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graphical representation of pY-mediated recruitment (Fig. 2). These
diagrams provide a system-level view of the ErbB receptors, showing
biophysical interactions between signalling proteins and known sites
of tyrosine phosphorylation. Which proteins are actually recruited in
a given cell will depend on many factors, including the effective
concentrations of both the activated receptors and the signalling
proteins. These diagrams should therefore be viewed as quantitative
maps of the receptors, rather than a depiction of protein recruitment
in any specific cell type or state.
To evaluate how well our microarray experiments recapitulate

known interactions, we compiled a list of previously reported
interactions between SH2/PTB-containing proteins and the ErbB
receptors (Supplementary Table 5). For interactions with EGFR

and ErbB2, we relied on hand-curated databases (ref. 10 and
http://proteome.incyte.com/); for ErbB3 and ErbB4, we surveyed
the literature ourselves. Overall, our arrays detected 43 of the 65
previously reported interactions. For example, we observed that
peptides derived from EGFR were able to bind strongly
(KD , 2 mM) to the SH2/PTB domains of Crk, Grb2, Nck1, PI3Ka
(also known as PIK3R1), PI3Kb (also known as PIK3R2), PLC-g1
(also known as PLCG1), PLC-g2 (also known as PLCG2), Shp2 (also
known as PTPN11), RasGAP (also known as RASA1), Shc1, Shc3,
Syk and Vav1, and weakly to the SH2 domains of Grb10, Grb7, Nck2,
Shp1 (also known as PTPN6), Nsp1 (also known as SH2D3A), Socs1,
Stat1, Stat3, Vav2 and Vav3. Many of the known interactions that
were not detected were members of the STAT and SOCS families of

Figure 2 | Quantitative protein interaction networks for the four human
ErbB receptors. Red circles represent phosphopeptides; purple circles
represent the non-phosphorylated version of each phosphopeptide; green
circles represent SH2 domains; and blue circles represent PTB domains.
Lines connecting peptides to domains indicate observed interactions,

coloured according to the affinity of the interaction (see legend). Red circles
labelled with two numbers represent doubly phosphorylated peptides. The
green or blue circles that lie outside the rectangle of individual domains
represent tandem domains. Black lines connect the tandem domains to their
corresponding individual domains.
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try Kappa!
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binaires/Telechargements/
Outils_danalyses_et_de_simulation.html

Sunday, February 21, 2010

http://www.pps.jussieu.fr/~jkrivine/binaires/Telechargements/Outils_danalyses_et_de_simulation.html
http://www.pps.jussieu.fr/~jkrivine/binaires/Telechargements/Outils_danalyses_et_de_simulation.html
http://www.pps.jussieu.fr/~jkrivine/binaires/Telechargements/Outils_danalyses_et_de_simulation.html
http://www.pps.jussieu.fr/~jkrivine/binaires/Telechargements/Outils_danalyses_et_de_simulation.html
http://www.pps.jussieu.fr/~jkrivine/binaires/Telechargements/Outils_danalyses_et_de_simulation.html
http://www.pps.jussieu.fr/~jkrivine/binaires/Telechargements/Outils_danalyses_et_de_simulation.html


forget about rules!

Sunday, February 21, 2010



energy-oriented modelling/programming

- more structured approach

• as in structured programming
• esp. well suited for combinatorial molecular 
network for which: 

• no structure means no analysis possible ...
- more physically realistic

- less parameter-hungry

energy as syntax
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example: an 
allosteric Ising model

[Science - Feb 5 2010]
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Recent technical advances have allowed us to
observe these signatures of conformational spread.
We investigated motor switching using back-
focal-plane interferometry of polystyrene beads
attached to truncated flagella of E. coli (21–23),
with ~1° angular resolution and ~1 ms time
resolution, limited by the mechanical relaxation
of beads attached by the elastic flagellar hook (22).
Single motors with a steady bead trajectory were
recorded for 30 s to minimize photo damage and
sensitivity to slow fluctuations in bias (24), and
then were categorized by bias (20, 22). Angles
and radii of the bead trajectory were obtained by
fitting an ellipse to the trajectory, and then con-
verted to instantaneous motor speed (22).

Median filtered motor speed records show
complete switching between CW and CCW
states and incomplete switching to speed levels
in between (Fig. 2A, left panel). The multistate
nature of the record renders traditional zero-
crossing analyses of motor switching (18, 20)
inadequate. Instead, we defined complete
switches by sequential crossing of two thresh-
olds, set at two-thirds of the mean CWand CCW
speeds (Fig. 2A, right panel). A typical switch
event is displayed in detail in Fig. 2B. Filtering,
which is required to show the CW and CCW
speeds clearly, extends the apparent duration of
a switch (Fig. 2B, left panel), but its finite
duration is evident in the unfiltered data (Fig.
2B, center and right panels). Switches were
observed with a broad range of durations
across the population (Fig. 2, B to D) and
within each cell record (see fig. S2 for an
example set). Some switches require more than
one revolution for completion, and not all
switches vary in speed monotonically through
the event. For example, the switch in Fig. 2D

Fig. 1. Structure and conformational spread model of the
bacterial flagellar switch. (A) Schematic of the E. coli bacterial
flagellar motor. Indicated are the likely positions of switch
complex proteins FliG (~26 copies), FliM (~34 copies), and FliN
(~136 copies) and the torque-generating stator units MotA4MotB2
(~10 copies, orange) (9). Structural studies indicate that con-
formational changes in FliM upon binding of the signaling
molecule CheY-P are coupled indirectly to conformational
changes in the FliG track, which interfaces with the torque-
generating units to determine rotation direction (21, 34–36).
We consider the switch complex to be a ring of 34 identical
protomers, each consisting of ~1 FliG, 1 FliM, and a tetramer of
FliN subunits. Each protomer possesses a single binding site to
which a CheY-P molecule can be bound (B) or not bound (b) and
has two conformations, active (A, corresponding to CW rotation)
or inactive (a, CCW). (B) A free-energy diagram of the four states
of a protomer and the transitions between them, for the case of
CW bias = 0.5. For simplicity, we consider the symmetrical case
where the magnitude of the free-energy difference between
favored and unfavored states (EA) is the same with or without
CheY-P (black circle) bound. (C) Interactions between adjacent protomers
favor pairs with the same conformation. We assume that the free energy of
interaction is lower by EJ for any like pair compared to any unlike pair,
independent of CheY-P binding. These interactions add 0, +2EJ or –2EJ to the
free energy of a conformational change, depending on the state of adjacent
protomers. (D) Above a critical value ofEJ the ring spends themajority of time in
a coherent state, occasionally stochastically switching between CCW and CW

configurations. Switches typically occur by a single nucleation of a new domain,
followed by conformational spread of the domain, which follows a biased
random walk until it either encompasses the entire ring or collapses back to the
previous coherent state (Movie S1). The model behaves like the classical
sequential model in the limit of large EA (absolute coupling between binding
and conformation) and like the classical concerted model in the limit of largeEJ
(absolute coupling between subunit conformations).

Fig. 2. Experimental evidence
of conformational spread. (A)
(Left) Three seconds of a typical
motor speed record, median
filtered (100 points) to reduce
noise (for the full record, see fig.
S1). Complete and incomplete
switches are evident. (Right)
The motor speed histogram for
the full 30-s record. Because
the peak shape is asymmetrically
affected by incomplete switching,
Gaussian curves were fitted to
the outside portion of the histo-
gram peaks to obtain mean
speeds mCCW and mCW (22).
Thresholds for the identification
of complete switches were set at
aCCW = a mCCW and aCW = a
mCW, with a = 2/3. (B) (Left)
Median filtered speed trace
showing a typical complete
switch. (Center) The same switch
shown as unfiltered bead angle
versus time. Scale bars show 0.5
revolutions and 10 ms. The
switch comprises a linear region
corresponding to smooth CCW
rotation, followed by a central
region corresponding to decel-
eration, reversal, and acceleration in the opposite direction, and finally another linear region corresponding
to smooth CW rotation. The duration of the switch (20.8 ms, in red) was calculated as the interval during
which the slope of the angle trace was statistically significantly different from that of the CW and CCW states
in the whole 30-s motor trace (22). The inset shows the unfiltered bead trajectory (x, y) for the same switch.
All insets show a range of 400 nm in x and y bead position. (Right) The same data as the inset in (B), center,
shown as unfiltered bead position versus time (x in blue, y in green, switch in red). Sinusoidal sections of the
trace correspond to smooth rotation; the sign of the phase shift betweenx and y indicates the direction of
rotation. (C to E) Other typical switch events, plotted as in (B). (C) A fast switch of duration 1.4 ms. (D) A slow
switch of duration 78.4 ms, taking almost one revolution to complete and demonstrating nonmonotonic
speed variation. (E) An incomplete switch leading to transient reversal of rotation.
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an allosteric Ising model

an allosteric model of the E. Coli flagellar 
switch (with ANC-style energy)

- a ring of 2-state protomers P(f): 
[favoured] f=0=inactive (counter clockwise)

[disfavoured] f=1=active (clockwise) 

- potential bindees CheY that favour f=1
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combinatorics & nn

CheY(s~p) might bind any P, which means 
an astonishing ~ 1020 different 
configurations (that is the number of 
species one would need in a species-
centric approach) 

we are going to write the Hamiltonian/
energy of the system - a sum of 3 
different contributions

all terms are nn=nearest neighbour
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Energy landscaping - i

a P conformational term whereby it is said 
that P prefers conformation 0

E(P(f~0)) < E(P(f~1))

convention: lower energy = more favoured
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Energy landscaping - ii

a CheY-P binding term whereby we say 
that if bound to pho’ed CheY, P prefers 
conformation 1

E(P(f~0,s!1),CheY(s~p!1)) > 
E(P(f~0,s!1),CheY(s~p!1))

nb: this term overlaps with the first 
one E(P((f~0/1)))
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Energy landscaping - iii

an Ising penalty term for n.-neighbours 
not being in the same conformation 
which will "spread conformation"     

E(P(f~1,x!1),P(y!1,f~0)) = 

E(P(f~0,x!1),P(y!1,f~1)) >

E(P(f~0,x!1),P(y!1,f~0)) = 

E(P(f~1,x!1),P(y!1,f~1))
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# 10 reversible rules

## 2 binds

### P-CheY binding: CheY needs to be pho'ed & prefers conformation P(f~1) by a factor of 10

'bind 0' P(f~0,s), CheY(s~p) <-> P(f~0,s!1), CheY(s~p!1)@1,10

'bind 1' P(f~1,s), CheY(s~p) <-> P(f~1,s!1), CheY(s~p!1)@1,1

## 8 flips (aka conformational change)

### 4 P flips without CheY - note that P(f~0) is favoured 2/1

'flip 000' P(f~0,y!1),P(x!1,f~0,y!2,s),P(x!2,f~0) <-> P(f~0,y!1),P(x!1,f~1,y!2,s),P(x!2,f~0)@1,200

'flip 100' P(f~1,y!1),P(x!1,f~0,y!2,s),P(x!2,f~0) <-> P(f~1,y!1),P(x!1,f~1,y!2,s),P(x!2,f~0)@1,2

'flip 001' P(f~0,y!1),P(x!1,f~0,y!2,s),P(x!2,f~1) <-> P(f~0,y!1),P(x!1,f~1,y!2,s),P(x!2,f~1)@1,2

'flip 101' P(f~1,y!1),P(x!1,f~0,y!2,s),P(x!2,f~1) <-> P(f~1,y!1),P(x!1,f~1,y!2,s),P(x!2,f~1)@100,2

### 4 P flips with CheY - note that all forwards are multiplied by 10 (one simple way to satisfy the ANC

### thermodynamic constraint, aka the Wegscheider condition)

'flip 000b' P(f~0,y!1),P(x!1,f~0,y!2,s!_),P(x!2,f~0) <-> P(f~0,y!1),P(x!1,f~1,y!2,s!_),P(x!2,f~0)@10,200

'flip 100b' P(f~1,y!1),P(x!1,f~0,y!2,s!_),P(x!2,f~0) <-> P(f~1,y!1),P(x!1,f~1,y!2,s!_),P(x!2,f~0)@10,2

'flip 001b' P(f~0,y!1),P(x!1,f~0,y!2,s!_),P(x!2,f~1) <-> P(f~0,y!1),P(x!1,f~1,y!2,s!_),P(x!2,f~1)@10,2

'flip 101b' P(f~1,y!1),P(x!1,f~0,y!2,s!_),P(x!2,f~1) <-> P(f~1,y!1),P(x!1,f~1,y!2,s!_),P(x!2,f~1)@1000,2

dynamics ii - rules
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conformation spread

The lower curve - tracking the Ising energy 
of the ring stays low at all time 

- despite fraction of inactive P's ranging in 
[0,1] depending on nb of CheY-Ps

NB: a Duke, Bray, Le Novere model; does 
not need a regular and/or permanent 
lattice
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home run!

- more physically realistic: seems to fit 
really well in this case (see Ref)

- less parameter-frenzy: 

• 10 reversible rules
• 8 energy terms = 2 flips + (2+4) binds
• 16 independent choices of kinetic rates “time scales”
- more structured approach: it really 
shines!

- esp. well suited for combinatorial 
molecular networks: 1020!
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