
Semantics of Statecharts

Michael Whalen
Program Director

University of Minnesota Software Engineering Center

1

Statecharts

 Popular notation for
implementing complex
state machines

 Proposed by Harel in 1987
 Statecharts =

state diagrams +
depth (hierarchy) +
orthogonality (parallelism) +
broadcast-communication

2

Statecharts (my history)
 1997-99: Worked on simulation and translation tools

for the Requirements State Machine Language (RSML)
 1999-2002: Developed the semantics of the

Requirements State Machine Language without Events
(RSML-e) – Masters thesis

 2002-2004: Created Compiler for RSML-e to SIMP
(fully-specified subset of C) and proved its correctness
– PhD thesis
◦ Vowed to quit working on Statecharts 

 2007-2009: Created formal analysis and compiler tools
for Simulink Stateflow & worked on formal semantics

 2010 - ??? Working with NASA Ames & Vanderbilt U on
parameterized analysis of Statecharts dialects

3

Statecharts Formalisms

 Classical Statecharts (STATEMATE)
 Rhapsody Statecharts
 UML Statecharts
 MATLAB Stateflow
 SyncCharts (ESTEREL)
 Requirements State Machine Language

(RSML)
 …about 100 other variants

4

What happens when event ‘e’ occurs?

Figure from: Michelle L. Crane and Juergen Dingel, UML vs. Classical vs. Rhapsody Statecharts: Not All Models are
Created Equal, Proceedings of MoDELS2005, Montego Bay, Jamaica, October, 2005 5

Presenter
Presentation Notes
Ask whether anyone is familiar with Statecharts…ask them what happens

Step 1:
 Classical statecharts & Stateflow: go to D
 UML Statecharts: go to B
 Rhapsody: go to C

Update to include different behaviors for SyncCharts, Stateflow?

Analyzing Statecharts
 Statecharts are used to design embedded systems
◦ Sometimes safety-critical embedded software

 Some dialects are underspecified
◦ UML & Rhapsody: parallel evaluation, conflicting active

transitions, event ordering all underspecified

 Large projects use multiple dialects
◦ NASA Constellation project: Rhapsody, UML, and Stateflow
◦ Engineers familiar with different dialects read same diagram

differently!

 Want to determine: when are charts “safe”?
◦ Within a dialect
◦ Across dialects

6

Syntax of Statecharts

 States:
◦ AND (parallel)
◦ OR (hierarchical)

 Transitions
◦ Event-triggered
◦ Conditional

 Events
◦ “Basic”
◦ Valued

 Non-graphical variables
7

Syntax of Statecharts

 Transition labels of the form:
Event [condition] / action

◦ Possible to omit one or more components

 Boundary Crossing Transitions

8

Syntax of Statecharts

 Fork and Join: mechanisms for simplifying
complex or redundant transitions

Figure from: David Harel. Statecharts: A visual formalism for complex systems. Science of Computer Programming 8, 1987.

9

Syntax of Statecharts

 History Junctions
◦ Allow restoration of child state
◦ Can either be “single level” or transitive

Figure from: David Harel. Statecharts: A visual formalism for complex systems. Science of Computer Programming 8, 1987.10

Semantics Sketch

 All semantics have a notion of a step
◦ An external event causes a chart to evaluate
 Event can be implicit (time tick)
 External event becomes initial active event

 Transitions are evaluated
◦ Transition is enabled if
 The source state of the transition is occupied
 The triggering event of the transition (if any)

matches an active event
 The condition on the transition (if any) evaluates to

true
11

Semantics Sketch

 Subset of enabled transitions fire
◦ Change from source to destination state
◦ May generate actions including additional

events
 Semantics of event propagation differ between

Statecharts dialects

 Step evaluation is completed when all
events have been processed

12

Example

13

Parallel State Evaluation

14

UML, Rhaspody, STATEMATE: No order specified by semantics;
semantics are tool dependent in case of conflicts

Stateflow: deterministic user-specified sequential order

SyncCharts: semantics-determined partial order. Variables cannot
be shared between parallel state machines, so this model would be
rejected

Simultaneously Enabled Transitions

 Some dialects do not define an ordering
on transitions at a particular level of
hierarchy

15

UML, Rhaspody, STATEMATE:
No order specified by semantics;
semantics are tool dependent in
case of conflicts

Stateflow, SyncCharts:
deterministic user-specified
sequential order

DISCREPANCIES
BETWEEN DIALECTS

16

Event Processing
 Most Statecharts semantics split step into

microsteps
◦ Each microstep handles one round of event

processing
◦ If current round generates new events via

transition actions, re-run chart until no
further events are generated

 Stateflow uses function call semantics
◦ Event action interrupts current chart

processing and re-runs chart on generated
event

17

Simultaneous Events

 Can multiple simultaneous events occur?

Classical, SyncCharts: multiple events to be “true” at the same
instant

UML / Rhapsody: queue up events (in arbitrary order) and execute
one at a time.

Stateflow: only one event due to function call semantics

Figure from: Michelle L. Crane and Juergen Dingel, UML vs. Classical vs. Rhapsody Statecharts: Not All Models are
Created Equal, Proceedings of MoDELS2005, Montego Bay, Jamaica, October, 2005 18

Transition Ordering
 How does semantics choose between

simultaneously enabled transitions?

Classical: transitions with highest scope have highest priority. Scope is
largest state that contains portion of transition arc (go to state E)

UML / Rhapsody: transitions in smallest substate have priority (go to state C).

Stateflow, SyncCharts: evaluation is “top down” based on transition source
(go to state D)

E
e3

19

Execution of Actions

Classical: Assignment actions within a microstep are considered
simultaneous. Transition result: f = 2, g = 2

UML, Rhapsody, Stateflow, Esterel: Assignment actions are
sequential. Transition result : f = 2, g = 3.

20

UNINTENDED
BEHAVIORS

21

Infinite Loops (Rhapsody)

 Example of GEN
leading to infinite
loop

 C1 queues
message for C2
which queues
message for C1
which …

22

Bad Return Policies (Rhapsody)
 Trigger Example
 Rhapsody policy:

triggered messages
received while
evaluating a message
are dropped.

 So, no infinite loop
here.

 Triggers can return
values.
◦ If trigger is dropped,

return value is not
defined by Rhapsody
semantics. 23

Strange Charts (Stateflow)

24

Early Return Logic
Infinite Event Loop

Infinite Junction Loops

Multiple Entries (SyncCharts)

 SyncCharts adds ‘strong abort’ vs. ‘weak abort’ transitions
 Also ‘immediate’ vs ‘delayed’ transitions
 Valued signals can be combined using commutative operator

25

After eval starting in s1:
v = 11,550

1. Start in s1
2. Queue transition ‘c’ (weak

abort)
3. Take transition ‘a’ (v=3)
4. Take immediate transition b to

s2 (v=15)
5. Take transition ‘c’ (v=105)
6. Re-enter s1 (v=210)
7. Take immediate transition b

(v=1050)
8. Take immediate transition d

(v=11,550) to state s3

Figure from: Charles Andre, Computing SyncCharts Reactions, Electronic Notes in Computer Science Volume 88 (2003)

ANALYZING
STATECHARTS

26

Stateflow Semantics
 Stateflow User Manual is 1400 pages
 Transition semantics alone is 7 pages of

pseudocode
 Two attempts at formalization
◦ Gregoire Hamon
 Operational Semantics [SRI 2003]
 Large; incomplete

 Denotational Semantics [Chalmers 2006]
 Based on continuations
 Elegant, relatively complete, slightly incorrect
 Worked with Gregoire to correct errors, complete

definition
27

Stateflow Semantics
 Denotational semantics distills 1400 page

manual into 1 ½ pages of formalism
 In: Gregoire Hamon. A Denotational Semantics

of Stateflow, EMSOFT 2006
 Handful of errors in EMSOFT paper w.r.t. to

boundary crossing transitions, transition actions,
flowcharts
◦ I fixed these and added support for a few remaining

issues: history states and early return logic
◦ Gregoire and I need to submit this for publication!

28

Stateflow Semantics

29

Program P ::= (s, [src0, ..., srcn], I, O, L, K)
SrcComp src ::= p : sd | j : T | f : fd
StateDef sd ::= ((ae, ad, ax), (L, K), T, C)
FunctionDef fd ::= ((I, L), T)
Comp C ::= Or (T, [s0, ...sn]) | And ([s0, ...sn])
Trans t ::= (e, c, (ac, at), d)
Dest d ::= p | p.j
TransLst T ::= ∅ | t.T
Path p ::= ∅ | s.p

Syntax:

Env ρ ::= (I, O, K, S, V, (SI,SL,SO).L)
Kenv θ ::=

{ p0 : (S[[p0 : sd0]]e θ, S[[p0 : sd0]]d θ, S[[p0 : sd0]]x θ),
...
pn : (S[[pn : sdn]]e θ, S[[pn : sdn]]d θ, S[[pn : sdn]]x θ),
p0.j0 : T [[T0]] θ p0, ..., pk.jk : T [[Tk]] θ pk}

Environments:

Stateflow Transition Semantics

30

τ : trans → kenv → env → path list → k- → k+ → k- → event → env

τ [[(et, c, (ac, at), d)]] θ ρ P transact complete fail e =
if (et = e) ∧ (B[[c]] ρ) then

let transact’ =
λρt. transact (A[[at]] θ ρt) in

D[[d]] θ (A[[ac]] θ ρ) P transact’ complete fail e
else

fail ρ

T: TransList KEnv env path list  k- k+  k- event  env

T [[∅]] θ ρ P transact complete fail e = complete ρ []
T [[t.∅]] θ ρ P transact complete fail e = τ [[t]] θ P ρ transact complete fail e
T [[t.t’.T]] θ ρ P transact complete fail e =

let fail’ = λ ρf .T [[t’.T]] θ ρf P transact complete fail e in
τ [[t]] θ ρ P transact complete fail’ e

Stateflow Destination / State
Semantics

31

D: Destination  KEnv env path list  k- k+  k- event  env
S: StateDef KEnv env P  event  env
open_path: KEnv env path list  k- k- event  env

D[[p]] θ ρ P transact complete fail e = success transact ρ P.p
D[[j]] θ ρ P transact complete fail e = θ(j) P.p ρ transact complete fail e

S[[p : ((ae, ad, ax), T, C)]]e θ ρ P e = C[[C]]e θ (A[[ae]] θ (open ρ p)) P e
S[[p : ((ae, ad, ax), T, C)]]d θ ρ e =

let
during = λρd . (A[[ad]] θ ρd)
fail = λρf . C[[C]]d θ (during ρf) e
complete = λρc. λpc. λtc. open_path θ ρc pc tc during fail e
transact = id (* identity function *)

in
T [[T]] θ ρ transact complete fail e

end
S[[p : ((ae, ad, ax), T,C)]]x θ ρ P e = close p ◦ A[[ax]] θ ◦ C[[C]]x θ ρ P e

Implementation in Gryphon Tool Family

SCADE

Lustre /
LIMP

Safe State
Machines

Simulink Simulink
Gateway

StateFlow

Reactis

Simulink
Gateway

Design
Verifier

Rockwell Collins/U of Minnesota

MathWorks

Reactive Systems

Esterel Technologies

Model Checkers:
NuSMV, Prover,
BAT, Kind, SAL

Theorem Provers:
ACL2, PVS

Programming
Languages:

SPARK (Ada), C

UMN: simulator, fault seeder,
coverage measurement tool, TCG
RCI: Information Flow Modeling

S. Miller, M. Whalen, D. Cofer, Software Model
Checking Takes Off, Communications of the
ACM, February 2010

M. Whalen, D. Greve, L. Wagner, Model Checking
Information Flow, In: Design and Verification of
Microprocessor Systems for High-Assurance
Applications, D. Hardin, Ed., Springer, March 2010.

D. Hardin, D.R. Johnson, L. Wagner, and M. Whalen.
Development of Security Software: A High-Assurance
Methodology, ICFEM 2009, Rio de Janeiro, Brazil, December,
2009.

 Sponsored by AFRL
◦ Wright Patterson VA Directorate

 Compare FM & Testing
◦ Testing team & FM team

 Lockheed Martin UAV
◦ Adaptive Flight Control System

◦ Redundancy Management Logic

◦ Modeled in Simulink

◦ Translated to NuSMV model checker

 Subsystem/
Blocks

Charts /
Transitions /

TT Cells

Reachable
State Space

Properties

Triplex voter 10 / 96 3 / 35 / 198 6.0 * 1013 48

Failure
processing 7 / 42 0 / 0 / 0 2.1 * 104 6

Reset
manager 6 / 31 2 / 26 / 0 1.32 * 1011 8

Totals 23 / 169 5 / 61 / 198 N/A 62

CerTA FCS Phase I

Testing

Model-Checking 1240%

060%

Errors
Found

Effort
(% total)

Phase I Results

4
input_sel

3
totalizer_cnt

2
persistence_cnt

1
failure_report

pc

trigger

input_a

input_b

input_c

DST_index

input_sel

triplex_input_selector

input_a

input_b

input_c

trip_lev el

persist_lim

MS

f ailreport

pc

tc

triplex_input_monitor

trip_level
trip_level1

persist_lim
persistence limit

[DSTi]

[C]

[B]

[status_c]

[status_b]

[status_a]

[A]

[trigger]

[DSTi]
[MS]

[MS]

[DSTi][A]

[prev_sel]

[prev_sel]

[DSTi]

[trigger]

[trigger]

[status_c]

[status_b]

[status_a]

[A]

[A]

Index
Vector

[C]

[B]

[C]

[B]

[C]

[B]

f ailure_report

dst_index

Failure_Processing

mon_f ailure_report

status_a

status_b

status_c

prev _sel

input_a

input_b

input_c

f ailure_report

Failure_Isolation

Extract Bits
[0 3]

Extract Bits

DOC
Text

double

DST

Data Store
Read

8
dst_index

7
status_c

6
status_b

5
status_a

4
input_c

3
input_b

2
input_a

1
sync

persist_lim

totalizer_cnt<tc>

trip_lev el

persistence_cnt<pc>

sy nc<>

f ailreport

Functional Analysis of Stateflow

… for each of ten control surfaces

Functional Analysis of Stateflow

 Stateflow Flowcharts
◦ No explicit states

◦ Stateflow junctions

◦ Cyclic paths

◦ Transitions modify local state variables

◦ Imperative programming

 Solution
◦ Extension to translator to support

flowcharts

◦ Require a parameter that specifies the
maximum times any cycle will be
executed

◦ This bound becomes property to check

CerTA FCS Phase II –
Verification of
Stateflow Flowcharts

6.8 x 1021 Reachable States

Mode Controller B

Mode Controller A

Counterexample Found in
Less than Two Minutes

Found 27 Errors

FCS 5000 Flight Control Mode Logic

Analysis of RCI State Machine Notation

Example Requirement
Mode A1 => Mode B1

Converted to Simulink
Translated to NuSMV

RCI Stateflow analysis

 Focused on functional analysis
◦ Prove functional and safety requirments of

mixed Simulink/Stateflow models

 Based on Stateflow: deterministic notation
 Autogenerated some “well-formedness”

properties
◦ State consistency
◦ Absence of early return logic
◦ Junction loop bounds

36

New Work with NASA Ames and
Vanderbilt University
 Examining well-formedness properties
◦ Consistency of evaluation
 Parallel state machines
 Multiple enabled transitions

◦ Finiteness of intra-step event graph
◦ Chart state consistency

 Preservation properties across dialects
◦ Creation of parameterized semantics for multiple

dialects
◦ Equivalence
◦ Preservation of functional properties

37

Presenter
Presentation Notes
Can split into multiple slides here: one for each of consistency of evaluation, finiteness, and state consistency

Introduce formal notation for charts at this point? Use Hamon’s stateflow notation? Yes.

Parallel State Consistency

 Syntactic mechanisms check disjointness
of parallel charts (SyncCharts)

38

Example chart rejected by SyncCharts because x is
assigned or tested by both parallel states S1 and S2.

Presenter
Presentation Notes
Check what SyncCharts does

Semantic Parallel State Consistency

 Attempt all interleavings for given state using
incremental SAT solver
◦ Create next-step transition relation in parts
 Start from “leaf” parallel machines

◦ Given current state, show equivalence of parallel
machines for current step
 If we can’t show equivalence, flag an error
 A little bit like partial order reduction

◦ Choose arbitrary interleaving and compose up to
next level

39

Predicate for Previous
Execution Steps

Predicate for
Initial State ∧ ⇒ (AB ⇔ BA)

Conclusions
 Each of the examined semantics has quirks
 Be wary of assuming a particular semantics just

given the visual notation
◦ Bigger problem for groups that use more than one

dialect (e.g. NASA) in same system

 Formal analysis is very helpful for finding latent
bugs in charts

 Working on parameterized semantics for multiple
dialects (derived from Hamon’s, Atlee’s work)

 Starting to explore analysis over multiple dialects

40

Presenter
Presentation Notes
Either one of the solutions would work for improving existing practices.

BACKUP SLIDES

41

Unintended Orderings (Stateflow)

 Order of evaluation of parallel charts

42

A little history

 Chart determinism
◦ Mats Heimdahl: Completeness and

Consistency of RSML [1993-1996]
 conservative
 Not sound in the presence of multiple simultaneous

events

 Functional properties
◦ William Chan: Model Checking Large

Software Specifications [1996-99]

43

Example Chart

44

Stateflow Semantic Formalization

 SRI – Operational semantics
◦ Large, Complex
◦ Several facets of the language not covered

 Gregoire Hamon [Mathworks] – Denotational
semantics
◦ Small
◦ Relatively complete
◦ Not quite right

 I’ve been working with Gregoire on
completeness and corrections

45

Stateflow Semantics Problems

 Two different kinds of actions: transition
actions and condition actions
◦ Condition actions occur upon satisfying

condition for a transition segment
◦ Transition actions only occur when transition

reaches an end state

 Possible to use flowcharts to create
poorly structured programming language

46

Strange looking charts

For Loop Chart

47

Syntax of Statecharts

 Non-graphical variables
 Functions
◦ UML: Calls to functions / methods defined in a

class
◦ Stateflow: Graphical Functions

48

Discrepancies: Fork and Join
 What happens when forks reference

multiple events?

Classical, SyncCharts: multiple simultaneous events are possible, so the
transitions have meaning

UML, Rhapsody, Stateflow: only one event at-a-time due to queueing; the
transition cannot fire.

49

Rhapsody Semantics

 Conditional connectors allow splitting
transitions based on condition
◦ If >1 condition is simultaneously true

one is selected
arbitrarily.
◦ All guards are

evaluated
simultaneously
prior to actions.

50

Rhapsody Semantics

 Statecharts embedded within classes
 Each chart is assigned a thread
◦ Multiple charts can share a thread
◦ Thread operates as “event dispatcher” to its

objects

 Event communication has two forms
◦ Asynchronous queueing: GEN method
 Can queue to self

◦ Synchronous invocation: TRIGGER method
 Function call semantics

51

Problems with Rhapsody

 Several parts of semantics are unspecified
(according to Harel06)

 Event queuing allows possible interleaving
between “internal” and “external” events

 Ordering of evaluation on parallel state
machines is undefined

52

Chart Transition Consistency

 Local consistency: can > 1 outgoing
transition fire from a given state?
◦ Necessary for determinism within UML,

Rhapsody, STATEMATE dialects
◦ Sufficient to show determinism when paired

with parallel state consistency

 Hierarchical consistency: can > 1 outgoing
transition fire from state hierarchy?
◦ Necessary (but not sufficient) to show

determinism between different dialects
53

	Semantics of Statecharts
	Statecharts
	Statecharts (my history)
	Statecharts Formalisms
	What happens when event ‘e’ occurs?
	Analyzing Statecharts
	Syntax of Statecharts
	Syntax of Statecharts
	Syntax of Statecharts
	Syntax of Statecharts
	Semantics Sketch
	Semantics Sketch
	Example
	Parallel State Evaluation
	Simultaneously Enabled Transitions
	Discrepancies between dialects
	Event Processing
	Simultaneous Events
	Transition Ordering
	Execution of Actions
	unintended Behaviors
	Infinite Loops (Rhapsody)
	Bad Return Policies (Rhapsody)
	Strange Charts (Stateflow)
	Multiple Entries (SyncCharts)
	Analyzing statecharts
	Stateflow Semantics
	Stateflow Semantics
	Stateflow Semantics
	Stateflow Transition Semantics
	Stateflow Destination / State Semantics
	Implementation in Gryphon Tool Family
	Functional Analysis of Stateflow
	Functional Analysis of Stateflow
	Analysis of RCI State Machine Notation
	RCI Stateflow analysis
	New Work with NASA Ames and Vanderbilt University
	Parallel State Consistency
	Semantic Parallel State Consistency
	Conclusions
	Backup slides
	Unintended Orderings (Stateflow)
	A little history
	Example Chart
	Stateflow Semantic Formalization
	Stateflow Semantics Problems
	Strange looking charts
	Syntax of Statecharts
	Discrepancies: Fork and Join
	Rhapsody Semantics
	Rhapsody Semantics
	Problems with Rhapsody
	Chart Transition Consistency

