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Biopathways

m Biopathways:
Metabolic Pathways
Signaling Pathways
Gene Regulatory Networks



Signaling Pathways

* Chemical reactions in
response to external signals
(ligands)

* Signals pass into the nucleus
through a series of protein
modifications

‘Data transfer’ mechanism of
the cell
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A Common Modeling Approach

® View a pathway as a network of bio-chemical
reactions

® Model the network as a system of ODEs
One for each molecular species

Reaction kinetics: Mass action law, Michelis-Menten,
Hill, etc.

® Study the ODE system dynamics.
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The ODEs model

S+E%ESL3E+P

Assume mass law.
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m Alternative approach:

Keep track of exact number of molecules of
each type. Simulate the dynamics by
executing one reaction at a time stochastically
(CTMCs)

Stochastic simulations (Gillespie’s algorithm)
Kappa , BioNetGen, PRISM, Bio-Pepa, ..
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ODEs: Major Hurdles

® Many unknown rate constants.

® Must be estimated using limited data:
Low precision, population-based, noisy



Major Hurdles

® High dimensional non-linear system
no closed-form solutions
must resort to numerical simulations
point values of initial states/data will not be available

a large number of numerical simulations needed for
answering each analysis question
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"Polling” based approximation

¢ Start with an ODEs system.
® Discretize the time and value domains.
® Assume a (uniform) distribution of initial states

® Generate a “sufficiently” large number of
trajectories by

Sampling the initial states and numerical simulations.
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The “exit poll” ldea

® Encode this collection of discretized trajectories
as a dynamic Bayesian network.

®* ODEs — DBN

® Pay the one-time cost of constructing the DBN
approximation.

®* Do analysis using Bayesian inferencing on the
DBN.
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Time Discretization

® Observe the system only at a finite number of
time points.
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Value Discretization

® Observe only with bounded precision
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Symbolic trajectories

® Atrajectory Is recorded as a finite sequence of

discrete values. 2 -0 -0)-O-@
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Collection of Trajectories

® Assume a prior distribution of the initial states.

® Uncountably many trajectories. Represented as a set of
(timed) finite sequences.
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Plecing trajectories together..

® In fact, a probabillistic transition system.

®* Pr((D,2) —(E, 3))is G-
the “fraction” of the ) 0.2 @
trajectories residing in D
att=2that land in E at
t=3.
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The Justification

® The value space of the variables is assumed to be a
compact subset C of R"

®* InZ’=F(Z), F isassumed to be continuously
differentiable in C.
Mass-law, Michaelis-Menton, ...

® Then the solution ®,: C — C (for each t) exists, is
unigue, a bijection, continuous and hence measurable.

® But the transition probabilities can’t be computed.
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A computational approximation

(s, 1) — States;
(s,1) — (s, i+1) -- Transitions

Sample, say, 1000 times the '
initial states. (@) (@

o
RO

Through numerical
simulation, generate 1000 -

trajectories. E
D A
Pr((s, 1) - (s’ i+1)) is the C il
fraction of the trajectories that i
areinsat t whichlandins’ B
A

at t,,,.




Infeasible Size!

® But the transition system will be huge.
O(T . k")
k >2 and n (= 50-100).
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Compact Representation

® Exploit the network structure (additional
Independence assumptions) to construct a DBN

Instead.
® The DBN is a factored form of the probabilistic
transition system.
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The DBN representation

S+E—ES > E+P

Assume mass law.
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Dependency diagram
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S+E—ES “>E+P

dsS
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Dependency diagram
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The DBN Representation

S+E=>ES">E+P
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P(S2=C|S'=B,E1=C,ES'=B)= 0.2

P(S2=C|S'=B,E1=C,ES!=C)= 0.1
P(S2=A|S!=A,El=A,ES!=C)= 0.05

® Each node has a CPT f'(
() ()—C (3) o

associated with it.

® This specifies the local
(probabilistic) dynamics. ©,
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P(S2=C|S!=B,E1=C,ES'=B)= 0.2

P(S2=C|S!=B,E1=C,ES'=C)= 0.1
P(S2=A|S!=A,E!=A,ES!=C)= 0.05

® Fill up the entries in
the CPTs by

°Ts by | L] _,@ /SZZ @ ......
sampling, simulations
and counting @ @ @ ......
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Computational Approximation

Fill up the entries in

the CPTs by

sampling, simulations

and counting
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The Technique

® Fill up the entries in
the CPTs by
sampling, simulations
and counting

Om>

P(S2=C|S'=B,E1=C,ES'=B)= 100/500= 0.2

500 100
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The Technique

The size of the DBN is:

O(T . n . ki) (O—(H—(—()
%@%@%@ ......

d will be usually much \ \ \ ......
smaller than n. =@ =




Unknown rate constants

S+E—ES-“>E+P
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Unknown rate constants

During the numerical
generation of a () (H)——(s)
trajectory, the value
of k; does not change
after sampling.

P(ki=A|k3=A)=1




Unknown rate constants

During the numerical
generation of a
trajectory, the value
of k; does not change
after sampling.

P(ES?=A|S'=C,E'=B,ES'=A k;=A)= 0.4
3

P(ki=A|k3=A)=1




Unknown rate constants

Sample uniformly
across all the
Intervals.
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DBN based Analysis

® Use Bayesian inferencing to do parameter estimation,
sensitivity analysis, probabilistic model checking ...

® Exact inferencing is not feasible for large models.

® We do approximate inferencing.
Factored Frontier algorithm.



Parameter Estimation

1. For each choice of (interval)
values for unknown parameters,

run FF, compare with | _.@

> 52\ ;@ ......
experimental data and assign a -

score using FF. ' e ______

2. Return parameter estimates as

maximal likelihoods. @ it :@ ______
3. FF be th d h
cali(t;?erl]tede rtnc?dnelljfc?dc?n e / / /' ......

sensitivity analysis, probabilistic

verification etc. @ @ @ @ ......
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DBN based Analysis

® Our experiments with signaling pathways
models (taken from the BioModels data base)
show:

The one-time cost of constructing the DBN can be
easily amortized by using it to do parameter
estimation and sensitivity analysis.

Good compromise between efficiency and accuracy.
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Complement System

® Complement system is a critical part of the immune system

Macrophages
Dendritic
Mast cells
) cells
Monocytes B cells
© y» b7 @

Neutrophils \ / T cells
@ 3

\ l

Complement
system

Disposal system

Clearance of
immune complexes
and apoptotic cells

Innate immunity

Opsonization

Lysis of pathogens
Chemotaxis
Inflammation

Cell activation

Adaptive immuni

Augmentation of
antibody response
Promotion of

T-cell response
Elimination of
self-reactive B cells

Enhancement of
immunologic memory

Ricklin et al. 2007
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Goals

® Quantitatively understand the regulatory mechanisms of
complement system
How is the excessive response of the complement avoided?

®* The model:

Classical pathway + the lectin pathway
Inhibitory mechanism

v C4BP



Complement System

ODE Model

42 Species

45 Reactions
v Mass law
v' Michaelis-Menten kinetics

92 Parameters (71 unknown)
DBN Construction

Settings
v 6 intervals
v 100s time-step, 12600s
v’ 2.4 x 10% samples

Runtime

v" 12 hours on a cluster of 20 PCs
Model Calibration:
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Training data: 4 proteins, 7 time points, 4 experimental conditions

Test data: Zhang et al, PLoS Pathogens, 2009
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Model validation

m Validated the model using previous published data (Zhang et al
2009)

Infection-inflammation Normal
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80- . . ] mm simulation (C3)
S mm Simulation 501 = experiments (killing rate)
~— 1 ‘58 4
> 604 = experiments = 40]
= 2
= = 30/
T 401 = 7]
[ R ]
o 5 2%
@ 207 ® 10
m )
0 0
. . Human serum albumin CRP
@ R N R W
\e%?f‘ SR OQ &\(’\es"f\) SRR
Q® SRR\ &

41



Enhancement mechanism

m The antimicrobial response is sensitive to the pH and calcium

05 05
2.5 mM calcium 4 pH55
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Analysis.

m (Local and global) sensitivity analysis.
m In silico experiments.
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Model predictions: The regulatory effect
of C4BP

® C4BP maintains classical complement activation but
delays the maximal response time

® But attenuates the lectin pathway activation
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The regulatory mechanism of
C4BP

® The major inhibitory role of C4BP is to facilitate the decay of
C3 convertase
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Results

® Both predictions concerning C4BP were experimentally
verified.

[PLoS Comp.Biol (2011)] [BioModels database (303.Liu)]
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Some extensions

® Parametrized version of FF

Reduce errors by investing more computational time
[CMSB’11, TCBB 2012]

®* GPU implementation:
Significant increase in performance and scalability

Thrombin-dependent MLC p-pathway

= 105 ODEs: 197 rate constants ; 164 “unknown” rate
constants.

* (FF based approximate) probabillistic
verification method [Bioinformatics 2012]
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Ding Jeak Ling

Immune system signaling during
Multiple infections
Marie-Veronique Clement

DNA damage/response pathways

G V Shivashankar

Chromosome co-localizations
and co-regulations
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Conclusion

® The DBN approximation method is useful and
efficient.

® When does it (not) work?

® How to relate ODEs based dynamical properties
to the DBN based ones?

® How to extend the approximation method to
multi-mode signaling pathways?
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