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Biopathways

 Biopathways:

 Metabolic Pathways

 Signaling Pathways

 Gene Regulatory Networks



Signaling Pathways

• Chemical reactions in 
response to external signals 
(ligands)

• Signals pass into the nucleus 
through a series of protein 
modifications

„Data transfer‟ mechanism of 
the cell



A Common Modeling Approach

• View a pathway as a network of bio-chemical 

reactions

• Model the network as a system of ODEs

 One for each molecular species

 Reaction kinetics: Mass action law, Michelis-Menten, 

Hill, etc.

• Study the ODE system dynamics. 



Assume mass law.

The ODEs model



dS

dt
 k1  S  E  k2  ES

dE

dt
 k1  S  E  (k2  k3)  ES

dES

dt
 k1  S  E  (k2  k3)  ES

dP

dt
 k3  ES

ESES  PE 



k1



k3



k2



 Alternative approach:

 Keep track of exact number of molecules of 

each type. Simulate the dynamics by 

executing one reaction at a time stochastically 

(CTMCs)

Stochastic  simulations (Gillespie‟s algorithm)

 Kappa , BioNetGen, PRISM, Bio-Pepa, ..



ODEs: Major Hurdles

• Many unknown rate constants.

• Must be estimated using limited data:
 Low precision, population-based, noisy 



Major Hurdles

• High dimensional non-linear system

 no closed-form solutions

 must resort to numerical simulations

 point values of initial states/data will not be available 

 a large number of numerical simulations needed for 

answering each analysis question



“Polling” based approximation 

• Start with an ODEs system.

• Discretize the time and value domains.  

• Assume a (uniform) distribution of initial states

• Generate a “sufficiently” large number  of 

trajectories by 

 Sampling the initial states and numerical simulations.



The “exit poll”  Idea

• Encode this collection of discretized trajectories 

as a dynamic Bayesian network.

• ODEs    DBN

• Pay the one-time cost of constructing the DBN 

approximation.  

• Do analysis using Bayesian inferencing on the 

DBN.



Time Discretization

• Observe the system only at a finite number of 

time points.

x(t)

t0 t1 t2
tmax... ...       ... ...

x(t) = t3 + 4t +  2
2

x(0) = 2



Value Discretization

• Observe only with bounded precision

x(t)

t0 t1 t2 tmax... ...       ... ...

A

B

C

D

E



x(t)

t0 t1 t2 tmax... ...       ... ...

A

B

C

D

E

• A trajectory is recorded as a finite sequence of 

discrete values.

Symbolic trajectories

(C,0) (D,1) (D,2) (E,3) (D,4) (C,5) (B,6)



Collection of Trajectories

• Assume a prior distribution of the initial states.

• Uncountably many trajectories. Represented as a set of 

(timed) finite sequences. 

t

x(t)

t0 t1 t2 tmax... ...       ... ...
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... ...
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(D,3)



Piecing trajectories together..

• In fact, a probabilistic transition system.

• Pr( (D, 2)         (E, 3) ) is

the “fraction” of the 

trajectories residing in D

at t = 2 that land in E at

t = 3. 

tt0 t1 t2 tmax... ...       ... ...

A

B

C

D

E

... ...

(C,0) (D,1) (D,2) (E,3) (D,4) (C,5) (B,6)

(D,3)

0.8

0.2



The Justification

• The value space of the variables is assumed to be a 

compact subset C of  

• In Z’ = F(Z),  F  is assumed to be continuously 

differentiable in C.

 Mass-law, Michaelis-Menton,…

• Then the solution t :  C  C (for each t) exists, is 

unique, a bijection, continuous  and hence measurable.

• But the transition probabilities can’t be computed.



(s, i) – States; 

(s, i)   (s‟, i+1) -- Transitions

Sample, say, 1000 times the 

initial states. 

Through numerical 

simulation, generate 1000 

trajectories.

Pr((s, i)  (s‟ i+1)) is the 

fraction of the trajectories that 

are in s at   ti which land in s‟ 

at  t i+1.

tt0 t1 t2 tmax... ...       ... ...

A

B

C

D
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A computational approximation

1000 800

... ...

(C,0) (D,1) (D,2) (E,3) (D,4) (C,5) (B,6)

(D,3)

0.8

0.2



Infeasible Size!

• But the transition system will be huge.

 O(T . kn)

 k   2   and n ( 50-100).



Compact Representation

• Exploit the network structure (additional 

independence assumptions) to construct a DBN 

instead.

• The DBN is a factored form of the probabilistic 

transition system.



Assume mass law.

The DBN representation



dS

dt
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Dependency diagram



Dependency diagram



dS

dt
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dE

dt
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dES
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The DBN Representation
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• Each node has a CPT 

associated with it. 

• This specifies the local  

(probabilistic) dynamics.

S0
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ES0

P0 P1
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P(S2=C|S1=B,E1=C,ES1=B)=  0.2

P(S2=C|S1=B,E1=C,ES1=C)=  0.1

P(S2=A|S1=A,E1=A,ES1=C)=  0.05 
.
.
.



• Fill up the entries in 

the CPTs by 

sampling, simulations 

and counting
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Computational Approximation

• Fill up the entries in 

the CPTs by 

sampling, simulations 

and counting
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The Technique

• Fill up the entries in 

the CPTs by 

sampling, simulations 

and counting
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P(S2=C|S1=B,E1=C,ES1=B)= 100/500= 0.2



The Technique
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The size of the DBN is:

O(T . n . kd)

d will be usually much 

smaller than n.



Unknown rate constants



dS

dt
 0.1 S  E  0.2  ES

dE

dt
 0.1 S  E  (0.2  k3)  ES

dES

dt
 0.1 S  E  (0.2 k3)  ES

dP

dt
 k3  ES

ESES  PE 



k1  0.1



k3



k2  0.2
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k3
0

dt

dk3 = 0



Unknown rate constants

During the numerical 

generation of a 

trajectory, the value 

of k3 does not change

after sampling. 
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Unknown rate constants

During the numerical 

generation of a 

trajectory, the value 

of k3 does not change

after sampling. 
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Unknown rate constants

Sample uniformly 

across all the 

Intervals.

S0

E0

ES0

P0

S1

E1

ES1

P1

S2

E2

ES2

P2

S3

E3

ES3

P3

... ...

... ...

... ...
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DBN based Analysis

• Use Bayesian inferencing to do parameter estimation, 

sensitivity analysis, probabilistic model checking …

• Exact inferencing is not feasible for large models.

• We  do approximate inferencing.

• Factored Frontier algorithm.



Parameter Estimation

S0
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P0

S1

E1

ES1

P1

S2

E2

ES2
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ES3
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... ...

... ...

... ...

... ...

k3 k3 k3 k3

1. For each choice of (interval) 

values for unknown parameters, 

run FF, compare with  

experimental data  and assign a 

score using FF. 

2. Return parameter estimates as 

maximal likelihoods.

3. FF can be then used on the 

calibrated model to do 

sensitivity analysis, probabilistic 

verification etc. ... ...0 1 2 3



DBN based Analysis

• Our experiments with signaling pathways 

models (taken from the BioModels data base) 

show:

 The one-time cost of constructing the DBN can be 

easily amortized by using it to do parameter 

estimation and sensitivity analysis.

 Good compromise between efficiency and accuracy.



Complement System

• Complement system is a critical part of the immune system

Ricklin et al. 2007



Classical pathwayLectin pathwayAmplified responseInhibition



Goals

• Quantitatively understand the regulatory mechanisms of 

complement system

 How is the excessive response of the complement  avoided?

• The model:

 Classical pathway + the lectin pathway 

 Inhibitory mechanism 

C4BP



• ODE Model

 42 Species

 45 Reactions

 Mass law

 Michaelis-Menten kinetics

 92 Parameters (71 unknown)

• DBN Construction

 Settings

 6 intervals

 100s time-step, 12600s

 2.4 x 106 samples

 Runtime

 12 hours on a cluster of 20 PCs

• Model Calibration:

 Training data: 4 proteins, 7 time points, 4 experimental conditions

 Test data: Zhang et al, PLoS Pathogens, 2009 

Complement System



40

Model Calibration (parameter estimation)



41

Model validation

 Validated the model using previous published data (Zhang et al 

2009)



42

Enhancement mechanism

 The antimicrobial response is sensitive to the pH and calcium 

level



Analysis.

 (Local and global) sensitivity analysis.

 in silico experiments.



Model predictions: The regulatory effect 

of C4BP

• C4BP maintains classical complement activation but 

delays the maximal response time

• But attenuates the lectin pathway activation

Classical pathway Lectin pathway



The regulatory mechanism of 

C4BP

• The major inhibitory role of C4BP is to facilitate the decay of 

C3 convertase

A

B

D

C

A B

C D



Results

• Both predictions concerning C4BP were experimentally 

verified. 

[PLoS Comp.Biol (2011)] [BioModels database (303.Liu)]



Some extensions

• Parametrized version of FF 

 Reduce errors by investing more computational time

[CMSB’11, TCBB 2012]

• GPU implementation:

 Significant increase in performance and scalability

 Thrombin-dependent MLC p-pathway

 105 ODEs;  197 rate constants ; 164  “unknown” rate 

constants. 

 (FF based approximate) probabilistic 

verification method [Bioinformatics 2012]



Current  Collaborations

Immune system signaling during

Multiple infections

DNA damage/response pathways

Chromosome co-localizations 

and co-regulations

Ding Jeak Ling

Marie-Veronique Clement

G V Shivashankar



Conclusion

• The DBN approximation method is useful and 

efficient.

• When does it (not) work?

• How to relate ODEs based dynamical  properties 

to the DBN based ones?

• How to extend the approximation method  to 

multi-mode signaling pathways?
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