79.6%</td>
<td>84.4%</td>
<td>45.7%</td>
</tr>
<tr>
<td>0.5</td>
<td>1348</td>
<td>15.0%</td>
<td>18.4%</td>
<td>2.0%</td>
<td>11.5</td>
<td>79.1%</td>
<td>85.2%</td>
<td>45.7%</td>
</tr>
<tr>
<td>0.75</td>
<td>1341</td>
<td>16.0%</td>
<td>19.5%</td>
<td>2.1%</td>
<td>15.1</td>
<td>79.9%</td>
<td>86.1%</td>
<td>45.7%</td>
</tr>
<tr>
<td>1</td>
<td>1337</td>
<td>16.7%</td>
<td>20.4%</td>
<td>2.2%</td>
<td>18.8</td>
<td>79.9%</td>
<td>86.1%</td>
<td>45.7%</td>
</tr>
</tbody>
</table>

- **Ratio** — time threshold as fraction of solving time
- **#** — number of benchmarks solved
- **Avg_nodes, Avg_edges, Avg_core** — average reduction in proof size
- **T(s)** — average transformation time in seconds
- **Max_nodes, Max_edges, Max_core** — max reduction in proof size
Combined Approach Evaluation

Experimental results over SMT: QF_UF, QF_IDL, QF_LRA, QF_RDL

<table>
<thead>
<tr>
<th>#</th>
<th>Avg_nodes</th>
<th>Avg_edges</th>
<th>Avg_core</th>
<th>T(s)</th>
<th>Max_nodes</th>
<th>Max_edges</th>
<th>Max_core</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP</td>
<td>1370</td>
<td>6.7%</td>
<td>7.5%</td>
<td>1.3%</td>
<td>1.7</td>
<td>65.1%</td>
<td>68.9%</td>
</tr>
<tr>
<td>Ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>1366</td>
<td>8.9%</td>
<td>10.7%</td>
<td>1.4%</td>
<td>3.4</td>
<td>66.3%</td>
<td>70.2%</td>
</tr>
<tr>
<td>0.025</td>
<td>1366</td>
<td>9.8%</td>
<td>11.9%</td>
<td>1.5%</td>
<td>3.6</td>
<td>77.2%</td>
<td>79.9%</td>
</tr>
<tr>
<td>0.05</td>
<td>1366</td>
<td>10.7%</td>
<td>13.0%</td>
<td>1.6%</td>
<td>4.1</td>
<td>78.5%</td>
<td>81.2%</td>
</tr>
<tr>
<td>0.075</td>
<td>1366</td>
<td>11.4%</td>
<td>13.8%</td>
<td>1.7%</td>
<td>4.5</td>
<td>78.5%</td>
<td>81.2%</td>
</tr>
<tr>
<td>0.1</td>
<td>1364</td>
<td>11.8%</td>
<td>14.4%</td>
<td>1.7%</td>
<td>5.0</td>
<td>78.8%</td>
<td>83.6%</td>
</tr>
<tr>
<td>0.25</td>
<td>1359</td>
<td>13.6%</td>
<td>16.6%</td>
<td>1.9%</td>
<td>7.6</td>
<td>79.6%</td>
<td>84.4%</td>
</tr>
<tr>
<td>0.5</td>
<td>1348</td>
<td>15.0%</td>
<td>18.4%</td>
<td>2.0%</td>
<td>11.5</td>
<td>79.1%</td>
<td>85.2%</td>
</tr>
<tr>
<td>0.75</td>
<td>1341</td>
<td>16.0%</td>
<td>19.5%</td>
<td>2.1%</td>
<td>15.1</td>
<td>79.9%</td>
<td>86.1%</td>
</tr>
<tr>
<td>1</td>
<td>1337</td>
<td>16.7%</td>
<td>20.4%</td>
<td>2.2%</td>
<td>18.8</td>
<td>79.9%</td>
<td>86.1%</td>
</tr>
</tbody>
</table>

- **Ratio** — time threshold as fraction of solving time
- **#** — number of benchmarks solved
- **Avg_nodes, Avg_edges, Avg_core** — average reduction in proof size
- **T(s)** — average transformation time in seconds
- **Max_nodes, Max_edges, Max_core** — max reduction in proof size
Combined Approach Evaluation

Experimental results over SAT

<table>
<thead>
<tr>
<th>#</th>
<th>Avg_nodes</th>
<th>Avg_edges</th>
<th>Avg_core</th>
<th>T(s)</th>
<th>Max_nodes</th>
<th>Max_edges</th>
<th>Max_core</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP</td>
<td>25</td>
<td>5.9%</td>
<td>6.5%</td>
<td>1.7%</td>
<td>10.8</td>
<td>33.1%</td>
<td>33.4%</td>
</tr>
<tr>
<td>Ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>25</td>
<td>6.8%</td>
<td>7.9%</td>
<td>1.7%</td>
<td>32.3</td>
<td>34.0%</td>
<td>34.4%</td>
</tr>
<tr>
<td>0.025</td>
<td>25</td>
<td>6.8%</td>
<td>7.9%</td>
<td>1.7%</td>
<td>32.3</td>
<td>34.0%</td>
<td>34.4%</td>
</tr>
<tr>
<td>0.05</td>
<td>25</td>
<td>7.0%</td>
<td>8.2%</td>
<td>1.8%</td>
<td>40.0</td>
<td>34.0%</td>
<td>34.4%</td>
</tr>
<tr>
<td>0.075</td>
<td>25</td>
<td>7.2%</td>
<td>8.4%</td>
<td>1.8%</td>
<td>49.3</td>
<td>34.7%</td>
<td>35.1%</td>
</tr>
<tr>
<td>0.1</td>
<td>25</td>
<td>7.3%</td>
<td>8.4%</td>
<td>1.8%</td>
<td>60.2</td>
<td>34.7%</td>
<td>35.1%</td>
</tr>
<tr>
<td>0.25</td>
<td>25</td>
<td>7.6%</td>
<td>8.8%</td>
<td>1.9%</td>
<td>125.3</td>
<td>39.8%</td>
<td>40.6%</td>
</tr>
<tr>
<td>0.5</td>
<td>25</td>
<td>7.8%</td>
<td>9.1%</td>
<td>1.9%</td>
<td>243.5</td>
<td>41.0%</td>
<td>41.9%</td>
</tr>
<tr>
<td>0.75</td>
<td>25</td>
<td>7.9%</td>
<td>9.3%</td>
<td>1.9%</td>
<td>360.0</td>
<td>41.6%</td>
<td>42.6%</td>
</tr>
<tr>
<td>1</td>
<td>23</td>
<td>8.4%</td>
<td>9.9%</td>
<td>2.1%</td>
<td>175.6</td>
<td>33.1%</td>
<td>33.4%</td>
</tr>
</tbody>
</table>

- **Ratio** — time threshold as fraction of solving time
- **#** — number of benchmarks solved
- **Avg_nodes, Avg_edges, Avg_core** — average reduction in proof size
- **T(s)** — average transformation time in seconds
- **Max_nodes, Max_edges, Max_core** — max reduction in proof size
Combined Approach Evaluation

Experimental results over SAT

<table>
<thead>
<tr>
<th></th>
<th>#</th>
<th>Avg_nodes</th>
<th>Avg_edges</th>
<th>Avg_core</th>
<th>T(s)</th>
<th>Max_nodes</th>
<th>Max_edges</th>
<th>Max_core</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP</td>
<td>25</td>
<td>5.9%</td>
<td>6.5%</td>
<td>1.7%</td>
<td>10.8</td>
<td>33.1%</td>
<td>33.4%</td>
<td>30.3%</td>
</tr>
<tr>
<td>Ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>25</td>
<td>6.8%</td>
<td>7.9%</td>
<td>1.7%</td>
<td>32.3</td>
<td>34.0%</td>
<td>34.4%</td>
<td>30.5%</td>
</tr>
<tr>
<td>0.025</td>
<td>25</td>
<td>6.8%</td>
<td>7.9%</td>
<td>1.7%</td>
<td>32.3</td>
<td>34.0%</td>
<td>34.4%</td>
<td>30.5%</td>
</tr>
<tr>
<td>0.05</td>
<td>25</td>
<td>7.0%</td>
<td>8.2%</td>
<td>1.8%</td>
<td>40.0</td>
<td>34.0%</td>
<td>34.4%</td>
<td>30.5%</td>
</tr>
<tr>
<td>0.075</td>
<td>25</td>
<td>7.2%</td>
<td>8.4%</td>
<td>1.8%</td>
<td>49.3</td>
<td>34.7%</td>
<td>35.1%</td>
<td>30.5%</td>
</tr>
<tr>
<td>0.1</td>
<td>25</td>
<td>7.3%</td>
<td>8.4%</td>
<td>1.8%</td>
<td>60.2</td>
<td>34.7%</td>
<td>35.1%</td>
<td>30.5%</td>
</tr>
<tr>
<td>0.25</td>
<td>25</td>
<td>7.6%</td>
<td>8.8%</td>
<td>1.9%</td>
<td>125.3</td>
<td>39.8%</td>
<td>40.6%</td>
<td>31.7%</td>
</tr>
<tr>
<td>0.5</td>
<td>25</td>
<td>7.8%</td>
<td>9.1%</td>
<td>1.9%</td>
<td>243.5</td>
<td>41.0%</td>
<td>41.9%</td>
<td>32.1%</td>
</tr>
<tr>
<td>0.75</td>
<td>25</td>
<td>7.9%</td>
<td>9.3%</td>
<td>1.9%</td>
<td>360.0</td>
<td>41.6%</td>
<td>42.6%</td>
<td>32.1%</td>
</tr>
<tr>
<td>1</td>
<td>23</td>
<td>8.4%</td>
<td>9.9%</td>
<td>2.1%</td>
<td>175.6</td>
<td>33.1%</td>
<td>33.4%</td>
<td>30.6%</td>
</tr>
</tbody>
</table>

- **Ratio** — time threshold as fraction of solving time
- **#** — number of benchmarks solved
- **Avg_nodes, Avg_edges, Avg_core** — average reduction in proof size
- **T(s)** — average transformation time in seconds
- **Max_nodes, Max_edges, Max_core** — max reduction in proof size
Combined Approach Evaluation

Experimental results over SAT

<table>
<thead>
<tr>
<th>Ratio</th>
<th>#</th>
<th>$\text{Avg}_{\text{nodes}}$</th>
<th>$\text{Avg}_{\text{edges}}$</th>
<th>Avg_{core}</th>
<th>$T(s)$</th>
<th>$\text{Max}_{\text{nodes}}$</th>
<th>$\text{Max}_{\text{edges}}$</th>
<th>Max_{core}</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP</td>
<td>25</td>
<td>5.9%</td>
<td>6.5%</td>
<td>1.7%</td>
<td>10.8</td>
<td>33.1%</td>
<td>33.4%</td>
<td>30.3%</td>
</tr>
<tr>
<td>Ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>25</td>
<td>6.8%</td>
<td>7.9%</td>
<td>1.7%</td>
<td>32.3</td>
<td>34.0%</td>
<td>34.4%</td>
<td>30.5%</td>
</tr>
<tr>
<td>0.025</td>
<td>25</td>
<td>6.8%</td>
<td>7.9%</td>
<td>1.7%</td>
<td>32.3</td>
<td>34.0%</td>
<td>34.4%</td>
<td>30.5%</td>
</tr>
<tr>
<td>0.05</td>
<td>25</td>
<td>7.0%</td>
<td>8.2%</td>
<td>1.8%</td>
<td>40.0</td>
<td>34.0%</td>
<td>34.4%</td>
<td>30.5%</td>
</tr>
<tr>
<td>0.075</td>
<td>25</td>
<td>7.2%</td>
<td>8.4%</td>
<td>1.8%</td>
<td>49.3</td>
<td>34.7%</td>
<td>35.1%</td>
<td>30.5%</td>
</tr>
<tr>
<td>0.1</td>
<td>25</td>
<td>7.3%</td>
<td>8.4%</td>
<td>1.8%</td>
<td>60.2</td>
<td>34.7%</td>
<td>35.1%</td>
<td>30.5%</td>
</tr>
<tr>
<td>0.25</td>
<td>25</td>
<td>7.6%</td>
<td>8.8%</td>
<td>1.9%</td>
<td>125.3</td>
<td>39.8%</td>
<td>40.6%</td>
<td>31.7%</td>
</tr>
<tr>
<td>0.5</td>
<td>25</td>
<td>7.8%</td>
<td>9.1%</td>
<td>1.9%</td>
<td>243.5</td>
<td>41.0%</td>
<td>41.9%</td>
<td>32.1%</td>
</tr>
<tr>
<td>0.75</td>
<td>25</td>
<td>7.9%</td>
<td>9.3%</td>
<td>1.9%</td>
<td>360.0</td>
<td>41.6%</td>
<td>42.6%</td>
<td>32.1%</td>
</tr>
<tr>
<td>1</td>
<td>23</td>
<td>8.4%</td>
<td>9.9%</td>
<td>2.1%</td>
<td>175.6</td>
<td>33.1%</td>
<td>33.4%</td>
<td>30.6%</td>
</tr>
</tbody>
</table>

- **Ratio** — time threshold as fraction of solving time
- **#** — number of benchmarks solved
- **$\text{Avg}_{\text{nodes}}, \text{Avg}_{\text{edges}}, \text{Avg}_{\text{core}}$** — average reduction in proof size
- **$T(s)$** — average transformation time in seconds
- **$\text{Max}_{\text{nodes}}, \text{Max}_{\text{edges}}, \text{Max}_{\text{core}}$** — max reduction in proof size
Outline

1 Background
2 Motivation and Related Work
3 Contribution
 ✷ Proof Transformation for Interpolation and Reduction
4 Summary and Future Work
Summary

• Proof transformation
 1 Interpolation, SMT, AB-mixed predicates
Proof transformation

1. Interpolation, SMT, AB-mixed predicates
2. Proof transformation framework for AB-mixed predicates removal
Summary

- Proof transformation
 1. Interpolation, SMT, AB-mixed predicates
 2. Proof transformation framework for AB-mixed predicates removal
 3. Easy combination:
 - Standard SMTs
 - State-of-the art interpolant generation procedures
Summary

- Proof transformation
 1. Interpolation, SMT, AB-mixed predicates
 2. Proof transformation framework for AB-mixed predicates removal
 3. Easy combination:
 - Standard SMTs
 - State-of-the art interpolant generation procedures
 - Rule-based proof reduction
Summary

• Proof transformation
 1. Interpolation, SMT, AB-mixed predicates
 2. Proof transformation framework for AB-mixed predicates removal
 3. Easy combination:
 • Standard SMTs
 • State-of-the art interpolant generation procedures
• Rule-based proof reduction
• Pivots redundancies detection and removal
Future Work

- Exploitation of DPLL proof structure
Future Work

- Exploitation of DPLL proof structure
- Evaluation on concrete applications (e.g. interpolation)
Future Work

- Exploitation of DPLL proof structure
- Evaluation on concrete applications (e.g. interpolation)
- Rule-based control of interpolants’ strength
• Proof reduction

S.F. Rollini, R. Bruttomesso and N. Sharygina
An Efficient and Flexible Approach to Resolution Proof Reduction.
HVC 2010.

• Proof manipulation for interpolation

R. Bruttomesso, S.F. Rollini, N. Sharygina and A. Tsitovich
Flexible Interpolation with Local Proof Transformations.
ICCAD 2010
Thanks for your attention!

http://www.verify.inf.usi.ch/