

turbo introduction to Kappa/BNGL

why rules are great

Sunday, February 21, 2010

probabilistic (site) graph rewriting

try Kappa!

http://www.pps.jussieu.fr/~jkrivine/ binaires/Telechargements/
Outils_danalyses_et_de_simulation.html

forget about rules!

energy as syntax

energy-oriented modelling/programming

- more structured approach
- as in structured programming
- esp. well suited for combinatorial molecular network for which:
- no structure means no analysis possible ...
- more physically realistic
- Iess parameter-hungry

example: an allosteric Ising model [Science - Feb 5 2010]

an allosteric Ising model

an allosteric model of the E. Coli flagellar switch (with ANC-style energy)

- a ring of 2 -state protomers $P(f)$:
.ह. [favoured] $f=0=$ inactive (counter clockwise)
.f. [disfavoured] $\mathrm{f}=1=$ active (clockwise)
- potential bindees CheY that favour $f=1$

combinatorics \& nn

CheY ($s \sim p$) might bind any P, which means an astonishing $\sim 10^{20}$ different configurations (that is the number of species one would need in a speciescentric approach)
we are going to write the Hamiltonian/ energy of the system - a sum of 3 different contributions
all terms are nn=nearest neighbour

Energy landscaping - i

a P conformational term whereby it is said that P prefers conformation 0

$$
E(P(f \sim 0))<E(P(f \sim 1))
$$

convention: lower energy = more favoured

Energy landscaping - ii

a CheY-P binding term whereby we say that if bound to pho'ed CheY, P prefers conformation 1

$$
\begin{aligned}
& E(P(f \sim 0, s!1), C h e Y(s \sim p!1))> \\
& E(P(f \sim 0, s!1), \operatorname{CheY}(s \sim p!1))
\end{aligned}
$$

$n b:$ this term overlaps with the first one $E(P((f \sim 0 / 1)))$

Energy landscaping - iii

an Ising penalty term for n.-neighbours not being in the same conformation which will "spread conformation"

$$
\begin{aligned}
& E(P(f \sim 1, x!1), P(y!1, f \sim 0))= \\
& E(P(f \sim 0, x!1), P(y!1, f \sim 1))> \\
& E(P(f \sim 0, x!1), P(y!1, f \sim 0))= \\
& E(P(f \sim 1, x!1), P(y!1, f \sim 1))
\end{aligned}
$$

dynamics ii - rules

\# 10 reversible rules
\#\# 2 binds
\#\#\# P-CheY binding: CheY needs to be pho'ed \& prefers conformation $P(f \sim 1)$ by a factor of 10 'bind 0' $P(f \sim 0, s)$, CheY $(s \sim p)<->P(f \sim 0, s!1)$, CheY ($s \sim p!1) @ 1,10$ 'bind 1' $P(f \sim 1, s)$, CheY $(s \sim p)<->P(f \sim 1, s!1)$, CheY ($s \sim p!1) @ 1,1$
\#\# 8 flips (aka conformational change)
\#\#\# $4 P$ flips without CheY - note that $P(f \sim 0)$ is favoured $2 / 1$
'flip 000' $P(f \sim 0, y!1), P(x!1, f \sim 0, y!2, s), P(x!2, f \sim 0)<->P(f \sim 0, y!1), P(x!1, f \sim 1, y!2, s), P(x!2, f \sim 0) @ 1,200$
'flip 100' $P(f \sim 1, y!1), P(x!1, f \sim 0, y!2, s), P(x!2, f \sim 0)<->P(f \sim 1, y!1), P(x!1, f \sim 1, y!2, s), P(x!2, f \sim 0) @ 1,2$
'flip 001' $P(f \sim 0, y!1), P(x!1, f \sim 0, y!2, s), P(x!2, f \sim 1)<->P(f \sim 0, y!1), P(x!1, f \sim 1, y!2, s), P(x!2, f \sim 1) @ 1,2$
'flip 101' $P(f \sim 1, y!1), P(x!1, f \sim 0, y!2, s), P(x!2, f \sim 1)<->P(f \sim 1, y!1), P(x!1, f \sim 1, y!2, s), P(x!2, f \sim 1) @ 100,2$
\#\#\# 4 P flips with CheY - note that all forwards are multiplied by 10 (one simple way to satisfy the ANC \#\#\# thermodynamic constraint, aka the Wegscheider condition)
'flip 000b' $P(f \sim 0, y!1), P\left(x!1, f \sim 0, y!2, s!_\right), P(x!2, f \sim 0)<->P(f \sim 0, y!1), P\left(x!1, f \sim 1, y!2, s!_\right), P(x!2, f \sim 0) @ 10,200$
'flip 100b' $P(f \sim 1, y!1), P\left(x!1, f \sim 0, y!2, s!_\right), P(x!2, f \sim 0)<->P(f \sim 1, y!1), P\left(x!1, f \sim 1, y!2, s!_\right), P(x!2, f \sim 0) @ 10,2$ 'flip 001b' $P(f \sim 0, y!1), P\left(x!1, f \sim 0, y!2, s!_\right), P(x!2, f \sim 1)<->P(f \sim 0, y!1), P\left(x!1, f \sim 1, y!2, s!_\right), P(x!2, f \sim 1) @ 10,2$ 'flip 101b' $P(f \sim 1, y!1), P\left(x!1, f \sim 0, y!2, s!_\right), P(x!2, f \sim 1)<->P(f \sim 1, y!1), P\left(x!1, f \sim 1, y!2, s!_\right), P(x!2, f \sim 1) @ 1000,2$
$10 / 1 / 2010$ cs.ka sample $=0.3000 \mathrm{t} . \mathrm{u}$

conformation spread

The lower curve - tracking the Ising energy of the ring stays low at all time

- despite fraction of inactive P 's ranging in $[0,1]$ depending on nb of CheY-Ps

NB: a Duke, Bray, Le Novere model; does not need a regular and/or permanent lattice

home run!

- more physically realistic: seems to fit really well in this case (see Ref)
- less parameter-frenzy:
- 10 reversible rules
- 8 energy terms $=2$ flips $+(2+4)$ binds
- 16 independent choices of kinetic rates "time scales"
- more structured approach: it really shines!
- esp. well suited for combinatorial molecular networks: 1020!

