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Statecharts

 Popular notation for 
implementing complex 
state machines

 Proposed by Harel in 1987
 Statecharts = 

state diagrams + 
depth (hierarchy) + 
orthogonality (parallelism) + 
broadcast-communication
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Statecharts (my history)
 1997-99:  Worked on simulation and translation tools 

for the Requirements State Machine Language (RSML)
 1999-2002:  Developed the semantics of the 

Requirements State Machine Language without Events 
(RSML-e) – Masters thesis

 2002-2004:  Created Compiler for RSML-e to SIMP 
(fully-specified subset of C) and proved its correctness 
– PhD thesis
◦ Vowed to quit working on Statecharts 

 2007-2009:  Created formal analysis and compiler tools 
for Simulink Stateflow & worked on formal semantics

 2010 - ??? Working with NASA Ames & Vanderbilt U on 
parameterized analysis of Statecharts dialects
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Statecharts Formalisms

 Classical Statecharts (STATEMATE)
 Rhapsody Statecharts
 UML Statecharts
 MATLAB Stateflow
 SyncCharts (ESTEREL)
 Requirements State Machine Language 

(RSML)
 …about 100 other variants
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What happens when event ‘e’ occurs?

Figure from: Michelle L. Crane and Juergen Dingel, UML vs. Classical vs. Rhapsody Statecharts:  Not All Models are 
Created Equal, Proceedings of MoDELS2005, Montego Bay, Jamaica, October, 2005   5

Presenter
Presentation Notes
Ask whether anyone is familiar with Statecharts…ask them what happens

Step 1: 
  Classical statecharts & Stateflow: go to D
  UML Statecharts: go to B
  Rhapsody: go to C

Update to include different behaviors for SyncCharts, Stateflow?




Analyzing Statecharts
 Statecharts are used to design embedded systems 
◦ Sometimes safety-critical embedded software

 Some dialects are underspecified
◦ UML & Rhapsody:  parallel evaluation,  conflicting active 

transitions,  event ordering all underspecified

 Large projects use multiple dialects
◦ NASA Constellation project: Rhapsody, UML, and Stateflow
◦ Engineers familiar with different dialects read same diagram 

differently!

 Want to determine: when are charts “safe”?
◦ Within a dialect
◦ Across dialects
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Syntax of Statecharts

 States:
◦ AND (parallel)
◦ OR (hierarchical)

 Transitions
◦ Event-triggered
◦ Conditional

 Events
◦ “Basic”
◦ Valued 

 Non-graphical variables
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Syntax of Statecharts

 Transition labels of the form:
Event [condition] / action

◦ Possible to omit one or more components 

 Boundary Crossing Transitions
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Syntax of Statecharts

 Fork and Join: mechanisms for simplifying 
complex or redundant transitions

Figure from: David Harel. Statecharts: A visual formalism for complex systems. Science of Computer Programming 8, 1987.
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Syntax of Statecharts

 History Junctions
◦ Allow restoration of child state
◦ Can either be “single level” or transitive

Figure from: David Harel. Statecharts: A visual formalism for complex systems. Science of Computer Programming 8, 1987.10



Semantics Sketch

 All semantics have a notion of a step
◦ An external event causes a chart to evaluate
 Event can be implicit (time tick)
 External event becomes initial active event

 Transitions are evaluated
◦ Transition is enabled if 
 The source state of the transition is occupied
 The triggering event of the transition (if any) 

matches an active event
 The condition on the transition (if any) evaluates to 

true
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Semantics Sketch

 Subset of enabled transitions fire
◦ Change from source to destination state
◦ May generate actions including additional 

events
 Semantics of event propagation differ between 

Statecharts dialects

 Step evaluation is completed when all 
events have been processed
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Example
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Parallel State Evaluation
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UML, Rhaspody, STATEMATE: No order specified by semantics; 
semantics are tool dependent in case of conflicts

Stateflow: deterministic user-specified sequential order

SyncCharts: semantics-determined partial order.  Variables cannot 
be shared between parallel state machines, so this model would be 
rejected



Simultaneously Enabled Transitions

 Some dialects do not define an ordering 
on transitions at a particular level of 
hierarchy 
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UML, Rhaspody, STATEMATE: 
No order specified by semantics; 
semantics are tool dependent in 
case of conflicts

Stateflow, SyncCharts: 
deterministic user-specified 
sequential order



DISCREPANCIES 
BETWEEN DIALECTS
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Event Processing
 Most Statecharts semantics split step into 

microsteps
◦ Each microstep handles one round of event 

processing
◦ If current round generates new events via 

transition actions, re-run chart until no 
further events are generated

 Stateflow uses function call semantics
◦ Event action interrupts current chart 

processing and re-runs chart on generated 
event
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Simultaneous Events

 Can multiple simultaneous events occur?

Classical, SyncCharts: multiple events to be “true” at the same 
instant

UML / Rhapsody: queue up events (in arbitrary order) and execute 
one at a time.

Stateflow: only one event due to function call semantics

Figure from: Michelle L. Crane and Juergen Dingel, UML vs. Classical vs. Rhapsody Statecharts:  Not All Models are 
Created Equal, Proceedings of MoDELS2005, Montego Bay, Jamaica, October, 2005   18



Transition Ordering
 How does semantics choose between 

simultaneously enabled transitions?

Classical: transitions with highest scope have highest priority.  Scope is 
largest state that contains portion of transition arc (go to state E)

UML / Rhapsody: transitions in smallest substate have priority (go to state C).

Stateflow, SyncCharts: evaluation is “top down” based on transition source 
(go to state D)

E
e3
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Execution of Actions

Classical: Assignment actions within a microstep are considered 
simultaneous.  Transition result: f = 2, g = 2

UML, Rhapsody, Stateflow, Esterel: Assignment actions are 
sequential.  Transition result : f = 2, g = 3.
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UNINTENDED 
BEHAVIORS
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Infinite Loops (Rhapsody)

 Example of GEN 
leading to infinite 
loop

 C1 queues 
message for C2 
which queues 
message for C1 
which …
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Bad Return Policies (Rhapsody)
 Trigger Example
 Rhapsody policy: 

triggered messages 
received while 
evaluating a message 
are dropped.

 So, no infinite loop 
here.

 Triggers can return 
values.  
◦ If trigger is dropped, 

return value is not 
defined by Rhapsody 
semantics. 23



Strange Charts (Stateflow)
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Early Return Logic
Infinite Event Loop

Infinite Junction Loops



Multiple Entries (SyncCharts)

 SyncCharts adds ‘strong abort’ vs. ‘weak abort’ transitions
 Also ‘immediate’ vs ‘delayed’ transitions 
 Valued signals can be combined using commutative operator
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After eval starting in s1: 
v = 11,550

1. Start in s1 
2. Queue transition ‘c’ (weak 

abort)
3. Take transition ‘a’ (v=3)
4. Take immediate transition b to 

s2 (v=15)
5. Take transition ‘c’ (v=105)
6. Re-enter s1 (v=210)
7. Take immediate transition b 

(v=1050)
8. Take immediate transition d 

(v=11,550) to state s3

Figure from: Charles Andre, Computing SyncCharts Reactions, Electronic Notes in Computer Science Volume 88 (2003)



ANALYZING 
STATECHARTS
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Stateflow Semantics
 Stateflow User Manual is 1400 pages
 Transition semantics alone is 7 pages of 

pseudocode
 Two attempts at formalization
◦ Gregoire Hamon
 Operational Semantics [SRI 2003]
 Large; incomplete

 Denotational Semantics [Chalmers 2006]
 Based on continuations
 Elegant, relatively complete, slightly incorrect 
 Worked with Gregoire to correct errors, complete 

definition
27



Stateflow Semantics
 Denotational semantics distills 1400 page 

manual into 1 ½ pages of formalism
 In:  Gregoire Hamon. A Denotational Semantics 

of Stateflow, EMSOFT 2006
 Handful of errors in EMSOFT paper w.r.t. to 

boundary crossing transitions, transition actions, 
flowcharts
◦ I fixed these and added support for a few remaining 

issues: history states and early return logic 
◦ Gregoire and I need to submit this for publication!
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Stateflow Semantics
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Program P ::= (s, [src0, ..., srcn], I, O, L, K)
SrcComp src ::= p : sd | j : T | f : fd
StateDef sd ::= ((ae, ad, ax), (L, K), T, C)
FunctionDef fd ::= ((I, L), T)
Comp C ::= Or (T, [s0, ...sn]) | And ([s0, ...sn])
Trans t ::= (e, c, (ac, at), d)
Dest d ::= p | p.j
TransLst T ::= ∅ | t.T
Path p ::= ∅ | s.p

Syntax:

Env ρ ::= (I, O, K, S, V, (SI,SL,SO).L)
Kenv θ ::=

{ p0 : (S[[p0 : sd0]]e θ, S[[p0 : sd0]]d θ, S[[p0 : sd0]]x θ),
...
pn : (S[[pn : sdn]]e θ, S[[pn : sdn]]d θ, S[[pn : sdn]]x θ),
p0.j0 : T [[T0]] θ p0, ..., pk.jk : T [[Tk]] θ pk}

Environments:



Stateflow Transition Semantics
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τ : trans → kenv → env → path list → k- → k+ → k- → event → env

τ [[(et, c, (ac, at), d)]] θ ρ P transact complete fail e =
if (et = e) ∧ (B[[c]] ρ) then

let transact’  =
λρt. transact (A[[at]] θ ρt) in

D[[d]] θ (A[[ac]] θ ρ) P transact’ complete  fail e
else

fail ρ

T: TransList KEnv env path list  k- k+  k- event  env

T [[∅]] θ ρ P transact complete fail e = complete ρ []
T [[t.∅]] θ ρ P transact complete fail e = τ [[t]] θ P ρ transact complete fail e
T [[t.t’.T ]] θ ρ P transact complete fail e =

let fail’ = λ ρf .T [[t’.T ]] θ ρf P transact complete fail e in
τ [[t]] θ ρ P transact complete fail’ e



Stateflow Destination / State 
Semantics
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D: Destination  KEnv env path list  k- k+  k- event  env
S: StateDef KEnv env P  event  env
open_path: KEnv env path list  k- k- event  env

D[[p]] θ ρ P transact complete fail e = success transact ρ P.p
D[[j]] θ ρ P transact complete fail e = θ(j) P.p ρ transact complete fail e

S[[p : ((ae, ad, ax), T, C)]]e θ ρ P e = C[[C]]e θ (A[[ae]] θ (open ρ p)) P e
S[[p : ((ae, ad, ax), T, C)]]d θ ρ e =   

let
during =  λρd . (A[[ad]] θ ρd)   
fail = λρf . C[[C]]d θ (during ρf) e   
complete = λρc. λpc. λtc. open_path θ ρc pc tc during fail e
transact = id  (* identity function *)

in
T [[T]] θ ρ transact complete fail e

end
S[[p : ((ae, ad, ax), T,C)]]x θ ρ P e = close p ◦ A[[ax]] θ ◦ C[[C]]x θ ρ P e



Implementation in Gryphon Tool Family

SCADE

Lustre / 
LIMP

Safe State
Machines

Simulink Simulink
Gateway

StateFlow

Reactis

Simulink
Gateway

Design
Verifier

Rockwell Collins/U of Minnesota

MathWorks

Reactive Systems

Esterel Technologies

Model Checkers:
NuSMV, Prover, 
BAT, Kind, SAL

Theorem Provers: 
ACL2, PVS

Programming 
Languages:

SPARK (Ada), C

UMN: simulator, fault seeder, 
coverage measurement tool, TCG
RCI: Information Flow Modeling

S. Miller, M. Whalen, D. Cofer, Software Model 
Checking Takes Off, Communications of the 
ACM, February 2010

M. Whalen, D. Greve, L. Wagner, Model Checking 
Information Flow, In: Design and Verification of 
Microprocessor Systems for High-Assurance 
Applications, D. Hardin, Ed., Springer, March 2010.

D. Hardin, D.R. Johnson, L. Wagner, and M. Whalen.  
Development of Security Software: A High-Assurance 
Methodology, ICFEM 2009, Rio de Janeiro, Brazil, December, 
2009.



 Sponsored by AFRL
◦ Wright Patterson VA Directorate

 Compare FM & Testing
◦ Testing team & FM team

 Lockheed Martin UAV 
◦ Adaptive Flight Control System

◦ Redundancy Management Logic

◦ Modeled in Simulink

◦ Translated to NuSMV model checker 

 Subsystem/ 
Blocks  

Charts / 
Transitions / 

TT Cells      

Reachable 
State Space 

Properties 

Triplex voter  10 / 96 3 / 35 / 198 6.0 * 1013 48 

Failure 
processing 7 / 42 0 / 0 / 0 2.1 * 104 6 

Reset 
manager 6 / 31 2 / 26 / 0 1.32 * 1011 8 

Totals 23 / 169 5 / 61 / 198 N/A 62 
 

CerTA FCS Phase I

Testing

Model-Checking 1240%

060%
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Functional Analysis of Stateflow

… for each of ten control surfaces



Functional Analysis of Stateflow

 Stateflow Flowcharts
◦ No explicit states

◦ Stateflow junctions

◦ Cyclic paths

◦ Transitions modify local state variables

◦ Imperative programming

 Solution
◦ Extension to translator to support 

flowcharts

◦ Require a parameter that specifies the 
maximum times any cycle will be 
executed

◦ This bound becomes property to check

CerTA FCS Phase II –
Verification of 
Stateflow Flowcharts



6.8 x 1021 Reachable States

Mode Controller B

Mode Controller A

Counterexample Found in
Less than Two Minutes

Found 27 Errors

FCS 5000 Flight Control Mode Logic

Analysis of RCI State Machine Notation

Example Requirement
Mode A1 => Mode B1

Converted to Simulink
Translated to NuSMV



RCI Stateflow analysis

 Focused on functional analysis 
◦ Prove functional and safety requirments of 

mixed Simulink/Stateflow models

 Based on Stateflow: deterministic notation
 Autogenerated some “well-formedness” 

properties
◦ State consistency
◦ Absence of early return logic
◦ Junction loop bounds
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New Work with NASA Ames and 
Vanderbilt University
 Examining well-formedness properties
◦ Consistency of evaluation
 Parallel state machines
 Multiple enabled transitions

◦ Finiteness of intra-step event graph
◦ Chart state consistency

 Preservation properties across dialects
◦ Creation of parameterized semantics for multiple 

dialects 
◦ Equivalence
◦ Preservation of functional properties

37

Presenter
Presentation Notes
Can split into multiple slides here: one for each of consistency of evaluation, finiteness, and state consistency

Introduce formal notation for charts at this point?  Use Hamon’s stateflow notation?  Yes.



Parallel State Consistency

 Syntactic mechanisms check disjointness
of parallel charts (SyncCharts)

38

Example chart rejected by SyncCharts because x is 
assigned or tested by both parallel states S1 and S2.

Presenter
Presentation Notes
Check what SyncCharts does



Semantic Parallel State Consistency

 Attempt all interleavings for given state using 
incremental SAT solver
◦ Create next-step transition relation in parts
 Start from “leaf” parallel machines

◦ Given current state, show equivalence of parallel 
machines for current step
 If we can’t show equivalence, flag an error
 A little bit like partial order reduction

◦ Choose arbitrary interleaving and compose up to 
next level

39

Predicate for Previous 
Execution Steps

Predicate for 
Initial State ∧ ⇒ (AB ⇔ BA)



Conclusions
 Each of the examined semantics has quirks
 Be wary of assuming a particular semantics just 

given the visual notation
◦ Bigger problem for groups that use more than one 

dialect (e.g. NASA) in same system

 Formal analysis is very helpful for finding latent 
bugs in charts

 Working on parameterized semantics for multiple 
dialects (derived from Hamon’s,  Atlee’s work)

 Starting to explore analysis over multiple dialects

40

Presenter
Presentation Notes
Either one of the solutions would work for improving existing practices. 



BACKUP SLIDES
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Unintended Orderings (Stateflow)

 Order of evaluation of parallel charts
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A little history

 Chart determinism 
◦ Mats Heimdahl: Completeness and 

Consistency of RSML [1993-1996]
 conservative
 Not sound in the presence of multiple simultaneous 

events

 Functional properties
◦ William Chan: Model Checking Large 

Software Specifications [1996-99]
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Example Chart
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Stateflow Semantic Formalization

 SRI – Operational semantics
◦ Large, Complex
◦ Several facets of the language not covered

 Gregoire Hamon [Mathworks] – Denotational
semantics
◦ Small 
◦ Relatively complete
◦ Not quite right

 I’ve been working with Gregoire on 
completeness and corrections
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Stateflow Semantics Problems

 Two different kinds of actions: transition 
actions and condition actions
◦ Condition actions occur upon satisfying 

condition for a transition segment
◦ Transition actions only occur when transition 

reaches an end state

 Possible to use flowcharts to create 
poorly structured programming language
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Strange looking charts

For Loop Chart
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Syntax of Statecharts

 Non-graphical variables
 Functions 
◦ UML: Calls to functions / methods defined in a 

class
◦ Stateflow:  Graphical Functions
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Discrepancies: Fork and Join
 What happens when forks reference 

multiple events?

Classical, SyncCharts: multiple simultaneous events are possible, so the 
transitions have meaning

UML, Rhapsody, Stateflow: only one event at-a-time due to queueing; the 
transition cannot fire.
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Rhapsody Semantics

 Conditional connectors allow splitting 
transitions based on condition
◦ If >1 condition is simultaneously true

one is selected 
arbitrarily.
◦ All guards are

evaluated
simultaneously
prior to actions.
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Rhapsody Semantics

 Statecharts embedded within classes
 Each chart is assigned a thread
◦ Multiple charts can share a thread
◦ Thread operates as “event dispatcher” to its 

objects

 Event communication has two forms
◦ Asynchronous queueing: GEN method
 Can queue to self

◦ Synchronous invocation: TRIGGER method
 Function call semantics
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Problems with Rhapsody

 Several parts of semantics are unspecified 
(according to Harel06)

 Event queuing allows possible interleaving 
between “internal” and “external” events

 Ordering of evaluation on parallel state 
machines is undefined
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Chart Transition Consistency

 Local consistency: can > 1 outgoing 
transition fire from a given state?
◦ Necessary for determinism within UML, 

Rhapsody, STATEMATE dialects
◦ Sufficient to show determinism when paired 

with parallel state consistency

 Hierarchical consistency: can > 1 outgoing 
transition fire from state hierarchy?
◦ Necessary (but not sufficient) to show 

determinism between different dialects
53
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