Probabilistic Approximations of ODEs Based Signaling Pathways Dynamics

P.S. Thiagarajan
School of Computing, National University of Singapore
Biopathways

- Biopathways:
 - Metabolic Pathways
 - *Signaling Pathways*
 - Gene Regulatory Networks
Signaling Pathways

• Chemical reactions in response to external signals (ligands)

• Signals pass into the nucleus through a series of protein modifications

‘Data transfer’ mechanism of the cell
A Common Modeling Approach

• View a pathway as a network of bio-chemical reactions

• Model the network as a system of ODEs
 ▪ One for each molecular species
 ▪ Reaction kinetics: Mass action law, Michelis-Menten, Hill, etc.

• Study the ODE system dynamics.
The ODEs model

\[S + E \xrightarrow{k_1} ES \xrightarrow{k_2} E + P \]

Assume mass law.

\[\frac{dS}{dt} = -k_1 \cdot S \cdot E + k_2 \cdot ES \]
\[\frac{dE}{dt} = -k_1 \cdot S \cdot E + (k_2 + k_3) \cdot ES \]
\[\frac{dES}{dt} = k_1 \cdot S \cdot E - (k_2 + k_3) \cdot ES \]
\[\frac{dP}{dt} = k_3 \cdot ES \]
Alternative approach:

- Keep track of exact number of molecules of each type. Simulate the dynamics by executing one reaction at a time stochastically (CTMCs)
- Stochastic simulations (Gillespie’s algorithm)
- Kappa, BioNetGen, PRISM, Bio-Pepa, ..
ODEs: Major Hurdles

- Many unknown rate constants.
- Must be estimated using limited data:
 - Low precision, population-based, noisy
Major Hurdles

- High dimensional non-linear system
 - no closed-form solutions
 - must resort to numerical simulations
 - point values of initial states/data will not be available
 - a large number of numerical simulations needed for answering each analysis question
“Polling” based approximation

- Start with an ODEs system.
- Discretize the time and value domains.
- Assume a (uniform) distribution of initial states
- Generate a “sufficiently” large number of trajectories by
 - Sampling the initial states and numerical simulations.
The “exit poll” Idea

- Encode this collection of discretized trajectories as a dynamic Bayesian network.
- ODEs \rightarrow DBN
- Pay the one-time cost of constructing the DBN approximation.
- Do analysis using Bayesian inferencing on the DBN.
Time Discretization

- Observe the system only at a finite number of time points.

\[
\frac{dx}{dt} = 3t^2 + 4 \\
x(0) = 2 \\
x(t) = t^3 + 4t + 2
\]
Value Discretization

- Observe only with *bounded precision*
Symbolic trajectories

- A trajectory is recorded as a finite sequence of discrete values.
Collection of Trajectories

- Assume a prior distribution of the initial states.
- Uncountably many trajectories. Represented as a set of (timed) finite sequences.
Piecing trajectories together..

- In fact, a probabilistic transition system.
- \(\Pr((D, 2) \rightarrow (E, 3)) \) is the “fraction” of the trajectories residing in D at \(t = 2 \) that land in E at \(t = 3 \).
The Justification

- The value space of the variables is assumed to be a compact subset C of \mathbb{R}^n.
- In $\mathbf{Z}' = F(\mathbf{Z})$, F is assumed to be continuously differentiable in C.
 - Mass-law, Michaelis-Menton,…
- Then the solution $\Phi_t : C \rightarrow C$ (for each t) exists, is unique, a bijection, continuous and hence measurable.
- But the transition probabilities can’t be computed.
A computational approximation

(s, i) – States;
(s, i) → (s’, i+1) -- Transitions

Sample, say, 1000 times the initial states.

Through numerical simulation, generate 1000 trajectories.

Pr((s, i) → (s’ i+1)) is the fraction of the trajectories that are in s at \(t_i \) which land in s’ at \(t_{i+1} \).
Infeasible Size!

- But the *transition system* will be huge.
 - $O(T \cdot k^n)$
 - $k \geq 2$ and $n \approx 50$-100.
Compact Representation

• Exploit the network structure (additional independence assumptions) to construct a DBN instead.

• The DBN is a *factored* form of the probabilistic transition system.
The DBN representation

\[S + E \xrightarrow{k_1}{k_2} ES \xrightarrow{k_3} E + P \]

Assume mass law.

\[
\frac{dS}{dt} = -k_1 \cdot S \cdot E + k_2 \cdot ES \\
\frac{dE}{dt} = -k_1 \cdot S \cdot E + (k_2 + k_3) \cdot ES \\
\frac{dES}{dt} = k_1 \cdot S \cdot E - (k_2 + k_3) \cdot ES \\
\frac{dP}{dt} = k_3 \cdot ES
\]
\[S + E \xrightleftharpoons[k_1]{k_2} ES \xrightarrow[k_3]{k_2} E + P \]

\[
\frac{dS}{dt} = -k_1 \cdot S \cdot E + k_2 \cdot ES \\
\frac{dE}{dt} = -k_1 \cdot S \cdot E + (k_2 + k_3) \cdot ES \\
\frac{dES}{dt} = k_1 \cdot S \cdot E - (k_2 + k_3) \cdot ES \\
\frac{dP}{dt} = k_3 \cdot ES
\]
\[S + E \xrightleftharpoons[k_2]{k_1} ES \xrightarrow{k_3} E + P \]

\[
\frac{dS}{dt} = -k_1 \cdot S \cdot E + k_2 \cdot ES
\]
\[
\frac{dE}{dt} = -k_1 \cdot S \cdot E + (k_2 + k_3) \cdot ES
\]
\[
\frac{dES}{dt} = k_1 \cdot S \cdot E - (k_2 + k_3) \cdot ES
\]
\[
\frac{dP}{dt} = k_3 \cdot ES
\]
The DBN Representation

\[S + E \xrightarrow[k_1]{k_2} ES \xrightarrow{k_3} E + P \]

\[
\begin{align*}
\frac{dS}{dt} &= -k_1 \cdot S \cdot E + k_2 \cdot ES \\
\frac{dE}{dt} &= -k_1 \cdot S \cdot E + (k_2 + k_3) \cdot ES \\
\frac{dES}{dt} &= k_1 \cdot S \cdot E - (k_2 + k_3) \cdot ES \\
\frac{dP}{dt} &= k_3 \cdot ES
\end{align*}
\]
• Each node has a CPT associated with it.
• This specifies the local (probabilistic) dynamics.

\[
\begin{align*}
P(S^2 = C | S^1 = B, E^1 = C, ES^1 = B) & = 0.2 \\
P(S^2 = C | S^1 = B, E^1 = C, ES^1 = C) & = 0.1 \\
P(S^2 = A | S^1 = A, E^1 = A, ES^1 = C) & = 0.05 \\
\vdots
\end{align*}
\]
Fill up the entries in the CPTs by sampling, simulations and counting.

\[P(S^2 = C | S^1 = B, E^1 = C, ES^1 = B) = 0.2 \]
\[P(S^2 = C | S^1 = B, E^1 = C, ES^1 = C) = 0.1 \]
\[P(S^2 = A | S^1 = A, E^1 = A, ES^1 = C) = 0.05 \]
Computational Approximation

- Fill up the entries in the CPTs by sampling, simulations and counting
The Technique

- Fill up the entries in the CPTs by sampling, simulations and counting

\[P(S^2 = C | S^1 = B, E^1 = C, ES^1 = B) = \frac{100}{500} = 0.2 \]
The Technique

The size of the DBN is:

\[O(T \cdot n \cdot k^d) \]

\(d \) will be usually much smaller than \(n \).
Unknown rate constants

\[S + E \xrightleftharpoons[k_2 = 0.2]{k_1 = 0.1} ES \xrightarrow[k_3]{\quad} E + P \]

\[
\begin{align*}
\frac{dS}{dt} &= -0.1 \cdot S \cdot E + 0.2 \cdot ES \\
\frac{dE}{dt} &= -0.1 \cdot S \cdot E + (0.2 + k_3) \cdot ES \\
\frac{dES}{dt} &= 0.1 \cdot S \cdot E - (0.2 + k_3) \cdot ES \\
\frac{dP}{dt} &= k_3 \cdot ES \\
\frac{dk_3}{dt} &= 0
\end{align*}
\]
Unknown rate constants

During the numerical generation of a trajectory, the value of \(k_3 \) does not change after sampling.

\[P(k_3^1 = A | k_3^0 = A) = 1 \]
Unknown rate constants

During the numerical generation of a trajectory, the value of k_3 does not change after sampling.
Unknown rate constants

Sample uniformly across all the Intervals.
DBN based Analysis

- Use Bayesian inferencing to do parameter estimation, sensitivity analysis, probabilistic model checking …
- Exact inferencing is not feasible for large models.
- We do approximate inferencing.
 - *Factored Frontier algorithm.*
1. For each choice of (interval) values for unknown parameters, run FF, compare with experimental data and assign a score using FF.

2. Return parameter estimates as maximal likelihoods.

3. FF can be then used on the calibrated model to do sensitivity analysis, probabilistic verification etc.
DBN based Analysis

- Our experiments with signaling pathways models (taken from the BioModels data base) show:
 - The one-time cost of constructing the DBN can be easily amortized by using it to do parameter estimation and sensitivity analysis.
 - Good compromise between efficiency and accuracy.
Complement System

- Complement system is a critical part of the immune system

Ricklin et al. 2007
Classical pathway

Lectin pathway

Amplified response

Inhibition
Goals

• Quantitatively understand the regulatory mechanisms of complement system
 ▪ How is the excessive response of the complement avoided?

• The model:
 ▪ Classical pathway + the lectin pathway
 ▪ Inhibitory mechanism

✓ C4BP
Complement System

• ODE Model
 - 42 Species
 - 45 Reactions
 - Mass law
 - Michaelis-Menten kinetics
 - 92 Parameters (71 unknown)

• DBN Construction
 - Settings
 - 6 intervals
 - 100s time-step, 12600s
 - 2.4 x 10^6 samples
 - Runtime
 - 12 hours on a cluster of 20 PCs

• Model Calibration:
 - Training data: 4 proteins, 7 time points, 4 experimental conditions
 - Test data: Zhang et al, PLoS Pathogens, 2009
Model Calibration (parameter estimation)
Model validation

- Validated the model using previous published data (*Zhang et al. 2009*)
Enhancement mechanism

- The antimicrobial response is sensitive to the pH and calcium level
Analysis.

- (Local and global) sensitivity analysis.
- *in silico* experiments.
Model predictions: The regulatory effect of C4BP

- C4BP maintains classical complement activation but delays the maximal response time
- But attenuates the lectin pathway activation
The regulatory mechanism of C4BP

- The major inhibitory role of C4BP is to facilitate the decay of C3 convertase
Results

- Both predictions concerning C4BP were experimentally verified.

Some extensions

• Parametrized version of FF
 ▪ Reduce errors by investing more computational time
 \[CMSB'11, TCBB 2012\]

• GPU implementation:
 ▪ Significant increase in performance and scalability
 ▪ Thrombin-dependent MLC p-pathway
 ▪ 105 ODEs; 197 rate constants ; 164 “unknown” rate constants.
 ▪ (FF based approximate) probabilistic verification method \[Bioinformatics 2012\]
Current Collaborations

Ding Jeak Ling
Immune system signaling during Multiple infections

Marie-Veronique Clement
DNA damage/response pathways

G V Shivashankar
Chromosome co-localizations and co-regulations
Conclusion

• The DBN approximation method is useful and efficient.
• When does it (not) work?
• How to relate ODEs based dynamical properties to the DBN based ones?
• How to extend the approximation method to multi-mode signaling pathways?
Acknowledgements:

Suchee Palaniappan
Benjamin Gyori
Gireedhar Venkatachalam
Wang Junjie

Blaise Genest
David Hsu

Liu Bing