Probabilistic Approximations of ODEs Based Signaling Pathways Dynamics

P.S. Thiagarajan

School of Computing, National University of Singapore

Biopathways

Biopathways:
 Metabolic Pathways
 Signaling Pathways
 Gene Regulatory Networks

Signaling Pathways

 Chemical reactions in response to external signals (ligands)

 Signals pass into the nucleus through a series of protein modifications

'Data transfer' mechanism of the cell

A Common Modeling Approach

- View a pathway as a network of bio-chemical reactions
- Model the network as a system of ODEs
 - One for each molecular species
 - Reaction kinetics: Mass action law, Michelis-Menten, Hill, etc.
- Study the ODE system dynamics.

The ODEs model

$$S + E \rightleftharpoons_{k_2}^{k_1} ES \xrightarrow{k_3} E + P$$

Assume mass law.

$$\frac{dS}{dt} = -k_1 \cdot S \cdot E + k_2 \cdot ES$$
$$\frac{dE}{dt} = -k_1 \cdot S \cdot E + (k_2 + k_3) \cdot ES$$
$$\frac{dES}{dt} = k_1 \cdot S \cdot E - (k_2 + k_3) \cdot ES$$
$$\frac{dP}{dt} = k_3 \cdot ES$$

Alternative approach:

- Keep track of exact number of molecules of each type. Simulate the dynamics by executing one reaction at a time stochastically (CTMCs)
- □ Stochastic simulations (Gillespie's algorithm)
- □ Kappa , BioNetGen, PRISM, Bio-Pepa, ..

ODEs: Major Hurdles

- Many unknown rate constants.
- Must be estimated using limited data:
 - Low precision, population-based, noisy

Major Hurdles

- High dimensional non-linear system
 - no closed-form solutions
 - must resort to numerical simulations
 - point values of initial states/data will not be available
 - a large number of numerical simulations needed for answering each analysis question

"Polling" based approximation

- Start with an ODEs system.
- Discretize the time and value domains.
- Assume a (uniform) distribution of initial states
- Generate a "sufficiently" large number of trajectories by
 - Sampling the initial states and numerical simulations.

The "exit poll" Idea

- Encode this collection of discretized trajectories as a dynamic Bayesian network.
- ODEs \rightarrow DBN
- Pay the one-time cost of constructing the DBN approximation.
- Do analysis using Bayesian inferencing on the DBN.

Time Discretization

Observe the system only at a *finite* number of time points.

Value Discretization

Observe only with *bounded precision*

Symbolic trajectories

 A trajectory is recorded as a finite sequence of discrete values.

(F 3

Collection of Trajectories

- Assume a prior distribution of the initial states.
- Uncountably many trajectories. Represented as a set of (timed) finite sequences.

Piecing trajectories together..

- In fact, a probabilistic transition system.
- Pr((D, 2) \longrightarrow (E, 3)) is the "fraction" of the trajectories residing in D at t = 2 that land in E at t = 3.

The Justification

- The value space of the variables is assumed to be a compact subset C of Rⁿ
- In Z' = F(Z), F is assumed to be continuously differentiable in C.
 - Mass-law, Michaelis-Menton,...
- Then the solution Φ_t : $C \rightarrow C$ (for each t) exists, is unique, a bijection, continuous and hence *measurable*.
- But the transition probabilities can't be computed.

A computational approximation

(s, i) – States; (s, i) \rightarrow (s', i+1) -- Transitions

Sample, say, 1000 times the initial states.

Through numerical simulation, generate 1000 trajectories.

 $Pr((s, i) \rightarrow (s' i+1))$ is the fraction of the trajectories that are in s at t_i which land in s' at t_{i+1} .

Infeasible Size!

- But the *transition system* will be huge.
 - O(T . kⁿ)
 - $k \ge 2$ and $n (\approx 50-100)$.

Compact Representation

- Exploit the network structure (additional independence assumptions) to construct a DBN instead.
- The DBN is a *factored* form of the probabilistic transition system.

The DBN representation

$$S + E \rightleftharpoons_{k_2}^{k_1} ES \xrightarrow{k_3} E + P$$

Assume mass law.

$$\frac{dS}{dt} = -k_1 \cdot S \cdot E + k_2 \cdot ES$$
$$\frac{dE}{dt} = -k_1 \cdot S \cdot E + (k_2 + k_3) \cdot ES$$
$$\frac{dES}{dt} = k_1 \cdot S \cdot E - (k_2 + k_3) \cdot ES$$
$$\frac{dP}{dt} = k_3 \cdot ES$$

$$S + E \rightleftharpoons k_1 ES \xrightarrow{k_3} E + P$$

$$ES$$

$$ES$$

$$E$$

$$E$$

$$\frac{dS}{dt} = -k_1 \cdot S \cdot E + k_2 \cdot ES$$
$$\frac{dE}{dt} = -k_1 \cdot S \cdot E + (k_2 + k_3) \cdot ES$$
$$\frac{dES}{dt} = k_1 \cdot S \cdot E - (k_2 + k_3) \cdot ES$$
$$\frac{dP}{dt} = k_3 \cdot ES$$

Dependency diagram

$$S + E \rightleftharpoons k_1 \longrightarrow E + P$$

$$\frac{dS}{dt} = -k_1 \cdot S \cdot E + k_2 \cdot ES$$
$$\frac{dE}{dt} = -k_1 \cdot S \cdot E + (k_2 + k_3) \cdot ES$$
$$\frac{dES}{dt} = k_1 \cdot S \cdot E - (k_2 + k_3) \cdot ES$$
$$\frac{dP}{dt} = k_3 \cdot ES$$

Dependency diagram

The DBN Representation

$$S + E \rightleftharpoons_{k_2}^{k_1} ES \xrightarrow{k_3} E + P$$

$$\frac{dS}{dt} = -k_1 \cdot S \cdot E + k_2 \cdot ES$$
$$\frac{dE}{dt} = -k_1 \cdot S \cdot E + (k_2 + k_3) \cdot ES$$
$$\frac{dES}{dt} = k_1 \cdot S \cdot E - (k_2 + k_3) \cdot ES$$
$$\frac{dP}{dt} = k_3 \cdot ES$$

 $P(S^{2}=C | S^{1}=B, E^{1}=C, ES^{1}=B) = 0.2$ $P(S^{2}=C | S^{1}=B, E^{1}=C, ES^{1}=C) = 0.1$ $P(S^{2}=A | S^{1}=A, E^{1}=A, ES^{1}=C) = 0.05$

- Each node has a CPT associated with it.
- This specifies the local (probabilistic) dynamics.

 Fill up the entries in the CPTs by sampling, simulations and counting

Computational Approximation

 Fill up the entries in the CPTs by sampling, simulations and counting

1000

The Technique

 $P(S^2=C|S^1=B,E^1=C,ES^1=B)=100/500=0.2$

 Fill up the entries in the CPTs by sampling, simulations and counting

The Technique

The size of the DBN is:

O(T . n . k^d)

d will be usually much smaller than n.

$$S + E \underset{k_2 = 0.2}{\overset{k_1 = 0.1}{\Longrightarrow}} ES \xrightarrow{k_3} E + P$$

$$\frac{dS}{dt} = -0.1 \cdot S \cdot E + 0.2 \cdot ES$$
$$\frac{dE}{dt} = -0.1 \cdot S \cdot E + (0.2 + k_3) \cdot ES$$
$$\frac{dES}{dt} = 0.1 \cdot S \cdot E - (0.2 + k_3) \cdot ES$$
$$\frac{dP}{dt} = k_3 \cdot ES$$
$$\frac{dk_3}{dt} = 0$$

During the numerical generation of a trajectory, the value of k_3 does not change after sampling.

During the numerical generation of a trajectory, the value of k_3 does not change after sampling.

Sample uniformly across *all* the Intervals.

DBN based Analysis

- Use Bayesian inferencing to do parameter estimation, sensitivity analysis, probabilistic model checking ...
- Exact inferencing is not feasible for large models.
- We do approximate inferencing.
 - Factored Frontier algorithm.

Parameter Estimation

- For each choice of (interval) values for unknown parameters, run FF, compare with experimental data and assign a score using FF.
- 2. Return parameter estimates as maximal likelihoods.
- FF can be then used on the calibrated model to do sensitivity analysis, probabilistic verification etc.

DBN based Analysis

- Our experiments with signaling pathways models (taken from the *BioModels data base*) show:
 - The one-time cost of constructing the DBN can be easily amortized by using it to do parameter estimation and sensitivity analysis.
 - Good compromise between efficiency and accuracy.

Complement System

• Complement system is a critical part of the immune system

Ricklin et al. 2007

Goals

- Quantitatively understand the regulatory mechanisms of complement system
 - How is the excessive response of the complement avoided?
- The model:
 - Classical pathway + the lectin pathway
 - Inhibitory mechanism
 - ✓ C4BP

Complement System

- ODE Model
 - 42 Species
 - 45 Reactions
 - ✓ Mass law
 - ✓ Michaelis-Menten kinetics
 - 92 Parameters (71 unknown)
- DBN Construction
 - Settings
 - ✓ 6 intervals
 - ✓ 100s time-step, 12600s
 - ✓ 2.4 x 10⁶ samples
 - Runtime
 - ✓ 12 hours on a cluster of 20 PCs
- Model Calibration:
 - Training data: 4 proteins, 7 time points, 4 experimental conditions
 - Test data: Zhang et al, PLoS Pathogens, 2009

Model Calibration (parameter estimation)

Model validation

Validated the model using previous published data (*Zhang et al 2009*)

Enhancement mechanism

The antimicrobial response is sensitive to the pH and calcium level

Analysis.

(Local and global) sensitivity analysis. *in silico* experiments.

Model predictions: The regulatory effect of C4BP

- C4BP maintains classical complement activation but delays the maximal response time
- But attenuates the lectin pathway activation

The regulatory mechanism of C4BP

 The major inhibitory role of C4BP is to facilitate the decay of C3 convertase

Results

Both predictions concerning C4BP were experimentally verified.

[PLoS Comp.Biol (2011)] [BioModels database (303.Liu)]

Some extensions

Parametrized version of FF

- Reduce errors by investing more computational time [CMSB'11, TCBB 2012]
- GPU implementation:
 - Significant increase in performance and scalability
 - Thrombin-dependent MLC p-pathway
 - 105 ODEs; 197 rate constants; 164 "unknown" rate constants.
 - (FF based approximate) probabilistic verification method [Bioinformatics 2012]

Current Collaborations

Ding Jeak Ling

Immune system signaling during Multiple infections

Marie-Veronique Clement

DNA damage/response pathways

G V Shivashankar

Chromosome co-localizations and co-regulations

Conclusion

- The DBN approximation method is useful and efficient.
- When does it (not) work?
- How to relate ODEs based dynamical properties to the DBN based ones?
- How to extend the approximation method to multi-mode signaling pathways?

Acknowledgements:

Suchee Palaniappan Blaise Genest

David Hsu

Liu Bing

Gireedhar Venkatachalam

Benjamin Gyori

Wang Junjie