Probabilistic Approximations of ODEs Based Signaling Pathways Dynamics

P.S. Thiagarajan

School of Computing, National University of Singapore

Biopathways

- Biopathways:
\square Metabolic Pathways
\square Signaling Pathways
\square Gene Regulatory Networks

Signaling Pathways

- Chemical reactions in response to external signals (ligands)
- Signals pass into the nucleus through a series of protein modifications
'Data transfer' mechanism of the cell

A Common Modeling Approach

- View a pathway as a network of bio-chemical reactions
- Model the network as a system of ODEs
- One for each molecular species
- Reaction kinetics: Mass action law, Michelis-Menten, Hill, etc.
- Study the ODE system dynamics.

The ODEs model

$$
S+E \underset{k_{2}}{\stackrel{k_{1}}{\underset{ }{2}}} E S \xrightarrow{k_{3}} E+P
$$

Assume mass law.

$$
\begin{aligned}
& \frac{d S}{d t}=-k_{1} \cdot S \cdot E+k_{2} \cdot E S \\
& \frac{d E}{d t}=-k_{1} \cdot S \cdot E+\left(k_{2}+k_{3}\right) \cdot E S \\
& \frac{d E S}{d t}=k_{1} \cdot S \cdot E-\left(k_{2}+k_{3}\right) \cdot E S \\
& \frac{d P}{d t}=k_{3} \cdot E S
\end{aligned}
$$

- Alternative approach:
\square Keep track of exact number of molecules of each type. Simulate the dynamics by executing one reaction at a time stochastically (CTMCs)
\square Stochastic simulations (Gillespie's algorithm)
\square Kappa , BioNetGen, PRISM, Bio-Pepa, ..

ODEs: Major Hurdles

- Many unknown rate constants.
- Must be estimated using limited data:
- Low precision, population-based, noisy

Major Hurdles

- High dimensional non-linear system
- no closed-form solutions
- must resort to numerical simulations
- point values of initial states/data will not be available
- a large number of numerical simulations needed for answering each analysis question

"Polling" based approximation

- Start with an ODEs system.
- Discretize the time and value domains.
- Assume a (uniform) distribution of initial states
- Generate a "sufficiently" large number of trajectories by
- Sampling the initial states and numerical simulations.

The "exit poll" Idea

- Encode this collection of discretized trajectories as a dynamic Bayesian network.
- ODEs \rightarrow DBN
- Pay the one-time cost of constructing the DBN approximation.
- Do analysis using Bayesian inferencing on the DBN.

Time Discretization

- Observe the system only at a finite number of time points.

$$
\begin{aligned}
& \frac{d x}{d t}=3 t^{2}+4 \\
& x(0)=2 \\
& x(t)=t^{3}+4 t+2
\end{aligned}
$$

Value Discretization

- Observe only with bounded precision

Symbolic trajectories

- A trajectory is recorded as a finite sequence of discrete values.

Collection of Trajectories

- Assume a prior distribution of the initial states.
- Uncountably many trajectories. Represented as a set of (timed) finite sequences.

Piecing trajectories together..

- In fact, a probabilistic transition system.
- $\operatorname{Pr}((D, 2) \longrightarrow(E, 3))$ is the "fraction" of the trajectories residing in D at $t=2$ that land in E at $t=3$.

The Justification

- The value space of the variables is assumed to be a compact subset C of \mathcal{R}^{n}
- $\ln \mathbf{Z}^{\prime}=F(Z), F$ is assumed to be continuously differentiable in C .
- Mass-law, Michaelis-Menton,...
- Then the solution $\Phi_{\mathrm{t}}: \mathrm{C} \rightarrow \mathrm{C}$ (for each t) exists, is unique, a bijection, continuous and hence measurable.
- But the transition probabilities can't be computed.

A computational approximation

(s, i) - States;
(s, i) \rightarrow ($\mathrm{s}^{\prime}, \mathrm{i}+1$) -- Transitions
Sample, say, 1000 times the initial states.

Through numerical simulation, generate 1000 trajectories.
$\operatorname{Pr}\left((s, i) \rightarrow\left(s^{\prime} i+1\right)\right)$ is the fraction of the trajectories that are in s at t_{i} which land in s ' at t_{i+1}.

Infeasible Size!

- But the transition system will be huge.
- O(T.kn)
- $k \geq 2$ and $n(\approx 50-100)$.

Compact Representation

- Exploit the network structure (additional independence assumptions) to construct a DBN instead.
- The DBN is a factored form of the probabilistic transition system.

The DBN representation

$$
S+E \underset{k_{2}}{\stackrel{k_{1}}{\underset{ }{2}}} E S \xrightarrow{k_{3}} E+P
$$

Assume mass law.

$$
\begin{aligned}
& \frac{d S}{d t}=-k_{1} \cdot S \cdot E+k_{2} \cdot E S \\
& \frac{d E}{d t}=-k_{1} \cdot S \cdot E+\left(k_{2}+k_{3}\right) \cdot E S \\
& \frac{d E S}{d t}=k_{1} \cdot S \cdot E-\left(k_{2}+k_{3}\right) \cdot E S \\
& \frac{d P}{d t}=k_{3} \cdot E S
\end{aligned}
$$

$$
\begin{aligned}
& S+E \underset{k_{2}}{\stackrel{k_{1}}{\rightleftharpoons}} E S \xrightarrow{k_{3}} E+P \\
& \frac{d S}{d t}=-k_{1} \cdot S \cdot E+k_{2} \cdot E S \\
& \frac{d E}{d t}=-k_{1} \cdot S \cdot E+\left(k_{2}+k_{3}\right) \cdot E S \\
& \frac{d E S}{d t}=k_{1} \cdot S \cdot E-\left(k_{2}+k_{3}\right) \cdot E S \\
& \frac{d P}{d t}=k_{3} \cdot E S
\end{aligned}
$$

$$
\begin{aligned}
& S+E \underset{k_{2}}{\stackrel{k_{1}}{\rightleftharpoons}} E S \stackrel{k_{3}}{\longrightarrow} E+P \\
& \frac{d S}{d t}=-k_{1} \cdot S \cdot E+k_{2} \cdot E S \\
& \frac{d E}{d t}=-k_{1} \cdot S \cdot E+\left(k_{2}+k_{3}\right) \cdot E S \\
& \frac{d E S}{d t}=k_{1} \cdot S \cdot E-\left(k_{2}+k_{3}\right) \cdot E S \\
& \frac{d P}{d t}=k_{3} \cdot E S
\end{aligned}
$$

Dependency diagram

The DBN Representation

$$
\begin{aligned}
& S+E \underset{k_{2}}{\stackrel{k_{1}}{\rightleftharpoons}} E S \xrightarrow{k_{3}} E+P \\
& \frac{d S}{d t}=-k_{1} \cdot S \cdot E+k_{2} \cdot E S \\
& \frac{d E}{d t}=-k_{1} \cdot S \cdot E+\left(k_{2}+k_{3}\right) \cdot E S \\
& \frac{d E S}{d t}=k_{1} \cdot S \cdot E-\left(k_{2}+k_{3}\right) \cdot E S \\
& \frac{d P}{d t}=k_{3} \cdot E S
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{~S}^{2}=\mathrm{C} \mid \mathrm{S}^{1}=\mathrm{B}, \mathrm{E}^{1}=\mathrm{C}, E \mathrm{E}^{1}=\mathrm{B}\right)=0.2 \\
& \mathrm{P}\left(\mathrm{~S}^{2}=\mathrm{C} \mid \mathrm{S}^{1}=\mathrm{B}, \mathrm{E}^{1}=\mathrm{C}, \mathrm{ES}^{1}=\mathrm{C}\right)=0.1 \\
& \mathrm{P}\left(\mathrm{~S}^{2}=\mathrm{A} \mid \mathrm{S}^{1}=\mathrm{A}, \mathrm{E}^{1}=\mathrm{A}, E \mathrm{ES}^{1}=\mathrm{C}\right)=0.05
\end{aligned}
$$

- Each node has a CPT associated with it.
- This specifies the local (probabilistic) dynamics.

Fill up the entries in the CPTs by sampling, simulations and counting

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{~S}^{2}=\mathrm{C} \mid \mathrm{S}^{1}=\mathrm{B}, \mathrm{E}^{1}=\mathrm{C}, E \mathrm{ES}^{1}=\mathrm{B}\right)=0.2 \\
& \mathrm{P}\left(\mathrm{~S}^{2}=\mathrm{C} \mid \mathrm{S}^{1}=\mathrm{B}, \mathrm{E}^{1}=\mathrm{C}, E \mathrm{ES}^{1}=\mathrm{C}\right)=0.1 \\
& \mathrm{P}\left(\mathrm{~S}^{2}=\mathrm{A} \mid \mathrm{S}^{1}=\mathrm{A}, \mathrm{E}^{1}=\mathrm{A}, \mathrm{ES}^{1}=\mathrm{C}\right)=0.05
\end{aligned}
$$

Computational Approximation
 500
 100

- Fill up the entries in the CPTs by sampling, simulations and counting

The Technique

$$
500
$$

$$
\frac{\mathrm{P}\left(\mathrm{~S}^{2}=\mathrm{C} \mid \mathrm{S}^{1}=\mathrm{B}, \mathrm{E}^{1}=\mathrm{C}, E \mathrm{ES}^{1}=\mathrm{B}\right)=100 / 500=0.2}{100}
$$

- Fill up the entries in the CPTs by sampling, simulations and counting

The Technique

The size of the DBN is:
$O\left(T . n . k^{d}\right)$
d will be usually much smaller than n.

Unknown rate constants

$S+E \underset{k_{2}=0.2}{\stackrel{k_{1}=0.1}{\rightleftharpoons}} E S \xrightarrow{k_{3}} E+P$
$\frac{d S}{d t}=-0.1 \cdot S \cdot E+0.2 \cdot E S$
$\frac{d E}{d t}=-0.1 \cdot S \cdot E+\left(0.2+k_{3}\right) \cdot E S$
$\frac{d E S}{d t}=0.1 \cdot S \cdot E-\left(0.2+k_{3}\right) \cdot E S$
$\frac{d P}{d t}=k_{3} \cdot E S$
$\frac{d k_{3}}{d t}=0$

Unknown rate constants

During the numerical generation of a trajectory, the value of k_{3} does not change after sampling.

Unknown rate constants

During the numerical generation of a trajectory, the value of k_{3} does not change after sampling.

Unknown rate constants

Sample uniformly across all the Intervals.

DBN based Analysis

- Use Bayesian inferencing to do parameter estimation, sensitivity analysis, probabilistic model checking ...
- Exact inferencing is not feasible for large models.
- We do approximate inferencing.
- Factored Frontier algorithm.

Parameter Estimation

1. For each choice of (interval) values for unknown parameters, run FF, compare with experimental data and assign a score using FF.
2. Return parameter estimates as maximal likelihoods.
3. FF can be then used on the calibrated model to do sensitivity analysis, probabilistic verification etc.

DBN based Analysis

- Our experiments with signaling pathways models (taken from the BioModels data base) show:
- The one-time cost of constructing the DBN can be easily amortized by using it to do parameter estimation and sensitivity analysis.
- Good compromise between efficiency and accuracy.

Complement System

- Complement system is a critical part of the immune system

Ricklin et al. 2007

Goals

- Quantitatively understand the regulatory mechanisms of complement system
- How is the excessive response of the complement avoided?
- The model:
- Classical pathway + the lectin pathway
- Inhibitory mechanism
\checkmark C4BP

Complement System

- ODE Model
- 42 Species
- 45 Reactions
\checkmark Mass law
\checkmark Michaelis-Menten kinetics
- 92 Parameters (71 unknown)
- DBN Construction
- Settings
$\checkmark 6$ intervals
\checkmark 100s time-step, 12600s
$\checkmark 2.4 \times 10^{6}$ samples
- Runtime
$\checkmark 12$ hours on a cluster of 20 PCs

- Model Calibration:
" Training data: 4 proteins, 7 time points, 4 experimental conditions
- Test data: Zhang et al, PLoS Pathogens, 2009

Model Calibration (parameter estimation)

Model validation

- Validated the model using previous published data (Zhang et al 2009)

Enhancement mechanism

- The antimicrobial response is sensitive to the pH and calcium level

Analysis.

- (Local and global) sensitivity analysis.
- in silico experiments.

Model predictions: The regulatory effect of C4BP

- C4BP maintains classical complement activation but delays the maximal response time
- But attenuates the lectin pathway activation

The regulatory mechanism of C4BP

- The major inhibitory role of C4BP is to facilitate the decay of C3 convertase

Results

- Both predictions concerning C4BP were experimentally verified.
[PLoS Comp.Biol (2011)] [BioModels database (303.Liu)]

Some extensions

- Parametrized version of FF
- Reduce errors by investing more computational time [CMSB'11, TCBB 2012]
- GPU implementation:
- Significant increase in performance and scalability
- Thrombin-dependent MLC p-pathway
- 105 ODEs; 197 rate constants ; 164 "unknown" rate constants.
- (FF based approximate) probabilistic verification method [Bioinformatics 2012]

Current Collaborations

Ding Jeak Ling
Immune system signaling during Multiple infections

Marie-Veronique Clement
DNA damage/response pathways
G V Shivashankar
Chromosome co-localizations and co-regulations

Conclusion

- The DBN approximation method is useful and efficient.
- When does it (not) work?
- How to relate ODEs based dynamical properties to the DBN based ones?
- How to extend the approximation method to multi-mode signaling pathways?

Acknowledgements:

Suchee
Palaniappan
Blaise Genest

David Hsu
Benjamin Gyori

Gireedhar
Venkatachalam

Wang Junjie

