#### Probabilistic Approximations of ODEs Based Signaling Pathways Dynamics

#### P.S. Thiagarajan

School of Computing, National University of Singapore

# **Biopathways**

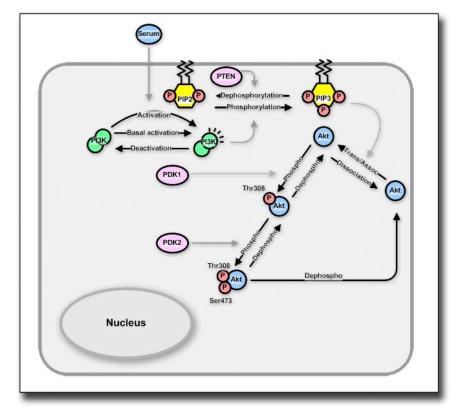
Biopathways:
 Metabolic Pathways
 Signaling Pathways
 Gene Regulatory Networks

#### **Signaling Pathways**

 Chemical reactions in response to external signals (ligands)

 Signals pass into the nucleus through a series of protein modifications

'Data transfer' mechanism of the cell



# A Common Modeling Approach

- View a pathway as a network of bio-chemical reactions
- Model the network as a system of ODEs
  - One for each molecular species
  - Reaction kinetics: Mass action law, Michelis-Menten, Hill, etc.
- Study the ODE system dynamics.

### The ODEs model

$$S + E \rightleftharpoons_{k_2}^{k_1} ES \xrightarrow{k_3} E + P$$

Assume mass law.

$$\frac{dS}{dt} = -k_1 \cdot S \cdot E + k_2 \cdot ES$$
$$\frac{dE}{dt} = -k_1 \cdot S \cdot E + (k_2 + k_3) \cdot ES$$
$$\frac{dES}{dt} = k_1 \cdot S \cdot E - (k_2 + k_3) \cdot ES$$
$$\frac{dP}{dt} = k_3 \cdot ES$$

#### Alternative approach:

- Keep track of exact number of molecules of each type. Simulate the dynamics by executing one reaction at a time stochastically (CTMCs)
- □ Stochastic simulations (Gillespie's algorithm)
- □ Kappa , BioNetGen, PRISM, Bio-Pepa, ..

# **ODEs: Major Hurdles**

- Many unknown rate constants.
- Must be estimated using limited data:
  - Low precision, population-based, noisy

# **Major Hurdles**

- High dimensional non-linear system
  - no closed-form solutions
  - must resort to numerical simulations
  - point values of initial states/data will not be available
  - a large number of numerical simulations needed for answering each analysis question

# "Polling" based approximation

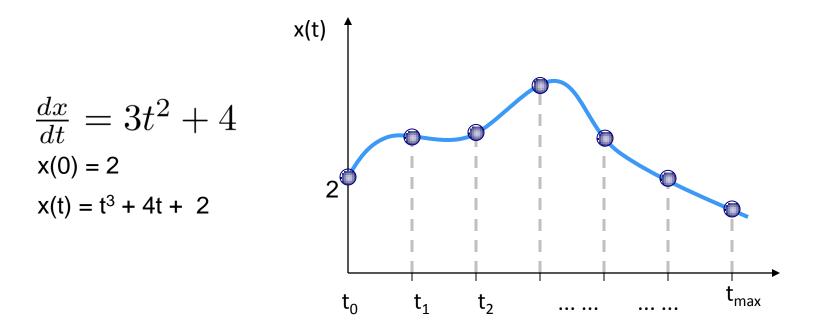
- Start with an ODEs system.
- Discretize the time and value domains.
- Assume a (uniform) distribution of initial states
- Generate a "sufficiently" large number of trajectories by
  - Sampling the initial states and numerical simulations.

#### The "exit poll" Idea

- Encode this collection of discretized trajectories as a dynamic Bayesian network.
- ODEs  $\rightarrow$  DBN
- Pay the one-time cost of constructing the DBN approximation.
- Do analysis using Bayesian inferencing on the DBN.

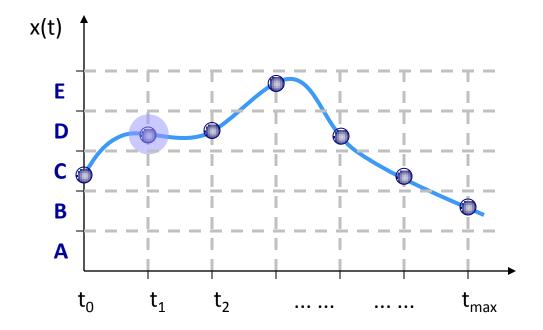
#### **Time Discretization**

Observe the system only at a *finite* number of time points.



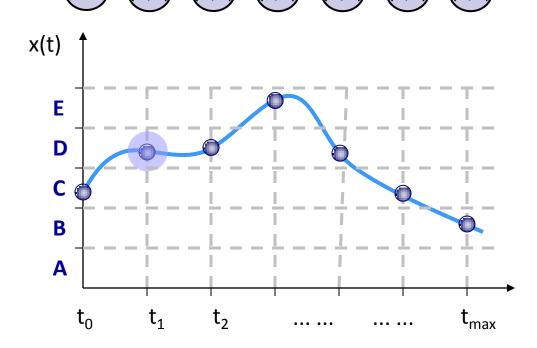
#### Value Discretization

Observe only with *bounded precision*



#### Symbolic trajectories

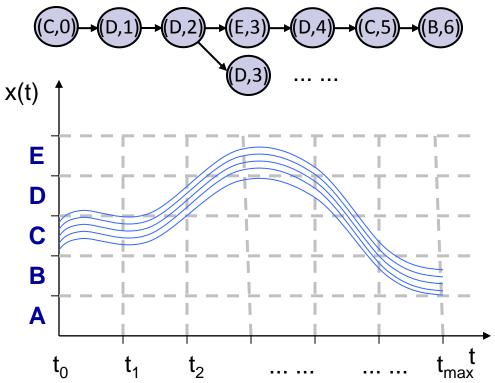
 A trajectory is recorded as a finite sequence of discrete values.



(F 3

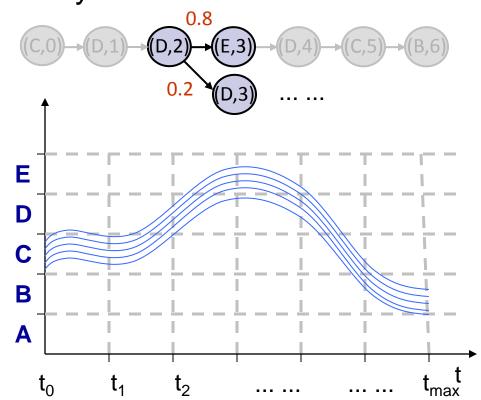
# **Collection of Trajectories**

- Assume a prior distribution of the initial states.
- Uncountably many trajectories. Represented as a set of (timed) finite sequences.



#### Piecing trajectories together..

- In fact, a probabilistic transition system.
- Pr( (D, 2)  $\longrightarrow$  (E, 3) ) is the "fraction" of the trajectories residing in D at t = 2 that land in E at t = 3.



#### The Justification

- The value space of the variables is assumed to be a compact subset C of R<sup>n</sup>
- In Z' = F(Z), F is assumed to be continuously differentiable in C.
  - Mass-law, Michaelis-Menton,...
- Then the solution  $\Phi_t$ :  $C \rightarrow C$  (for each t) exists, is unique, a bijection, continuous and hence *measurable*.
- But the transition probabilities can't be computed.

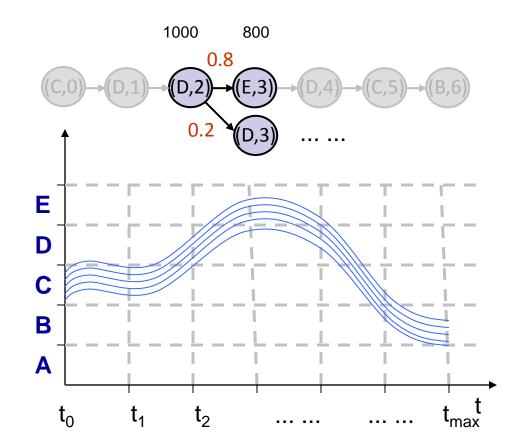
# A computational approximation

(s, i) – States; (s, i)  $\rightarrow$  (s', i+1) -- Transitions

Sample, say, 1000 times the initial states.

Through numerical simulation, generate 1000 trajectories.

 $Pr((s, i) \rightarrow (s' i+1))$  is the fraction of the trajectories that are in s at  $t_i$  which land in s' at  $t_{i+1}$ .



#### Infeasible Size!

- But the *transition system* will be huge.
  - O(T . k<sup>n</sup>)
  - $k \ge 2$  and  $n (\approx 50-100)$ .

# **Compact Representation**

- Exploit the network structure (additional independence assumptions) to construct a DBN instead.
- The DBN is a *factored* form of the probabilistic transition system.

#### The DBN representation

$$S + E \rightleftharpoons_{k_2}^{k_1} ES \xrightarrow{k_3} E + P$$

Assume mass law.

$$\frac{dS}{dt} = -k_1 \cdot S \cdot E + k_2 \cdot ES$$
$$\frac{dE}{dt} = -k_1 \cdot S \cdot E + (k_2 + k_3) \cdot ES$$
$$\frac{dES}{dt} = k_1 \cdot S \cdot E - (k_2 + k_3) \cdot ES$$
$$\frac{dP}{dt} = k_3 \cdot ES$$

$$S + E \rightleftharpoons k_1 ES \xrightarrow{k_3} E + P$$

$$ES$$

$$ES$$

$$E$$

$$E$$

$$\frac{dS}{dt} = -k_1 \cdot S \cdot E + k_2 \cdot ES$$
$$\frac{dE}{dt} = -k_1 \cdot S \cdot E + (k_2 + k_3) \cdot ES$$
$$\frac{dES}{dt} = k_1 \cdot S \cdot E - (k_2 + k_3) \cdot ES$$
$$\frac{dP}{dt} = k_3 \cdot ES$$

Dependency diagram

$$S + E \rightleftharpoons k_1 \longrightarrow E + P$$

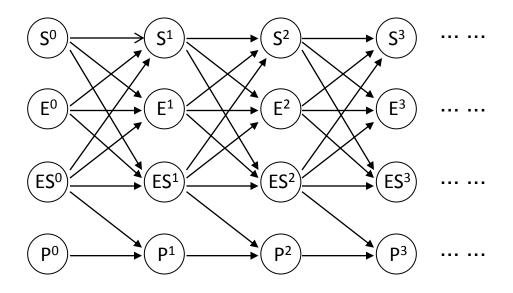
$$\frac{dS}{dt} = -k_1 \cdot S \cdot E + k_2 \cdot ES$$
$$\frac{dE}{dt} = -k_1 \cdot S \cdot E + (k_2 + k_3) \cdot ES$$
$$\frac{dES}{dt} = k_1 \cdot S \cdot E - (k_2 + k_3) \cdot ES$$
$$\frac{dP}{dt} = k_3 \cdot ES$$

Dependency diagram

#### The DBN Representation

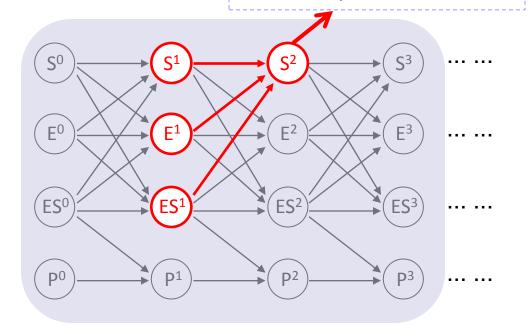
$$S + E \rightleftharpoons_{k_2}^{k_1} ES \xrightarrow{k_3} E + P$$

$$\frac{dS}{dt} = -k_1 \cdot S \cdot E + k_2 \cdot ES$$
$$\frac{dE}{dt} = -k_1 \cdot S \cdot E + (k_2 + k_3) \cdot ES$$
$$\frac{dES}{dt} = k_1 \cdot S \cdot E - (k_2 + k_3) \cdot ES$$
$$\frac{dP}{dt} = k_3 \cdot ES$$

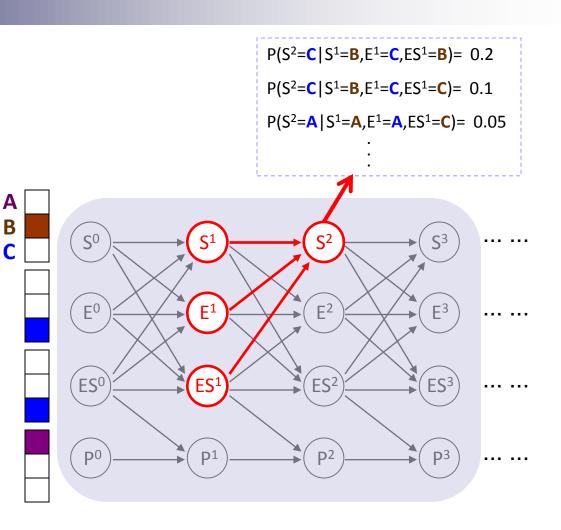


 $P(S^{2}=C | S^{1}=B, E^{1}=C, ES^{1}=B) = 0.2$   $P(S^{2}=C | S^{1}=B, E^{1}=C, ES^{1}=C) = 0.1$   $P(S^{2}=A | S^{1}=A, E^{1}=A, ES^{1}=C) = 0.05$ 

- Each node has a CPT associated with it.
- This specifies the local (probabilistic) dynamics.



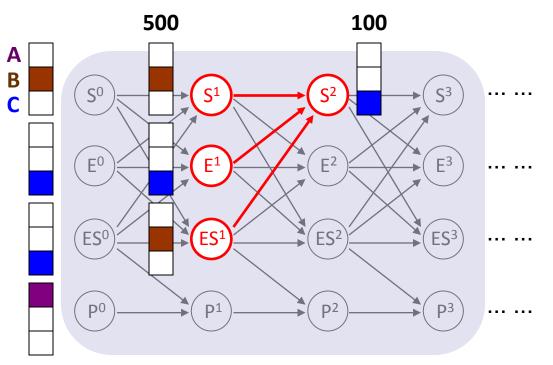
 Fill up the entries in the CPTs by sampling, simulations and counting



# **Computational Approximation**

 Fill up the entries in the CPTs by sampling, simulations and counting

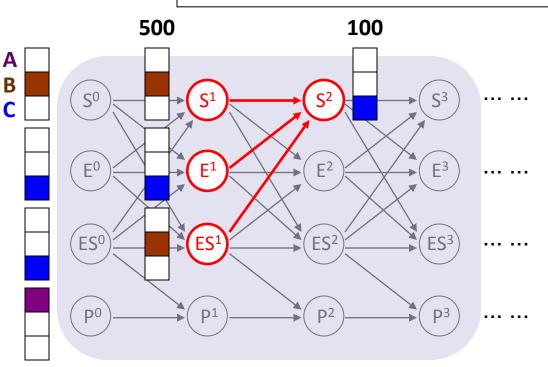
1000



# The Technique

 $P(S^2=C|S^1=B,E^1=C,ES^1=B)=100/500=0.2$ 

 Fill up the entries in the CPTs by sampling, simulations and counting

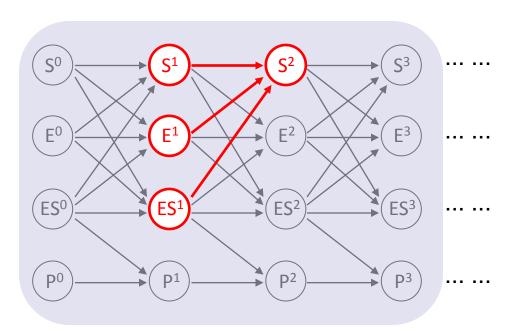


# The Technique

The size of the DBN is:

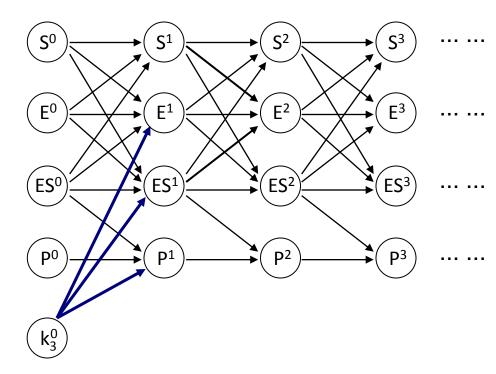
O(T . n . k<sup>d</sup>)

d will be usually much smaller than n.

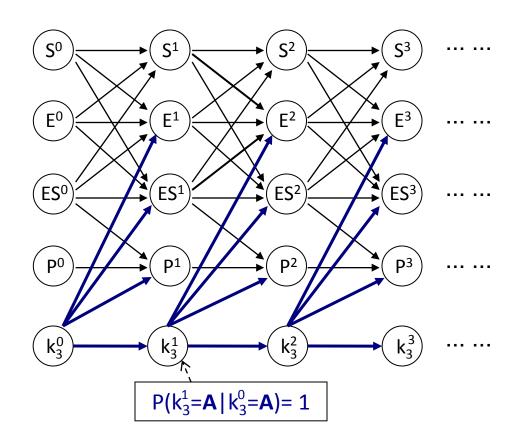


$$S + E \underset{k_2 = 0.2}{\overset{k_1 = 0.1}{\Longrightarrow}} ES \xrightarrow{k_3} E + P$$

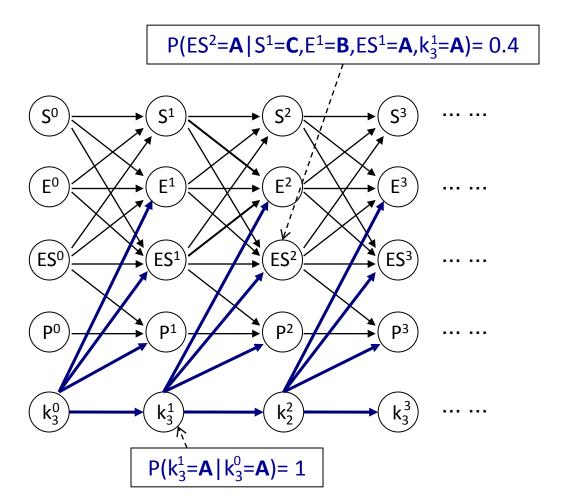
$$\frac{dS}{dt} = -0.1 \cdot S \cdot E + 0.2 \cdot ES$$
$$\frac{dE}{dt} = -0.1 \cdot S \cdot E + (0.2 + k_3) \cdot ES$$
$$\frac{dES}{dt} = 0.1 \cdot S \cdot E - (0.2 + k_3) \cdot ES$$
$$\frac{dP}{dt} = k_3 \cdot ES$$
$$\frac{dk_3}{dt} = 0$$



During the numerical generation of a trajectory, the value of  $k_3$  does not change after sampling.



During the numerical generation of a trajectory, the value of  $k_3$  does not change after sampling.



Sample uniformly across *all* the Intervals.

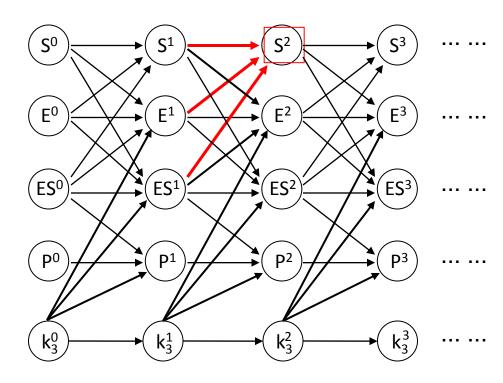


#### **DBN** based Analysis

- Use Bayesian inferencing to do parameter estimation, sensitivity analysis, probabilistic model checking ...
- Exact inferencing is not feasible for large models.
- We do approximate inferencing.
  - Factored Frontier algorithm.

#### **Parameter Estimation**

- For each choice of (interval) values for unknown parameters, run FF, compare with experimental data and assign a score using FF.
- 2. Return parameter estimates as maximal likelihoods.
- FF can be then used on the calibrated model to do sensitivity analysis, probabilistic verification etc.

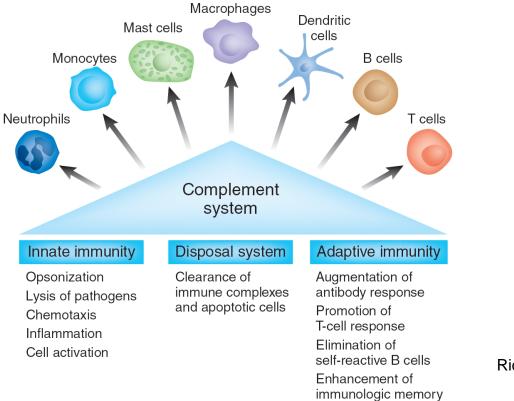


#### **DBN** based Analysis

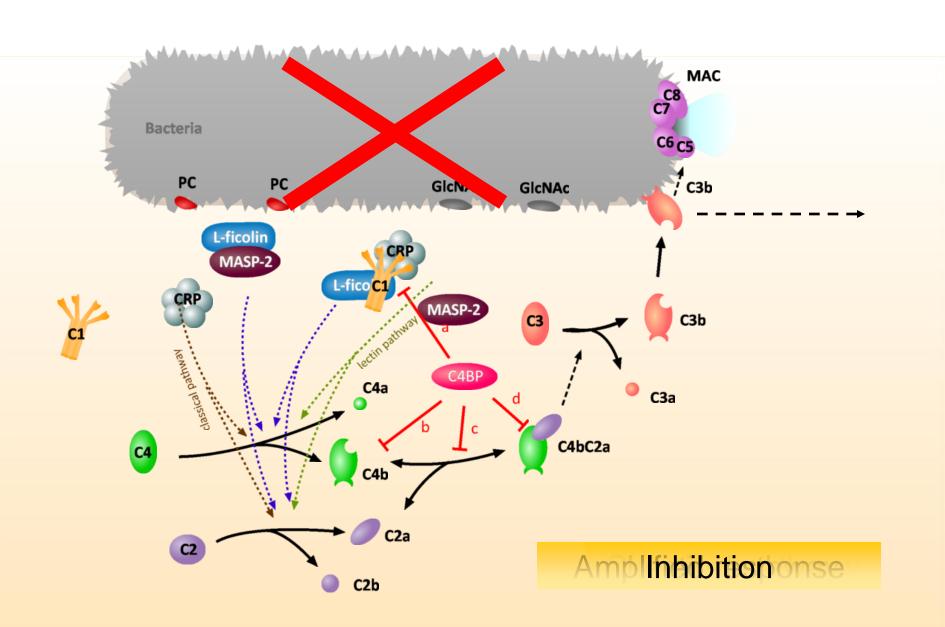
- Our experiments with signaling pathways models (taken from the *BioModels data base*) show:
  - The one-time cost of constructing the DBN can be easily amortized by using it to do parameter estimation and sensitivity analysis.
  - Good compromise between efficiency and accuracy.

# **Complement System**

• Complement system is a critical part of the immune system



Ricklin et al. 2007

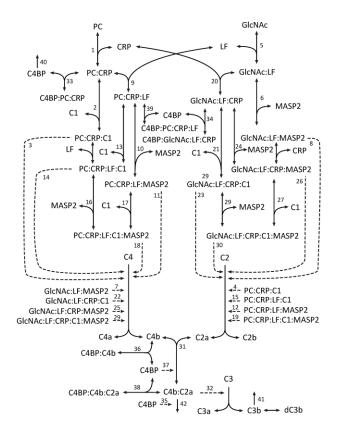


### Goals

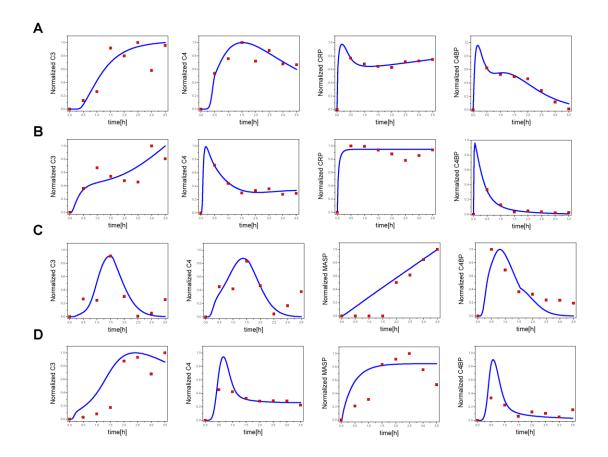
- Quantitatively understand the regulatory mechanisms of complement system
  - How is the excessive response of the complement avoided?
- The model:
  - Classical pathway + the lectin pathway
  - Inhibitory mechanism
    - ✓ C4BP

# **Complement System**

- ODE Model
  - 42 Species
  - 45 Reactions
    - ✓ Mass law
    - ✓ Michaelis-Menten kinetics
  - 92 Parameters (71 unknown)
- DBN Construction
  - Settings
    - ✓ 6 intervals
    - ✓ 100s time-step, 12600s
    - ✓ 2.4 x 10<sup>6</sup> samples
  - Runtime
    - ✓ 12 hours on a cluster of 20 PCs
- Model Calibration:
  - Training data: 4 proteins, 7 time points, 4 experimental conditions
  - Test data: Zhang et al, PLoS Pathogens, 2009

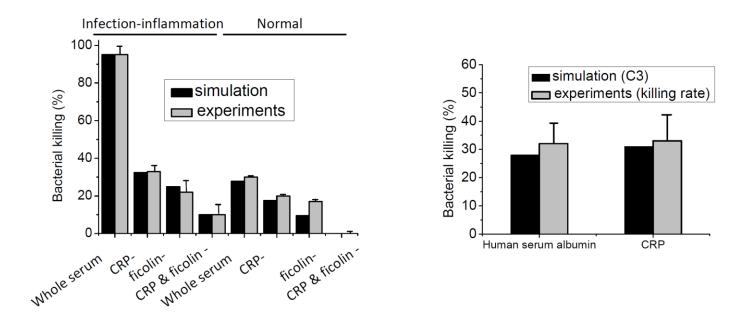


#### Model Calibration (parameter estimation)



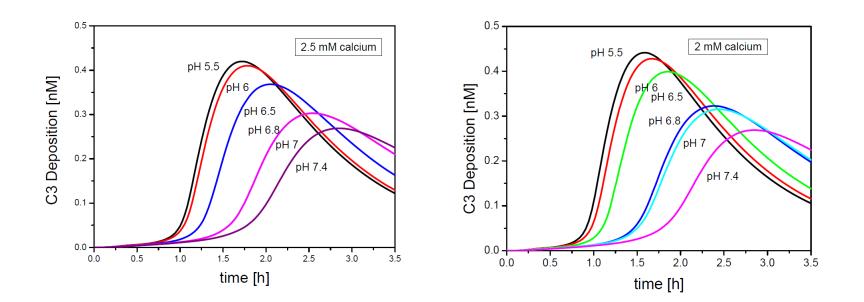
#### Model validation

Validated the model using previous published data (*Zhang et al 2009*)



#### Enhancement mechanism

The antimicrobial response is sensitive to the pH and calcium level

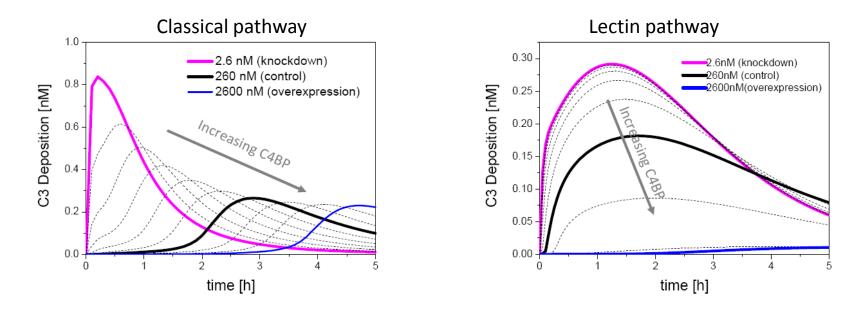


# Analysis.

(Local and global) sensitivity analysis. *in silico* experiments.

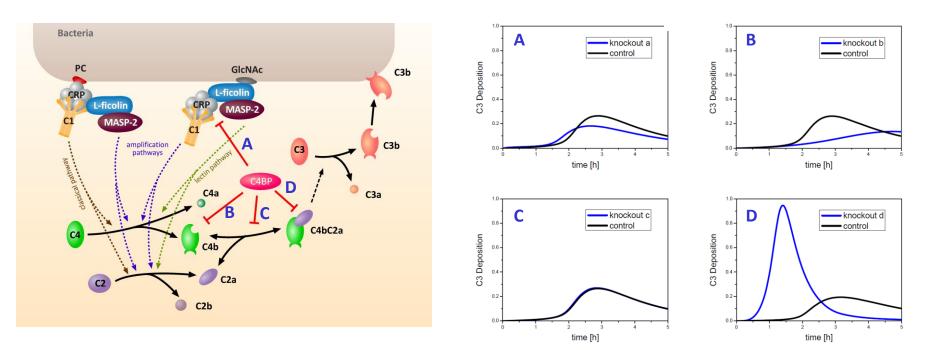
# Model predictions: The regulatory effect of C4BP

- C4BP maintains classical complement activation but delays the maximal response time
- But attenuates the lectin pathway activation



# The regulatory mechanism of C4BP

 The major inhibitory role of C4BP is to facilitate the decay of C3 convertase



#### Results

Both predictions concerning C4BP were experimentally verified.

[PLoS Comp.Biol (2011)] [BioModels database (303.Liu)]

#### Some extensions

#### Parametrized version of FF

- Reduce errors by investing more computational time [CMSB'11, TCBB 2012]
- GPU implementation:
  - Significant increase in performance and scalability
  - Thrombin-dependent MLC p-pathway
    - 105 ODEs; 197 rate constants; 164 "unknown" rate constants.
    - (FF based approximate) probabilistic verification method [Bioinformatics 2012]

## **Current Collaborations**

**Ding Jeak Ling** 

Immune system signaling during Multiple infections

Marie-Veronique Clement

**DNA damage/response pathways** 

#### G V Shivashankar

Chromosome co-localizations and co-regulations

#### Conclusion

- The DBN approximation method is useful and efficient.
- When does it (not) work?
- How to relate ODEs based dynamical properties to the DBN based ones?
- How to extend the approximation method to multi-mode signaling pathways?

### Acknowledgements:



Suchee Palaniappan Blaise Genest

David Hsu

Liu Bing

Gireedhar Venkatachalam

Benjamin Gyori

Wang Junjie